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AGGREGATION THEOREMS FOR ALLOCATION PROBLEMS*

j. ACZL, C. T. NG AD C. WAGNER

Abstract. Suppose that n individuals assign values to a sequence of m numerical decision variables
subject to the constraints that the m values assigned by each individual must be nonnegative and sum to
some fixed positive or. Suppose that we wish to aggregate their individual assignments to produce consensual
values of these variables satisfying the aforementioned constraints. Acz61 and Wagner have shown that if
m -> 3, then a method of aggregation is based on weighted arithmetic averaging ilI (a) the consensual value
assigned to each variable depends only on the values assigned by individuals to that variable and (b) the
consensual value is zero if all individuals assign that variable the value zero. In the present paper we extend
this result in various ways, dropping the unanimity condition (b) and allowing individual and consensual
values to be restricted to some subinterval of [0.,,

1. Suppose that a group of n individuals wish to assign values to a sequence of
m numerical decision variables. We call such a problem an allocation problem if the
values assigned must be nonnegative and sum to some fixed positive number
Examples of allocation problems abound, including, for example, the assignment of
probabilities to a sequence of pairwise disjoint, exhaustive events, and the distribution
of a fixed sum of money or other resource r among m projects.

In general we may expect that individuals will differ in the values that they assign
to the variables, and hence be faced with the problem of aggregating their individual
assignments to produce consensual values of these variables. Let us denote by the
n-dimensional vector zi the sequence of values assigned by the individuals to the/th
variable. (In what follows, lower case Latin letters, other than subscripts and integers
describing dimensions, denote vectors, while Greek letters denote real numbers. We
abbreviate the vector (c, a, , c), with equal components, by t.) If m >_-3 a method
of aggregation assigns consensual values to decision variables in such a way that (a)
the consensual value assigned to the/th variable is qi(zi), where q)i: [0, tr]"- [0,
and (b) the consensual value is zero if all individuals assign that variable the value
zero itt the method is based on weighted arithmetic averaging, with weights invariant
over the m decision variables ([7, Thm. 6.4]; see also [2], [3], [4], [9]). In many
decisionmaking situations, individual and consensual values of the variables may be
constrained to lie in a proper subinterval of [0, cr], as, for example, when each of a
number of budgetary units must receive not less than a minimal allocation tz > 0, nor
more than a maximal allocation z, < or. In such cases aggregation is more appropriately
mode.led by functions i:I" /, where I [0, cr]. Furthermore, the assigned values
may be deviations from some preferred value, and thus some may be negative (cf.
[2]). So we may wish also to drop the condition z >0 (or/z >_-0) and let I be any
(finite) real interval. In addition, conditions like (b) are only plausible if aggregation
is carried out "internally" among the n individuals. If these individuals functioned as
advisors to some external decisionmaker and he was responsible for aggregation, he
might very well decide to ignore their unanimity. We are thus motivated in the present
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paper to generalize, as described below, the model of aggregation specified by (a) and
(b), and to characterize the methods of aggregation which accord with this more
general model.

2. With the above observations in mind, we first model aggregation as follows:
Let tr be a fixed constant, and I be an interval with end points/x < u compatible

with tr in the sense that

(1)
or

or

or

I =[, v] and

I [/., v[ and

I ]tz, v] and

I =]U, v[ and

(rn 1)ix + v -< o- <- tz + (m 1)v,

(m 1)tz + v =< o" < tz + (rn 1)v,

(rn 1)tz + v < o- =< + (m 1)v,

(m 1)tz + v =< o- =< tz + (rn 1)v.

We suppose that there exist bounded functions

(2) i’I" -R (j 1, 2,..., m)

(in fact, it will suffice to assume merely that at least one (I)io is bounded below on
some proper rectangle [’1, 61] [,/2, di2] x [3’n, 8n]-In) such that

(3) ( )zjIhand E zj=(r => E O(zi)=r.
)=1

To motivate the compatibility conditions in (1) for the study of (3), we observe that,
in general the set S ={Zl I"lz2, z,. I such that .=1 z (r} is a subinterval
(n-dimensional) of I and (3) provides information about (I)i only on S. Thus it is
natural to assume that the domain I" of (I)j is equal to S, which is equivalent to (1).
For instance, if I I/z, v[, then Zl (r

j=2 zj < (r (rn 1)1 (inequality meant com-
ponentwise). But Z can be anywhere in ]1, v[, so it is natural to assume v <=
(r- (m 1)/z. The argument is similar for/z => tr- (m 1)v and for the other cases in
(1). Note that (1) implies

1
(4) Ix <--q < v.

m

The following theorem characterizes the aggregation methods which satisfy (2)
and (3) when there are at least three decision variables (m => 3):

THEOREM 1. For fixed rn >= 3, an aggregation method satisfies (2) and (3) if, and
only if, there exist real numbers to1, to2," ", to, and [31, [32," ", 3,, with

(5) EBi 1- to tr,
i=1

such that, for all z (’1, ", ’n) In,

(6) Oi(z)
i=1

(/" 1,...,m).

The tot (i 1, 2, , n) will be called weights.
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Proof. Sufficiency is clear. To prove necessity we bring in new intervals, variables
and functions. On first thought, one would want to move into 0 and thus go back
to the problem previously considered (as described in 1). However, the intervals
open at 0 (]0, u-I[ or ]0, u-]) would lead to complications and also the necessary
extension (cf. Appendix) is easier if 0 is in the interior of the new domain. So we define

0", Zj Zj 0",

(v)

(fl f +-- (zl (] 1,. ., ml

in order to transform (3) into

(8) e/’" and 2 f=0 =: Y. ()=o-.
j=l j=l

Note that I contains 0 as an interior point because of (4). Putting zi 0 (] 1,. , m)
we obtain 21 ()= and so the functions defined by

() ()-$(o)(9)

satisfy

(10) fefand E z’.=0 ::> E @(f)=O, @(0)=0 (/=l,...,m).
i=1 i=1

We first consider (1O) within a fixed symmetric subinterval [-e, e I (with e > 0).
In particular we get

(11) e[-e,e and 2 ff= 2 0() =0, 0() =0.

Putting y, 5= -y, 3 =0 in (11) we get ff(y)+ff(-y)=0 on [-e,
Similarly(y)+k(--y)=Oon[--e,e forall]#k. Thisimplies(asm3)

(12) 1 2 an odd function ff on I-e, e

In view of (12), we get from (11), with =x, 2=y, 3=-x-y, 4 =0,
the Cauchy equation

(13) O(x)+(y)=(x+y), x,y,x+y[-e,e].
This ff can be extended uniquely to a function " " satisfying

(14) (x)+q(y)=(x +y) allx, y

This extension theorem is due to Dar6czy and Losonczi [5]. (For completeness we
include in the appendix a shorter proof, cf. [3], [6], [8]).

We now claim that 41 tO2 ,, on jr-. We first consider

(f) ()-,(), zef" (]=1,’’ .,m),

and we need to show that i 0 on [" for all/’. Since extends , we already have
from (12)

(15) (x) 0 for all x e [-e, e ]".
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From (10) we get

(16) e[" and Y. =0 (z’)=0.
i=1

Let z /" be arbitrarily given and we will show that (z)= 0 for all . From (1) and
the discussion following (3), there exist z,..., z[ such that z +i= zi =0, i.e.=z =-z. Therefore the mean of z,..., z, which equals -z/(m- 1) is also in
I". By (16) we have

(7 (zl+ z + m_i,,z +...+ z =0.

Repeating this, using (-1/(m 1))z in place of z, we get a sequence of equations

(18) 1+1 /+1

+3((m1) z)+...+((.x) z)=0
for =0, 1, 2,.... Since (16) is symmetric in the Cj’s, (18) remains valid under any
permutation of Cj’s. For large enough l, (-1/(m 1))/+1z will be in the interval [-e e

where the bi’s are zero, and so by (18) ((-1/(m-1))tz)=O. By symmetry
i((-1/(m 1))z)=0 for all j 1,..., m. Using (18) recursively we get i((-1/(m
1))z) (z) 0 as claimed.

The boundedness (2) implies that is bounded below on some rectangle and so
(14) yields j(z) if(z) i-- toii with appropriate constants (weights) to1," ", to, on
jrn (see e.g. [1, pp. 214-216]). This, (9), (7), and (14) give

i(z)-,(0)= i(z- ml-----tr)- ’(-1--tr)=m(z-ml---tr) (- ml----tr)

that is, (6) holds with/3j (0). The functions i given by (6) satisfy (3) if and only
if the constants satisfy (5). This proves the theorem. U

We note that the "weights" toi may be negative. It is easy to show that these
weights are nonnegative if and only if i(z)=> (x) for all z (rl,..., ’n) and x
(’, , se,,) with ’ -> ’i, 1,. , n. We remark also that the above theorem continues
to hold, without essential change in the proof, if the bounds and u are replaced by
possibly different bounds tz and u, 1 <= <-n, on each individual’s assignments.

3. We next investigate aggregation methods which supplement the hypothesis of
Theorem 1 by (a) conditions requiring that aggregation respect unanimity among the
individuals and (b) a narrowing of the range of the functions j to/, the same interval
where individuals assign values to the variables in question.

It turns out that very weak unanimity conditions have rather substantial con-
sequences:

THEOREM 2. Let m >--3 and suppose that an aggregation method satisfies (2) and
(3). If (rlm)=o’/m (]= 1,..., m) then, and only then, for all z (’,..., ’) I",

(19) i(z) toii + (j 1,. ., m),
i=l
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where

(20) /3= 1-E to --;
i-----1 m

and if, for some el with a tr/m, do](at)= a, j 1,’", m, then, and only then, for
all z (rx,. ., r,,) I",

(21) P](z) tor (] 1,..., m),
i=1

where EiL1 to]-" 1.
Proof. Assume

From Theorem 1, (6)

Thus

for a fixed a e L

O--- O)iO ""3]
i=1

(]= 1,2,...,m).

/3=/32 [3"=[3= 1-E to .
Comparison with (5) gives

(1- to (mc -tr) 0.
i=1

So there are two cases. Either c =tr/m and then we have (19) and (20). Or a cr/m,
in which case

Z toi 1.
i=1

Thus/31 =/31 /3,. 0, so that (6) goes over into (21).
We consider next the effect of specifying, in place of (2), the stronger (and more

natural) condition

(22) do]" I" --> L l <-j <- m

(in fact, it suffices to posit this range restriction for ] e J, where J is some nonempty
subset of {1,..., m}).

THEOREM 3. If m >--3, an aggregation method satisfies (22) and (3) if, and only
if, the aggregation functions dO are of the form

(23) dPi(z E toil] -- 3] (] 1, 2," ", m ),
i=1

where

(24) Y’. /3] 1- to o’,
1=1 i=1

and for each ] J [where (22) is supposed to hold]

(25) tz -/zE**- vY_,* <13] "(2 V b"-’**--/A’’-’
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where X* *00 denotes the sum of the negative weights and ** **0 denotes the
sum of the positive weights, and the two inequality symbols < and "<2 are either < or
<- according to the type of the interval I:

(A) When I =[Ix, v], <1 is <-and <2 is <=.
(B) When I [tz, u [,

(i) < is <= and "2 is <= if E* 0 and X** # O,
(ii) < is <= and <2 is <= if X* 0 and X** O,

(iii) < is <- and <2 is < if X* 0 and X** O,
(iv) <x is <- and <2 is < if X* 0 and X** O.

(C) When I ]lx, v],
(i) < is <- and <2 is <- if X* 0 and ** O,

(ii) < is <- and <2 is <= if X* 0 and X** O,
(iii) <x is < and <2 is <= i[ X* 0 and X** O,
(iv) < is < and <2 is <= if 5:*= 0 and X**= 0.

(D) When I ], [,
(i) <x is <= and <2 is <= if E* 0 and X** O,
(ii) < is <- and <2 is <= if E* 0 and X** O,

(iii) <x is <-_ and <2 is <= if E* 0 and **= 0.
(iv) <x is < and <2 is </]" E*= 0 and X**= 0.

Proof. The specification (22) implies (2) as J # and so, by Theorem 1, (22) and
(3) imply (23) and (24). What remains to be done is to examine what relations between
the constants toi’s and Bj’s in (23) should correspond to the requirement j(l") I in
(22). We analyze the case (B) when I [tz, u[ in full and omit the details for the cases
(A), (C) and (D).

With I [tz, v[, the range of i over I" given by (23) is"

(i) ]uE* + X**, Ix X* + uE**[ +/3 if Y.,* 0 and X** 0,

(ii) [t.* X**, vX**[ +/3 if X* 0 and X** : O,

(iii) ]rE*, V, X*] +B if X* # 0 and X,** 0

and

(iv) {0}+/3i if Y.,* 0 and X** O.

For each case, the inclusion of the range of j by [tz, v[ corresponds to the inequalities
(25) under (B) (i)-(iv).

Remark. For each i given by (23) on I", the range is an interval of length
The inequalities (25) imply in particular that

tz -tz X**oi- vS*o =< v vX**o-tzX*o which is equivalent to

and reflects the fact that, if the range of j is to be in/, its length must not exceed
that of L Since u-/x > 0, we get

(26)
i=1

and it implies in particular that Y-i= toi <- 1.
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= < I, w may rwrite (23) as

(27) b(z)= (’-)+r, ]= 1,...,m
--1

wher r]--]/(1-F.= ) and, by (24), = ]--r. The aggregation functions ]
might aris in practic in th above form {27), if our group of a individuals ar advisors
to som xtrnal dcisionmakr whose preferred allocations, prior to consulting with
the group, are given by the numbers o’,..., ’,,. (Note that (19) with (20) is the
special cas o =r/m of (27).)

If .__ 1 in (23), w obtain from (26) that E* 0 and so all wights ar
nonngativ. Furthrmor (25) gives 0 for all ] J. In conclusion, Theorem 2 and
Theorem 3 can b combined to give the following characterization of aggregation by
ordinary wightd arithmetic mans:

THEOREM 4. Let m >-- 3 and I I/z, v], [tz, v[, I/z, v] or ]tz, v[ be an interval where
Iz < v are constants satis[ying (1). Then a sequence ol[unctions i"I -’> I satisfies (3)
and i(a)= a [or some a I where a tr/m if, and only i[, there exists a sequence of
weights to1, , to,, nonnegative with sum 1, such that, ]’or all z (, ,) I,

%(z) ,o,, (/= 1,..., ,n).
i=1

Several proofs of the above have previously appeared in the literature for the
special case ! [0, tr] and a 0. See [3], [4] and [7, Thm. 6.4].

Appendix.
PROPOSITION If, for ff [-e e --> a

(28) (x + y ff (x) + g(y) whenever x, y, x + y I-e, e ]",

then there exists a " "-> satisfying

(29)

and

(30)

(x + y (x) + (y) for all x, y

(x)=(x) forallx e[-e,e]".

Proof. From (28), O(kx)= kf(x) for kx I-e, el", that is,

(31)

in.Let x e R" be arbitrary. There exists a positive integer k such that u x/k e [-e e

Define

(32) 0(x) k(u)= k x (xe",ue[-e,e]").

This definition is unambiguous" If x ku lv (u, v [-e, e]") then, by (31),

lO(v) klO() klO() kO(u),

as asserted. Note that (32) implies (30) for k 1.
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Finally, we prove (32) by choosing, for given x, y In, an integer k so that x/k,
y/k, (x + y)/k are all in f-e, e In. By (32) and (28)

O(x + y kO (x + y kO x + kO -y , (x + , (y

for all x, y ". [3
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ON THE DIMENSION OF BI-INFINITE SYSTEMS*

HARALD K. WIMMER"

Abstract. The kernel of banded Toeplitz matrices is studied.

The inversion of bi-infinite matrices is important for problems in interpolation
theory (see e.g. [2]). In this note we describe the kernel of banded Toeplitz matrices
and generalize a result in [3].

Let A, u O, 1, , p be complex m x n matrices. Put

P

A(z):= A,_
v-----0

and define

KA:---" (’’’,X-I, Xo, X1,’" "),xiCn, such that ’. Axi+,=0foralli’

Thus ga is the right null-space of the bi-infinite block Toeplitz matrix

(...0 Ao al ap 0
0 Ao A1 Ap 0

We shall relate the dimension of KA to the rank and the characteristic polynomial
of A.

It is convenient to work with bi-infinite formal power series instead of bi-infinite
sequences. Put

Cn(Z) :-" XiZi Xi C

.)T CTo each x (. x_l, Xo, x we associate an element (z) given by

(Z)= E XiZi.

We define

KA := {. e C (z), A2 0}.

Then x KA if and only if /(A and the vector spaces KA and/(A are isomorphic.
In a natural way KA is a C[z]-module if we put

Z--- E Xi--1Zi"

We first consider the case A (d), d C[z]. Let d be factored into d(z) --czkq(z)
with q (z)= 1-If= (z- ai)s’ where the roots ai are nonzero and distinct. Then

i=1

* Received by the editors January 24, 1983.
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By adapting standard results on linear difference equations (see [1]) we establish a
basis of the vector space K(z-a)s of the form

Hence

E ira-izi, tr =0, 1,. ",s-1.

dim Ka deg q.

If A C’"[z has rank r (over C[z ]) then we denote the greatest common divisor
of all r r minors of A by x(a) and call it (by abuse of language) the characteristic
polynomial of A. Let F and G be two unimodular matrices which transform A into
Smith form

(1) FAG S
/DO

with D diag (dl, , dr), dildi/. Then

(2)

(3)

o)

x(A) x(D) fi do.
p=l

THZOREM. Let the characteristic polynomial x(A) ofA be given by

X (A) cz th (z), h (0) O.

(a) The C[z]-module KA is finitely generated. It is a torsion module if and only
ifA has full column rank.

(b) The vectorspace KA has finite dimension if and only ifA has full column rank.
In this case dim K, deg h where h is given by (3).

Proof. Let the Smith form of A be given as in (1) and put S := (D, Or,,-r). Then
G37 is a C[z ]-module isomorphism between KA and Kg. Furthermore

(4) Kg Ko O) C(z)O) C(z).
(n )- times

If the column rank of A is not maximal i.e. n > r, then a block Or,,-r appears in the
Smith form (1) and a summand C(z) in (4). Obviously C(z) is torsion free and its
dimension as a C-vectorspace is infinite. For )7 6 KD we have d)7 0. Hence KD is
a torsion module over C[z]. Because of KD =@0-- Kdp we are back at the scalar case
and (2) yields the dimension of KD. U

Remark. In the special case A(z)= Bz + C, part (b) of the theorem has been
proved in [3]. The approach in [3] is based on the Kronecker normal form of the
pencil Bz + C and on deflating subspaces.
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PREEMPTIVE SCHEDULING, LINEAR PROGRAMMING
AND NETWORK FLOWS*

D. DE WERRAS"

Abstract. A refinement of the Birkhoff-von Neumann theorem on bistochastic matrices is derived by
a simple argument based on network flow theory; this result is then used for solving a problem of preemptive
scheduling on unrelated processors with constraints involving subsets of processors and subsets of jobs. A
simple construction procedure is given; it generalizes a two-stage method (linear programming+ network
flow) developed by E. L. Lawler [J. Assoc. Comput. Mach., 25 (1978), pp. 612-619] and extended by R.
Slowinski [Przeglad Statyst., 24 (1977), pp. 409-415, RAIRO Inform., 15 (1981), pp. 155-166].

Key words, preemptive scheduling, network flows, bistochastic matrices

1. Introduction. The purpose of this paper is to give a general formulation of
the preemptive scheduling problem for which one can use a method in 2 stages
developed by E. L. Lawler et al. [3] and R. Slowinski et al. [5], and refined by R.
Slowinski [4]. This procedure consists in solving first a linear programming problem
for obtaining the partial processing times of the jobs on the various processors; the
second phase is the construction of a schedule based on the previous processing times;
it is performed by solving a finite sequence of compatible flow problems.

In the proposed formulation, more general constraints than in the previous models
can be introduced; one may take into account the fact that some subsets of processors
or some subsets of jobs use resources which are available in limited amounts.

In the next section, the problem of preemptive scheduling on unrelated processors
will be discussed. The main result will be established in terms of subpermutation
matrices in 3, while in 4 an example will be discussed.

For all terms related to flows, the reader is referred to Ford and Fulkerson [2].

2. Preemptive scheduling on unrelated processors. We shall first describe the
model which is an extension of the model used by Slowinski [4]. We are given a set
z ={T1,"" ", T,} of jobs, a set ={P1,""", Pr,} of unrelated processors and a set

R e [.J R a of renewable resources; each job T0 can be processed during some time
on a processor, then one may interrupt its processing at any time and continue it later
on some other processor (or on the same); 7rq is the set of processors which can be
used for job To while zo is the set of jobs which can use processor

For each job To we are given the times tpo which would be needed to process T
completely on processor Pp. We are also given a family M (A,Ii I) of subsets of

" At is the subset of processors which use the same resource rl{ eR e’, we are also
given for each At a positive integer c" it is the number of units of re which are
available at any time, so that no more than c processors in At (i.e. using rP) can be
working at the same time. We may assume that for each processor Pp there is a
singleton Ai {Pp} in M with ai 1. The reason will be made clear later.

Furthermore, we are given a family (Bjl/" J) of subsets of -: Bj is the subset
of jobs which use the same resource rf R 7"., units of this resource are available
at any time, so that at most fl jobs ofB can be processed simultaneously. We similarly
assume that for each job To there is a singleton Bi {To} in .

* Received by the editors January 4, 1982, and in revised form March 7, 1983. This paper was written
while the author was visiting the Technical University of Poznan (Poland) in September 1982. This research
was supported by the Institute of Control Engineering of that University.

" D6partement de Math6matiques, Ecole Polytechnique F6d6rale de Lausanne, 1007 Lausanne,
Switzerland.
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All renewable resources r" RP and rf R T are distinct, but a job (or a processor)
can use several resources since it can be included in several subsets Bi (or Ai).

We are interested in finding the smallest total completion time T; in order to
obtain it, we may first define zp0 as the time during which job To is assigned to processor
Pp and solve the linear programming (LP) problem

Min T

(2.1) E Y’. (i eI),
p: PpeA q: Tqe’rq

(2.2) E Y’. Zpo <- fliT (j e J),
q: TqeB p: PpeHq

(2.3) Y. z-A= 1 (q 1,..., n),
p: P, II, tpq

(2.4) Zpo = 0 (p=l,...,m, q-1,...,n).

The constraints (2.1) express the fact that the sum of the processing times of the jobs
using processors in Ai must not exceed the total availability of resource rP, namely
aiT. Similarly (2.2) says that the sum of the processing times of the jobs in B (i.e.
using resource rf) must not exceed the total availability fliT of resource r. Conditions
(2.3) ensure that all jobs are completely processed. Since in t there is for each
processor Pp a subset A -{Pp} with c 1, then (2.1) says also that the total working
time of Pp must not exceed T. Similarly since there is in 9 for each job Tq a subset
B {To} with fli 1, then (2.2) amounts to saying that the total processing time of Tq
must not exceed T.

This LP model is thus an extension of the model considered by Slowinski [4];
the analysis of complexity is the same and will not be discussed here. Solving this LP
problem is the first stage of the method; the second stage will consist in finding a
schedule using no more than T time units and based on the values Zpq previously
obtained; this second phase consists in constructing a sequence of compatible flows
as described in the proof of Theorem 3.1.

As a consequence, we obtain the following result: If in this scheduling problem,
and have a special structure (noncrossing families), then the two-stage method

(LP + flow) will find a schedule using no more than T time units (where T is given
by the LP solution).

3. The main result. Given a set E, a family (Fli el) of subsets of E is
noncrossing if FiFi# implies FieF or FieF (i,]I). Let M={1,...,m},
N={1,..., n} and M-(Ali I), -(BI]J) be 2 noncrossing families of subsets
of M and N respectively. Let a(i I) and/i(] J) be positive integers; we may
assume that a <--IAil (i I) and fli-<lBi[ (] J). Let Z be a matrix with nonnegative
entries Zoo (P M, q N) and define

a(i) =1- E E Zpq,
Oli pAi qN

1
b(/)=i Y’. Y’. Zoo,

qB pM

T =max (max a(i), max b(j))jJ
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A subpermutation matrix is an (m x n) matrix $ with so 0 or 1 such that

Z E Spq ai (i E I),
pEAi

qBi PM

THEOREM 3.1. LetM, N, sg, , cti(i El),/3(/" E J), Z, The defined as before. Then
Z is a linear combination of subpermumtion matrices St,. ", S,

Z--lSl +.. "+hrSr

with hi-->0 (i 1,...,r) andht+.. "+At T.
Proof. We have to show that we can find a subpermutation matrix $1 and a

positive number At such that Z’ =Z-AIS1 is a nonnegative matrix for which the
following conditions hold"

(1) If

1
(iEI) b’(])--- Z Y. zp, (/E J),a’(i) Y. E Zp --A-

Oli pAi qN [Jj qEB pM

then

T’ =- max (max a’(i)’ max b’(j)
JJ

T-A1.

(2) Either Z’ has one more zero than Z or Z’ has at least as many zeros as Z
but there is at least one more subset Ai such that a’(i)= T’ or one more subset Bi
such that b’(])= T’.

Since each one of these cases can occur only a finite number of times, the process
is finite; we will necessarily end up with a matrix Z(r)= Z-htSl h,S consisting
of zeros.

(a) Construction of $1. Without any loss of generality we may assume that in
all subsets Ai of M are different, that there is in a subset Ao=M and that all
singletons are in . Similar hypotheses are made for .

We represent by an arborescence with root A0 ((A, At) is an arc if and only
if Ai Ai and there is no k # i,/" with Ai Ak Ai); so for each Ai (i # 0) there is one
arc (Ai, Ai) going into A.

For we use a similar representation but we reverse the orientation of all arcs
(so for each Bi ( # 0), there is one arc (Bi, Bi) going out of Bi). Also we link Ai {p}
and Bi {q } by an arc (Ai, Bi) if z > 0.

In the network r" thus obtained we assign capacities c(x, y) and lower bounds
l(x, y) to each arc (x, y) as in Table 3.1.

One verifies immediately that the values f(x, y), given in the last column of Table
3.1, define a feasible flow in aV" from A0 to Bo with value (l/T)ptY’.qrz; this
flow is not necessarily integer, but by the integer value theorem there exists an integer
flow f’ in aV’; its values on the arcs (p, q) are 0 or 1; so the values f’(p, q) define a
subpermutation matrix St.

(b) Computation of At. Let E ={(p, q)lf’(P, q) 1} and Zmin min(o,q)EE zp >0.
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TABLE 3.1
Description of network" capacities, lower bounds and flow.

(x, y) c(x, y) l(x, y) f(x, yl

(Ai, Ai)

(Bi, B)

(P,q)

For each Ai (i el) define mi =IE f’){(p,q)" pAi}[ and for each Bi (j J) define

ni IE fq {(p, q)" q Bi}l. Furthermore,

Zmax=miI1 { rain
oi(T-a(i))

min
’(T-b(]))1

il oi--mi i.I [3,---n ,’
a(i)<T b(])<T

and if a(i)= T for each J and b(])= T for each j J, then Zmax
We set A min (Zmin, Zmax). Clearly A > 0; it follows also from the choice of A

that Z’=Z-AS1 has nonnegative entries. We now have to show that in Z’ the
following holds:

T’=- max (max a’(i),max b’(j))jeJ

Observe that in each Ai with a (i) T (respectively in each B with b (j) T) we have

mi =ai (resp. ni =i)soa’(i)=a(i)-aiAx/ai a(i)-A T-AI (resp. b’(]) T-A).
Furthermore if a (i) < T, then

miA1 (i--mi)
a’(i)=a(i)-=a(i)-hl+hl< T-A1

o o

(since by choice of A1 we have (ai-m)A 1/0l T-a(i)). Similarly if b(])< T then
b’(/’) =< T-A1.

Finally if h Zmn, there is one more zero entry in Z than in Z’, and if h Zmax
one more set A (or Bi) satisfies a’(i)= T’ (or b’(j)= T’). This ends the proof.

An example of a matrix Z with the families 4 and and the integers a (i I),
/3i (] J) is given in Fig. 3.1; the value obtained for T is 15.

The associated network is represented on Fig. 3.2 where all flow values indicated
should be divided by T 15. Figure 3.3 shows the network with the lower bounds
l(x, y) and the capacities c(x, y) indicated by [/(x, y), c(x, y)] for all arcs (x, y) except
those for which l(x, y)= 0 and c(x, y)= 1. An integer compatible flow from A0 to Bo
with value 2 is represented and the corresponding subpermutation matrix S is shown
in Fig. 3.4. The computation of Zmax is given in Fig. 3.5; one gets Zmx 5; hence
h min (Zmin, Zmx) 5. The resulting matrix Z’ is given in Fig. 3.6; one verifies that
with T’= T-hx 10, one has now a’(2)= T’= 10 (initially we had a (2)= 10< T 15).

COROLLARY 3.1 (Birkhoff and von Neumann). A bistochastic matrix is a convex
combination ofpermutation matrices.

Proof. Take M N and A {i}, a 1 (i M), Bi {/’},/3 1 (/" N).
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FIG. 3.2. Network with flows in the arcs (all values are to be divided by T 15).
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FIG. 3.4. Subpermutation matrix S1 defined by the flow f’ of Fig. 2.3.
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4. A simple example. We will describe the construction of the schedule in the
special ease considered by Slowinski [4]; the family M is (Ali eM) with A Pv
for 1,. ., m; so (2.1) becomes
(4.1) E zpq <=T (p=l,...,m).

This means that no processor can work more than T time units and there are no
renewable resources used by processors.

contains a) disjoint subsets B1,’’’, Br of " {T1, ", T,}; Bi is the subset of
jobs using resource rf which is available in quantity fli at any time; b) subsets Br/i T.
for/" 1, , n.

The constraints (2.2) now become

(4.2) ., E Zpq <-fliT (j 1,..., r)
q: TqB p: PpHq

(the sum of the processing times of all jobs in Bi must not exceed the total availability
/iT of resource if),
(4.3) ., zpq <= T (q 1,..., n)

p: Pp.l-Xq

(the total processing time of job Tq must not exceed T). We may assume that dummy
jobs have been introduced so that (4.1) consists in fact of equalities. One can obtain
a subpermutation matrix $1 by applying the flow method described above; this gives
the first assignment of jobs to processors; in order to determine the time h during
which this assignment will be used, one computes"

Zmin min zp > O.
P,q: spq=l

As before, once we have Sx, we denote by n the number of sp 1 of Sx such that
Tq Bi and we compute for each/"

1
X X zp,,

min (T- X z)Z
q p

Xp Zpq <T Pp rlq

2 (T-b(j))
Z min

b(j)<T

2Finally X rain (zmin, Z max, Z max).

with z --00 if Y. zp, T for each q,
p

2with z max (X) if b (/’) T for each/’.
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As an example, consider the matrix Z in Fig. 4.1; there is only one renewable
resource which is available in quantity/31 2 and which is used by the jobs T1, T2, T3.
We have T 5; if we have obtained by the flow technique the subpermutation matrix

2 and z 2S1 given in Fig. 4.1, then n l--1 and Zmin--2; we compute Z max--
2(5-4.5)/(2-1) 1, so A 1.

We now have one more constraint which is an equality, namely b’(1)= 4 T’.
The resulting matrix Z’ is given in Fig. 4.2. We can continue the decomposition and
we may finally get the schedule given in Fig. 4.3.

Remark 4.1. The computation of 1 given by Slowinski [4] is different from the
one given here; for the example of Fig. 4.1, the value of obtained by Slowinski is
A min (Zmin, T Zmax) where

Zmax=max max Y. zv,,max Y zv-A"
q: Spq=O p

Spq ---0

this would have given A1 =2, and for Z"-Z-IS1 we would have b’(1) =7/2>3
T’= T-, 1, and the construction could not be continued.

TI T2 T3 T4 T5 B T1, T2, T3}/31 2

P1 4

P2 2 2

P3 3

m1=1

Z S1
T=5

FIG. 4.1. An example with one additional resource.

P1 3

P2 2

P3

T’= T-A1 =4

B1

3 4 5

el

P2

P3

T1 T1 T1

T4 T3 T4

FIG. 4.3. Final schedule.

T1
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5. General setting of the problem. More generally, we could formulate the
problem of stage 2 as follows in terms of hypergraphs (see Berge [1] for definition of
hypergraphs). Let Z be an (m n) matrix with real nonnegative entries zpq; let
X={(p,q)lz,q >0} and =(Eili I) be a family of subsets of X; we are also given
for each Ei a positive integer O (with O [E/I). Consider the hypergraph H (X, ge)
constructed on the node set X and the family ge of edges. A subpermutation matrix
S was defined as an (m n) matrix with entries spo 0 or 1 such that for each Ei we
have IEi Cl{(p, q)lspq 1}l <_-cti. S can be considered as the characteristic vector of a
subset S* of nodes of H such that IE fq S*[ -<_ a for e L

We have then the general result:
THEOREM 5.1. LetZ, anda(i I) be given as above. Ifthe associated hypergraph

H=(X, ) is unimodular and if T=maxit (1/ai)(p,o)E, Zpo, then there is a finite r
such that Z A 1SI +. + ArSr where for each k Ak >- O, Sk is a subpermutation matrix
andAl+...+At T.

Sketch of proof. If A is the node-edge incidence matrix of H (aik 1 if edge Ei
contains node k), one has to find a subset S* of nodes (corresponding to a subpermuta-
tion matrix); such a set can be obtained by finding an integer solution of

(5.1) l_-<Ax-<c, O-<_x-<l

where

1
0 if- Y, zoq<c,

(p,q)E

li
1

ci if- z,q=o,
(p,q)N

(ieI)

and cg a. Such an integer solution can be found since A is totally unimodular, I, c
are integers and xj (1/T)z, (if node/" of H corresponds to entry (p, q) of Z) gives
a feasible solution of (5.1). Notice that for ensuring the existence of a solution x_-< 1,
it is sufficient (but not necessary) to assume that each pair (p, q) occurs in some subset
E with er 1. Then ’1 is determined as in 3 and the process is repeated with
Z’= Z- A 1S1. This ends the proof.

For a general unimodular H, the second stage of the method would consist of
solving a sequence of LP problems (i.e. finding a feasible integer solution to a system
of inequalities with a totally unimodular matrix). If g is the union of 2 noncrossing
families M, 9, then stage 2 consists of solving a sequence of compatible flow problems
as was shown here (see also de Werra [6]).

It is worth observing that in the first stage of the method one could add many
other constraints (not involving T) in the LP problem; the second stage would
not be changed since it depends only on the constraints involving the family (or
g and ).

Acknowledgments. The author would like to express his gratitude to Professors
J. Weglarz and R. Slowinski who introduced him to this problem and who made
valuable comments on this paper.
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A NEW FORMULATION FOR THE TRAVELLING SALESMAN
PROBLEM*

A. CLAUS

Abstract. The standard formulation of the travelling salesman problem on n nodes as an integer
program involves use of 2" subtour elimination constraints. In this paper we provide a set of on the order
of n 3 constraints that define the same polytope. This is accomplished through introduction of additional
variables. An additional set of n(n 1)/2 constraints is introduced and results in a polytope that is smaller
than the subtour elimination polytope. The introduction of further variables as well as constraints results
in an even smaller polytope.

1. Introduction. Many algorithms have been developed for the travelling sales-
man problem. These include edge switching heuristics, branch and bound procedures
(Held and Karp [3]) integer programming approaches (Dantzig 1]) and other ingenious
techniques (e.g. Christofides [2]).

The general problem is known to be NP complete (see Lawler [7]). A new
approach to it is therefore of interest primarily for its value as a heuristic.

The approach described in this paper is an integer programming formulation that
defines the same LP polytop as does the early subtour elimination approach of
Dantzig, Fulkerson and Johnson or perhaps a smaller one. It however involves only
a number of constraints proportional to the number of nodes times the number of
edges of the graph, rather than an exponential number of constraints.

The method involves too large a number of variables and constraints to be practical
as a heuristic for large problems, even if the LP formulation always gives rise to
integer solutions. It may, however, have value in shedding light on the differences
between the polytopes defined by travelling salesman solutions and by the subtour
elimination constraints. When these constraints yield integer solutions this method
yields exact solutions.

In any case this approach shows that one can find the minimum cost solution in
the polytope defined by the subtour elimination (and continuity) constraints by a
polynomial algorithm.

It also suggests an interesting problem discussed below.

2. The problem and |ormulation. The problem we consider is one of finding a
minimum cost Hamiltonian pathfrom one vertex Vs to another VT in a given weighted
directed graph.

The programming approach involves introducing a variable X for each pair of
nodes, that takes on value if the edge to / is in the tour corresponding to the given
choice of variables and 0 if it is not. (In the corresponding polytope these variables
are constrained to be between zero and one.)

The continuity constraints, for all i,

Ex, =Ex ,

Xi$ 0, XTi 0,

* Received by the editors October 26, 1982, and in revised form December 7, 1982. This research
was supported in part by the National Science Foundation under contract 8202555.

" Ecole Sup6rieure de Commerce (ESCAE), Montpellier, France.
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insure that, for an integral solution, exactly one arc enters and leaves each vertex.
(The objective function, to be minimized, for arc cost Cii is XiiCii.)

There are several ways to add additional constraints in order to guarantee that
an integral solution corresponds to a Hamiltonian tour.

The Dantzig, Fulkerson and Johnson approach was to require that for every
nontrivial subset X of the nodes (other than s), we have

for all not in X and/" in X. This insures that one can get from the source to any set
of nodes in a tour corresponding to an integral solution.

These "subtour elimination constraints" have the difficulty that there are an
exponential number of them.

Other sets of constraints having the same effect have been described (see for
example Wagner [8] where constraints of the form u ui + nXi _-< n 1 are mentioned).
However the sets we have seen that involve a polynomial number of constraints lead
to a different polytope than the subtour elimination constraints, and tend to yield
noninteger solutions peculiar to their own polytope.

We now introduce new variables and constraints that replace the subtour elimina-
tion constraints by a number of them that is proportional to the number of nodes
times the number of finite cost arcs in the given weighted digraph.

The idea is to interpret the variables Xii as defining capacity for the arc {i, ]}. We
then insist that the capacities be sufficient to support flow of one unit from the source
to each vertex (and from thence to the sink X if we choose).

Thus for each vertex k other than s we define variables Yqk with the following
properties"

Continuity at i: Yqk ., ’gk for other than s and k;

Capacity: 0-< Yqk Xq;

Flow from s to k: Y Yi 1, Z Yik 1, ., Ykik O.

The addition of these variables and constraints provide the new formulation under
discussion here.

These additional constraints as noted contain the information that the capacities
Xi are sufficient to allow unit flow from the source to each node.

The following remarks immediately follow
1. Any travelling salesman tour corresponds to a set of Xi admitting such flow.
2. No other integral variable solution of the continuity constraints admits such

flow.
3. Every solution of the linear program defined by these constraints obeys every

one of the subtour elimination constraints. The polytope in the Xi variables defined
by these constraints is contained in that defined by the subtour elimination constraints.

3. Further constraints. Solutions {X.} that do not have a Hamiltonian tour in
their support can be constructed.

The smallest example shown below

Due to Peter Shor and Mark Haiman, Department of Mathematics, MIT.
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has arc capacities of 1/2 units each and is a basic feasible solution to the subtour
elimination polytope. However, the introduction of n(n- 1)/2 additional constraints

Z Y)+Z Yijk =1, k,jN, k+/-j,

would make the above solution infeasible.
These mutual flow constraints will always be satisfied by a Hamiltonian path,

since along a Hamiltonian path only one node gets flow from the other.
A solution { Yiik} with flows of 1/2 units that satisfies the subtour elimination as well

as the mutual flow constraints is shown below"

The mutual flow constraints for commodity 1 are partially satisfied by the circulation
of commodity 1 between nodes 2 and 3.

To exclude these types of solutions we can introduce constraints that require the
flow of any commodity into a node to originate from the source, thus avoiding the
above types of circulations.

Introducing the quantities

and

Ql,k Yikl (flOW of commodity into node k)

klZij flow of commodity l, k on the arc i, ]
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permits us to express the above conditions with the following set of linear constraints
(circulation elimination constraints):

lk lkEZsi -0

lk olkEZ
lk klY’.Z -Z =0, i,/s,k.

lk YiilZii=
Zi’ <- Yijk,

Since along a Hamiltonian path either Qlk_ 0 or Qkl_. 0 we can impose the
stronger constraints

z ijkl +z ijlk <= Yijk, Z i’ +ZI <
If commodity enters node k (Qlk > 0) then we need a flow of commodity from

node k to node I. This may be expressed as follows:

E g,
lk QlkE Uil

lkE uli--E Ui] =0, i,/Ck, l,

U’i <-

In addition we have mutual flow constraints that are valid along a Hamiltonian path,

E (Z[ +Zi)+E (Z ’’+Z)+(Z +g )=1,

lk kl lpE (U,, +U,,)+E (U +U,k)+E (Uk + g’) 1,

p,l, keN,

as well as arc constraints,

lk kl lkZ ii -I-Z ij + Uii -Yiit,

that are also valid along a Hamiltonian path.
Circulation elimination constraints for the Z and U commodities may also be

added to avoid the mutual flow constraints for these commodities being satisfied by
such circulations.

4. Coladusions. Introduction to these mutual flow and the circulation elimination
constraints yields a polytope {P} that is smaller than the subtour elimination polytope.

If the vertices of P were all travelling salesman tours then this formulation would
provide a polynomial algorithm for the travelling salesman problem and by inference
to all NP problems. Since this seems highly improbable there may be other constraints.
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In particular if P # NP it must be that there exist solutions {Xij} with { Yijk } obeying
all these constraints such that the arcs {i, ]} for which X # 0 do not contain a
Hamiltonian path from S to T. (If none such exists we have a polynomial algorithm
for finding the existence of such a tour.) An interesting problem suggested by this
work is to find such a solution {Xi} that, as noted here, does not have a Hamiltonian
tour in this "support". Consideration of such configurations could conceivably shed
light on the differences between the Travelling Salesman and the polytope P.

We are engaged in programming the algorithm suggested by this formulation.
Application of the ellipsoid method [6] will either solve the TSP polynomially, or lead
to examples of configurations as noted in 3. We hope to be able to report on the
rate of succcess of this approach at a later date.

Acknowledgments. The author would like to thank D. J. Kleitman and Peter
Shor for editorial assistance and advice.
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CHARACTERIZATION OF POSITIVE DEFINITE AND
SEMIDEFINITE MATRICES VIA QUADRATIC

PROGRAMMING DUALITY*

S.-P. HANtt AND O. L. MANGASARIAN"

Abstract. Positive definite and semidefinite matrices induce well-known duality results in quadratic
programming. The converse is established here. Thus if certain duality results hold for a pair of dual
quadratic programs, then the underlying matrix must be positive definite or semidefinite. For example, if
a strict local minimum of a quadratic program exceeds or equals a strict global maximum of the dual, then
the underlying symmetric matrix Q is positive definite. If a quadratic program has a local minimum, then
the underlying matrix Q is positive semidefinite if and only if the primal minimum exceeds or equals the
dual global maximum and xT"Qx =0 implies Qx =0. A significant implication of these results is that the
Wolfe dual may not be meaningful for nonconvex quadratic programs and for nonlinear programs without
locally positive definite or semidefinite Hessians, even if the primal second order sutticient optimality
conditions are satisfied.

Key words, positive definite matrices, quadratic programming, duality
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1. Introduction. It is well known [3], [4], [11], [10] that the dual quadratic
programs

(la)

(lb)

Minimize 7-x’Ox +p x

subject to Ax <= b, Cx d,

Maximize 1/2x ’Qx b 7"u dv
X, IA,

subject to Ox +Aru +Cry +p =0,

where Q, A and C are given real matrices of order n n, rn n and k n respectively,
with Q Qr, and where p, b and d are given vectors in the real finite dimensional
Euclidean spaces R", R and R k respectively, possess many important relations when
Q is positive semidefinite or positive definite. In this paper we are interested in the
converse: What sort of duality relations between (1 a) and (1b) induce positive definite-
ness or semidefiniteness in Q ? A key role in deriving these converse relations is played
by the following conjugate cone characterization of positive definite and semidefinite
matrices [8].

THEOREM 1.1 [8]. Let K be a nonempty convex polyhedral cone in R". The n n
real matrix P is positive semidefinite if and only if P is positive semidefinite plus on Ihe
cone K and positive semidefinite on the confugate cone KP’, that is"

(2)

(3)

x K :::> xT"Px >_-0,

x T"Px =0, x K :::> P +P" x =0,

y eKe := {yIy(P +P’)x <=0, Vx K} :::> yapy _>-0.

* Received by the editors July 6, 1982, and in revised form January 27, 1983. This research was
sponsored by the U.S. Army under contract DAAG29-80-C-0041. This material is based on work supported
by the National Science Foundation under grants ENG-7903881, MCS-8203603, MCS-7901066 and
MCS-8200632.

University of Wisconsin-Madison, Computer Sciences Department, Madison, Wisconsin 53706.
University of Illinois, Department of Mathematics, Urbana, Illinois 61801.
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THEOREM 1.2 [8]. Let K be a nonempty convex polyhedral cone in R". The n x n
real matrix P is positive definite if and only if P is positive definite on K and gA, that
is,

OxK xTPx >0,

O yKP :: yTpy >0.
With the help of these characterization theorems and the second order optimality

conditions of quadratic programming [6], [9], [2], [1], we show for example in Theorem
3.5 that if a strict local minimum of a quadratic program exceeds or equals a strict
global maximum of the dual, then the matrix Q must be positive definite. In Theorem
3.6 we show that if a quadratic program has a local minimum, then Q is positive
semidefinite if and only if the primal minimum exceeds or equals the dual global
maximum, and Qx 0 whenever x TQx 0. In Corollary 3.7 we show that if the primal
feasible and dual feasible sets are nonempty, and if the weak duality relation holds,
that is, the primal objective exceeds or equals the dual objective over their respective
feasible regions, and if Qx 0 whenever x TQx 0, then Q is positive semidefinite.
In 1-7] positive-definiteness of the Hessian of the Lagrangian of nonlinear programs
was established under more restrictive assumptions.

The import of these and our other results is that when certain simple and desirable
duality results are satisfied by a pair of dual quadratic programs, then the underlying
matrix must be positive definite or semidefinite. This leads to the conclusion that the
Dennis-Dorn-Wolfe quadratic dual programs [3], [4], [11] are meaningful only if the
underlying matrix is positive definite or semidefinite. For example, even if the primal
quadratic problem (la) has a unique global minimum solution (thus satisfying the
second order sufficient optimality condition), and if the underlying matrix is not positive
semidefinite, then the dual quadratic problem (lb) may not have a solution. Thus the
example,

Minimize x 2 x 22, subject to x2 0,
has the unique global solution x -x2 -0, but its dual,

Maximize x 1 x + vx2, subject to x 0, -2x2 ""/3 0,
is unbounded above. Similarly, the Wolfe dual for nonlinear programs may not be
meaningful unless the Hessian of the Lagrangian is locally positive definite or
semidefinite in the neighborhood of a stationary point of the primal problem [7]. Thus
even if the second order sufficient optimality conditions are satisfied but the Hessian
of the Lagrangian is not positive definite or semidefinite in a neighborhood of a local
minimum solution, the dual problem may not have a solution.

We shall need second order optimality conditions for the dual quadratic programs
(1 a) and (lb) which have local and strictly local solutions. These results can be found
in [9], [2], [1], which we summarize here in a convenient form. The points (, a,)
R’+m+k and (,a, t3, ff,)R "+m+k+’ are Karush-Kuhn-Tucker points of (la) and
(lb), respectively, if they satisfy the following respective conditions [10]:
(4a) Q$+A +C7"5 +p =0, (4b) -Q +Qff =0,

A <= b, Aft,-b -<_0,

C d,
t -> O,

ar(Ae-b)=O,

Cff -d 0,
Q+A5 +cT5 +p =0,
ti>0,__

tT"r(A -b) =0.
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Note that if (, , t3) is a Karush-Kuhn-Tucker point of (la), then (, u, v,x) is
a Karush-Kuhn-Tucker point of (lb). To characterize local solutions we need to
define the following index sets associated with a Karush-Kuhn-Tucker point (, t2, t3)
of (la):

J := {ilAi b,, tT, > 0},

K := {ilAi bi, tTi 0},

I := {ilA < b,, a, 0}.

The notation Aj will represent the rows Ai of A with J. We can now state the
following"

THEOREM 1.3 [2], [1] (characterization of local solutions of quadratic pro-
grams). A point R is a local minimum solution of the quadratic program (la) if
and only if 2 and some (ft, )Rm+k satisfy the Karush-Kuhn-Tucker conditions
(4a) and

(5a) Ajx =0, Arx -< O Cx =0=),xTQx >-0.

The Karush-Kuhn-Tucker point (, t, 7) of (la) is a local maximum solution of the
dual quadratic program lb) if and only if

(5b) Qx +Au +Cv =O, ur, >-_O, ui =O: xT"Qx >-O.

THEOREM 1.4 [9], [2], [1] (characterization of strict local solutions of quadratic
programs). A point R is a strict local minimum solution of the quadratic program
(la) if and only if and some (, )R"+k satisfy the Karush-Kuhn-Tucker
conditions (4a) and

(6a) Ajx =0, Arx _-< O Cx =0, x O ::> x TQx > O.

The Karush-Kuhn-Tucker point (, iT, 3) of (la) is a strict local maximum solution
of the dual quadratic program (lb) if and only if

(6b) Qx +Au + Cv O u: >- O ut O x u v O :: x TQx > O

In the next two sections we characterize positive definite and semidefinite
problems in terms of equality-constrained quadratic programs ( 2) and inequality-
constrained quadratic programs ( 3). This split into equality- and inequality-
constrained problems permits the statement of somewhat sharper results for the
former. For simplicity we confine the results of 3 to inequality constraints only.
Problems with both equality and inequality constraints can be handled in a straightfor-
ward extension of the results of 3.

2. Equality-eonstrainefl quadratic programs. We specialize here the dual prob-
lems (la) and (lb) to the following equality-constrained dual quadratic programs:

(7a) Minimize 1/2x 7"Qx +px (7b) Maximize x 7"Qx dv
subject to Cx d, subject to Qx +Cv +p O.

We say that a problem is feasible if the set of points satisfying its constraints is
nonempty.
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THEOREM 2.1 (characterization of positive semidefinite and definite
matrices). Let (7a) be feasible.

(i) Let (7b) be feasible. A necessary and sufficient condition for Q to be positive
semidefinite is that (7a) has a local minimum solution, (7b) has a local maximum
solution and

(8) xQx O, Cx 0 => Qx O.

(ii) A sufficient condition for Q to be positive definite is that (7a) has a strict local
minimum solution and (7b) has a strict local maximum solution. This condition is also
necessary if C has linearly independent rows.

Proof. (i) Necessity follows from existence and the duality theory of convex
quadratic programming [5], [10]. We establish sufficiency now by means of Theorem
1.1. Define

(9)

Then

K := {xlCx 0}.

K :-- {y]yaQx 0, Vx K}

{y [y TOx > 0, Cx 0 has no solution x }

(10) {ylOy +cTv =0}.

Since (Ta) has a local minimum solution, it follows by Theorem 1.3, (5a) and (9) that

(11) xTOx >--0 for x K.

Since (7b) has a local maximum solution, it follows also by Theorem 1.3, (5b) and
(10) that

(12) yTQy >= 0 for y K.
Hence by (11), (8), (12) and Theorem 1.1, O is positive semidefinite.

(ii) Necessity. That both (7a) and (7b) have solutions follows from the feasibility
of (7a) and the positive definiteness of O. The uniqueness of solution for (7a) follows
from the positive definiteness of (2. The uniqueness of solution for (7b) follows from
the positive definiteness of O, the linear independence of the rows of C and Theorem
1.4, (6b).

Sufficiency. We establish sufficiency by means of Theorem 1.2. Since (7a) has a
strict local minimum solution, it follows by Theorem 1.4, (6a) and (9) that

(13) xTOx >0 for 0xK.

Since (7b) has a strict local maximum solution, it follows also by Theorem 1.4, (6a) that

xTQx >O forOx+CTv=0, (x, v)#O,

and hence by (10)

(14) yrQy>O for0#yK.
Hence by (13), (14) and Theorem 1.2, (2 is positive definite.
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3. Inequality-constrained quadratic programs. We turn our attention now to the
following inequality constrained dual quadratic programs:

(15a) Minimize 1/2x rQx +px (15b) Maximize x rQx bu
X,LI

subject to Ax <= b, subject to Qx +Au +p O, u >- O.

THEOREM 3.1 (characterization of positive semidefinite and definite
matrices). Let (15a) be feasible.

(i) Let (15b) be feasible. A necessary and sufficient condition for Q to be positive
semidefinite is that (15a) has a local minimum solution with multiplier , that
(, ) is a local maximum solution of (15b) and

(16) xrQx =0, Ajx =0, Arx <-O Qx =0.

(ii) A sufficient condition for Q to be positive definite is that (15a) has a strict local
minimum solution with multiplier a, and (, a) is a strict local maximum solution
of (15b). If in addition the rows of Aj are linearly independent, and Ax =0, Ar.x >0
has a solution, then this condition is also necessary.

Proof. (i) Necessity follows from existence and the duality theory of convex
quadratic programs. We establish sufficiency now by means of Theorem 1.1. Define

(17) g :={xlA,x =O, Arx <_-0}.

Then

K {ylyrQx <=0, Vx K}={y[yrQx >O,Ax =O, AKx <=0, has no solution x}

{y[Qy -aur-AcuK =0, uc _->0}.

Therefore

(18) -K {x IQx +Aru 0, u: _-> 0, ut 0}.

Since $ is a local minimum solution of (15a) with multiplier a, it follows from
Theorem 1.3, (5a) and (17) that

(19) xTQx >=0 for x K.

Since ($, a) is also a local maximum solution of (15b), it follows from Theorem 1.3,
(5b) and (18) that xTQx >=0 for x -K, which is equivalent to

(20) x rQx >-0 for x K.
Conditions (19), (16), (20) and Theorem 1.1 imply that Q is positive semidefinite.

(ii) Necessity. That both (15a) and (15b) have solutions follows from the feasibility
of (15a) and the positive definiteness of Q. The uniqueness of the solution of (15a)
follows from the positive definiteness of Q. The uniqueness of the solution of (15b)
follows from the positive definiteness of Q, the linear independence of the rows of
A, the existence of a solution to Ajx O, Arx > 0 and Theorem 1.4, (6b).

Sufficiency. We establish sufficiency by means of Theorem 1.2. Since (15a) has
a strict local minimum solution , it follows by Theorem 1.4, (6a) and (17) that

(21) xTQx >0 for 0x K.
Since ($, t) is a strict local maximum solution of (15b), it follows from Theorem
1.4, (6b) and (18) that

(22) x rQx > 0 for 0 x K.
Hence by (21), (22) and Theorem 1.2, Q is positive definite. [3
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COROLLARY 3.2 (globalization of local dual solutions).
(i) Let be a local minimum solution of (15a) with multiplier , let (, )

be a local maximum solution of (15b) and let (16) hold. Then Q is positive semidefinite
and hence is a global minimum solution of (15a), and (, t) is a global maximum
solution of (15b).

(ii) Let be a strict local minimum solution of (15a) with multiplier , and let
(, ) be a strict local maximum solution of (15b). Then Q is positive definite and
hence is a unique global minimum solution of (15a), and (., ) is a global
maximum solution of (15b).

We note that condition (16) of Theorem 3.1 cannot be dispensed as shown by
the following pair of dual programs"

Minimize XlX2 Maximize -x1x2,

subject to xl -> 0, subject to Xl U2 0,

x2O, X2--Ul "-’0,

(Ul, U2) ’ O,

Clearly (x1, x2)--(0, 0) is a global solution to the primal problem, and (Xl, X2, Ul, /’/2)--
(0, 0, 0, 0) is a Karush-Kuhn-Tucker point for the primal problem as well as a global
solution to the dual problem. However, the underlying matrix Q [0 ] is not positive
semidefinite, because condition (16) is violated.

We establish now other duality results which induce positive definiteness or
semidefiniteness. We begin with two preliminary results.

LEMMA 3.3. Let (, ) satisfy the Karush-Kuhn-Tucker conditions of (15a).
Then

(23) 1-T Tx O +p>-_-xrOx-b u

implies that

(24) 1-xrQy b >-_ 1/2x rox b u.
Proof. From the Karush-Kuhn-Tucker conditions of (15a) we have that

-T T--x Ox-p x-b=O,
which when added to (23) yields (24). [3

LEMMA 3.4. Let (Y, ti) satisfy the Karush-Kuhn-Tucker conditions of (15a)
such that for all (x, u) feasible for the dual quadratic program (15b),

(25) ro +p >- x fox b u.
Then (, t) solves (15b).

Proof. Since (, fi) is feasible for the dual quadratic program (15b), and since
by (25) and Lemma 3.3

-T T/i T-x Q-b >-xrQx-b u

for all dual feasible (x, u), it follows that (, ti) solves (15b). E
THEOREM 3.5 (sufficient condition for positive definiteness). If a strict local

minimum of the quadratic program (15a) exceeds or equals a unique global maximum
of the dual quadratic program (15b), then Q is positive definite.

Proof. Let ti be a multiplier associated with the strict local minimum solution
of (15a). By Lemma 3.4, (, ti) is a global maximum solution of (15b). By assumption
this global maximum is unique. Hence by Theorem 3.1(ii), Q is positive definite. [3
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THEOREM 3.6 (characterization of positive semidefinite matrices). Let be a
local minimum solution of (15a). The matrix Q is positive semidefinite if and only if
(16) holds, and for any dual feasible (x, u),

(26) 1/2Q+p >- 1/2x :rQx b :ru.
Proof. Necessity follows from the duality theory of quadratic programming and

from the fact that x rQx 0 implies Qx 0 for any symmetric positive semidefinite
matrix. To prove sufficiency, we note that there exists a ti such that (, ti) is a
Karush-Kuhn-Tucker point of (15a), and that by (26) and Lemma 3.4, (, ti) is a
global maximum solution to (16b). Hence by Theorem 3.1(i), Q is positive
semidefinite.

A direct consequence of Theorem 3.6 is the following characterization of positive
semidefinite matrices in terms of the weak duality [10] relation of quadratic programs.

COROLLARY 3.7 (positive semidefiniteness via weak duality). Let the quadratic
programs (15a) and (15b) be feasible. The matrix Q is positive semidefinite if and only
iffor all primal feasible x and all dual feasible (y, u ),

(27) 1/2x TQX q- p TX = 1/2y TQy b TU
and

(28) z ’Oz o Oz o.

REFERENCES

[1] J. M. BORWEIN, Necessary and sufficient conditions for quadratic minimality, Dept. Mathematics
Carnegie-Mellon Univ., Pittsburgh, November, 1981.

[.2] L. CONTESSE, Une caract(risation complkte des minima locaux en programmation quadratique, Numer.
Math., 34 (1980), pp. 315-332, Theorem 1".

[3] J. B. DENNIS, Mathematical Programming and Electrical Networks, Wiley, New York, 1959.
[4] W. S. DORN, Duality in quadratic programming, Quart. Appl. Math., 18 (1960), pp. 155-162.
[5] B. C. EAVES, On quadratic programming, Management Sci., 17 (1971), pp. 698-711.
[6] A. FIACCO AND G. P. MCCORMICK, NonlinearProgramming: Sequential UnconstrainedMinimization

Techniques, John Wiley, New York, 1968.
[7] O. FUJIWARA, S.-P. HAN AND O. L. MANGASARIAN, Local duality of nonlinear programs, MRC

Tech. Sum. Rep. 2329, Mathematics Research Center, Univ. Wisconsin, Madison, February, 1982,
SIAM J. Control Optim., 22 (1984), pp. 162-169.

[8] S.-P. HAN AND O. L. MANGASARIAN, Confugate cone characterization of positive and semidefinite
matrices, Tech. Rep. 471, Computer Sciences Dept., Univ. Wisconsin, Madison, March, 1982,
Linear Algebra and App., to appear.

[9] O.L. MANGASARIAN, Locally unique solutions ofquadratic programs, linear and nonlinearcomplemen-
tarity problems, Math. Programming, 19 (1980), pp. 200-212.

10],Nonlinear Programming, McGraw-Hill, New York, 1969.
11] P. WOLFE, A duality theorem for nonlinear programming, Quart. Appl. Math., 19 (1961), pp. 239-244.



SIAM J. ALG. DISC. METH.
Vol. 5, No. 1, March 1984

1984 Society for Industrial and Applied Mathematics

0196-5212/84/0501-0006 $01.25/0

A COMBINED DIRECT-ITERATIVE METHOD FOR CERTAIN
M-MATRIX LINEAR SYSTEMS*

R. E. FUNDERLICt AND R. J. PLEMMONS$

Abstract. Large, sparse, irreducible singular (column diagonal dominant) M-matrices A occur in
various applications including queueing networks, input-output analysis and compartmental analysis. Our
splitting A M-N with the matrix M having symmetric zero structure is a regular splitting, and these
splittings induce a combined direct-iterative solution to Ax O. A sparse LU factorization of a symmetric
permutation of A can be obtained using a standard symmetric ordering scheme such as minimum degree.
No pivoting for stability is necessary. Splitting strategies based on a tolerance factor are also discussed and
some numerical experience is given.

Key words. M-matrix, queueing networks, homogeneous linear system, sparse matrix, preconditioning,
regular splitting

1. Introduction. This paper is concerned with regular splitting methods for solv-
ing linear systems Ax b, where A is a certain M-matrix. M-matrices have many
applications in the mathematical sciences (see e.g. Berman and Plemmons [1979,
Chaps. 6-10] and Funderlic and Plemmons [1981, Introduction]). Since the method
described here includes an iterative part, our emphasis is thus on solving large sparse
systems. Such problems occur for example in queueing network (see e.g. Kaufman
[1983]) and input-output economic problems (see e.g. Berman and Plemmons [1979,
Chap. 9]). These problems give rise to singular systems Ax 0, where A is an M-matrix
with other useful properties described in 2.

A real n n M-matrix A (aij) can be defined by the conditions

(1.1) aij-< 0, j,

(1.2) Re [Ai(A)]-> 0, hi(A) the eigenvalues of A.

It follows that the diagonal elements aii of A are all nonnegative and A is nonsingular
if and only if strict inequality holds in (1.2) for each i. A large number of alternative
definitions are possible and M-matrices have many interesting properties (e.g., Berman
and Plemmons [1979, Chap. 6]).

The regular splitting method is described in 2. The theorem given there along
with the related comments on error analysis put the method on practical ground.
Section 3 contains a discussion of our initial numerical experience.

2. A combined direct-iterative method. Although our results have applications
for nonsingular problems, our main purpose is the computation of a vector x (xi)
such that

(2.1) Ax=O, xi>0, i=l,...,n,

* Received by the editors December 10, 1982. The material in this paper was presented at the Fairfield
Glade Sparse Matrix Symposium, Fairfield Glade, Tennessee, October 1982.
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where A is an n n singular, irreducible M-matrix. Since A has a one-dimensional
null space, (2.1) has a unique solution whenever one of the components of x is fixed,
that is, whenever x is scaled in some way. In this case we will call this unique x the
steady state vector for A.

In addition to irreducibility and singularity we will also assume here that A is
column diagonally dominant. This means that erA ->_ 0, e r (1, , 1) and thus since
A is an irreducible, singular M-matrix, erA 0 so that

ajj =- aij, /’= 1,. .,n,

(see, e.g., Berman and Plemmons [1979, Chap. 6]). Such is the case, for example, if
A !-Qr, where Q is the row stochastic matrix for an ergodic Markov chain. Here
the steady state vector x solving (2.1) is normally scaled so that Y’.i--1 xi 1, and thus
the x represent probabilities. The matrix A is also column diagonally dominant in
problems associated with the compartmental analysis of tracer flows (see Funderlic
and Mankin [1981]).

The purpose of this section is to discuss a certain regular splitting for A. This
will lead to a combined direct-iterative method for computing the steady state vector
x satisfying (2.1). General regular splittings are discussed in Rose [1984] (this issue,
pp. 133-144).

Although the coefficient matrix A in (2.1) is singular, in principle a solution x
can always be obtained in a stable way by Gaussian elimination on A, as described
in Funderlic and Mankin [1981] and Funderlic and Plemmons [1981]. Indeed, for
each permutation matrix P, PAPT has an LU factorization

PAP LU,

where L is an M-matrix with unit diagonal, --lii -< 1 for all /’, and where U is an
upper triangular M-matrix of rank n 1 with u.. O. Moreover, the growth factor gA
during the decomposition satisfies

i,],k
(2.2) ga

m.a.x laijl
1,

,!

(k) denotes the i, ] element of the unreduced part of A before the kth stepwhere aii
of Gaussian elimination (see Funderlic, Neumann and Plemmons [1982]). Here P
can, for example, be chosen to reduce the fill-in during the elimination. To compute
x, we then

1) Solve

2) Set x Py.

Ull Uln 0

!y--
Un-1,

1

This method will be called the directfactor&ation method for solving (2.1). Harrod
and Plemmons [1984] have examined the direct factorization method (together with
some variations) in detail and have found it to be very effective for computing steady
state vectors. The method, essentially corresponds to a specialized implementation of
the first step in inverse iteration as considered by Wilkinson [1965, p. 619].



DIRECT-ITERATIVE METHOD FOR M-MATRIX LINEAR SYSTEMS 35

Indeed, suppose the direct factorization method is executed on a machine with
unit roundoff error/z in floating point arithmetic. Harrod and Plemmons [1984] have
shown, using a simple backward error analysis, that the computed solution to the
problem (2.1) by the direct factorization method satisfies exactly a homogeneous
system

(A +E) O,

where the unit roundoff error matrix E (eij) satisfies

(2.3) le,l--</xi (3.02 + 1.01n) max a,,

for each and/’. In the particular case where A I-Q, Q an irreducible stochastic
matrix, (2.3) simplifies to

[eii[ <- lzi (3.02 + 1.01n).

However, the difficulty in applying the direct factorization method to the case of
large sparse A is that one is generally limited to symmetric pivoting, PAP, in order
to ensure stability in the factorization. But symmetric pivoting may often not be very
effective in limiting fill-in. Alternatively, a nonsymmetric pivoting scheme, PAQ,
combined with the use of a threshold pivoting criteria, is used in some sparse matrix
packages (see Duff and Reid [1979]). But this scheme can be time consuming and,
perhaps more importantly, such a method will generally require a dynamic storage
scheme for U. Now if A has a (nearly) symmetric zero structure, i.e. if a 0 if and
only if a 0 for most and/’, then the standard symmetric ordering schemes, such
as those available in the package SPARSPAK (see George and Liu [1981]) can be
modified and used quite effectively in reducing fill-in to U. Moreover, such schemes
facilitate the use of a static storage scheme for U. Queueing networks where Q (and
thus A I-QT) has a nearly symmetric zero structure arise, for example, in certain
traffic overflow systems (see Kaufman [1983]).

Iterative schemes for computing x can sometimes be very effective. Moreover,
for very large-scale problems, storage considerations usually dictate the use of iterative
schemes over direct methods. (See Kaufman [1983] for examples from queueing
network analysis.) But iterative methods are sometimes plagued by slow convergence.
It is in these cases that combined direct-iterative schemes may be attractive. In fact,
the direct part of the scheme may be thought of as a method for accelerating the
convergence of the iterative part. Various algorithms of this general type have been
proposed and investigated in the literature for the special case of nonsingular systems
of linear equations. In particular, we point out the work of Meijerink and Van der
Vorst [1977], who considered nonsingular M-matrices. Before describing our direct-
iterative algorithm, we develop the following terminology and notation.

An n n matrix B is said to be semiconvergent if

(2.4) limit B k

exists. If (2.4) is the zero matrix then B is convergent. It is well known that B is
convergent if and only if the spectral radius, p(B), satisfies p(B)< 1, while B is
semiconvergent (see, e.g., Neumann and Plemmons [1978]) if and only if p(B)_<-i
and if p(B)= 1, then (a) 1 is an eigenvalue of B and (b) 1 is the only eigenvalue of
B on the unit circle and (c) all the elementary divisors associated with 1 are linear.
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If p (B)= 1 and (a) and (c) are satisfied then it is easy to show that

(2.5) B,, (1 a )I +aB

has no eigenvalues on the unit circle (and thus satisfies (b)) for any real 0 < a < 1 (see,
e.g., Neumann and Plemmons [1978]). In particular then, B is semiconvergent.

Suppose B is semiconvergent. We define

y(B) max {Ih Ih is an eigenvalue of B and h 1}.

In this case, y(B) is the controlling factor in the convergence of the powers of B in
(2.5) (see Neumann and Plemmons [1978]).

Next,

(2.6) A =M-N

is a splitting of A if M is nonsingular. It is called a regular splitting of A if M-I and
N are nonnegative matrices (see Varga [1962]). For the system (2.1), the splitting
(2.6) induces the iteration scheme

(2.7) Mx(k+l=Nx (k, k =0, 1,. .
It follows that the iterative scheme (2.7) produces a sequence of vectors which
converges to a solution of (2.1) for each initial approximation vector x (0, if and only
if M-IN is semiconvergent. In this case, the asymptotic rate of convergence is the
parameter

-In [y(M-IN)].

Thus the smaller /(M-IN) is, the faster the convergence of (2.7) can be expected to
be. Thus, ideally, one would like to have good separation between 1 and the other
eigenvalues (in absolute value) of M-IN.

We are interested in particular splittings of A. By a symmetric zero structure matrix
of A we mean a matrix S such that sii ai and the off-diagonal elements of S (sj)
are such that sij a or s 0. If s # 0 then aaj # 0 and both sii a and s =aii. In
some cases the (entire) symmetric zero structure matrix of A is useful. This matrix S
is defined from A by

aj if aiiaii 0,
sii- 0 otherwise.

Observe that if A is a singular, irreducible M-matrix, for example if A I- (2 T, O
an irreducible stochastic matrix, then a symmetric zero structure matrix S is such
that s, a > 0, 1,. , n, sinceA has all positive entries on its diagonal. Ourpurpose
is to consider the splittings (2.6) with M a symmetric zero structure matrix of A, and
to analyze the convergence of (2.7). The following theorem establishes the convergence
results we need. Probably the most important practical point of the theorem is that
if A is an irreducible singular M-matrix and M is a matrix obtained by setting any
off-diagonal elements of A to zero, then M is nonsingular.

THEOREM 1. LetA be an irreducible (possibly singular) M-matrix. IrA <=M A,
then

(1) A M-Nis a regular splitting, and
(2) ]’or any 0 < a < 1, the iteration

(2.8) Mx (k +l [(1 a )M + aN]x (k



DIRECT-ITERATIVE METHOD FOR M-MATRIX LINEAR SYSTEMS 37

converges to a solution x of (2.1) where xi > 0, 1, , n. Moreover ifM-aN has no
eigenvalue on the unit circle other than 1, then the iteration (2.8) converges with a 1.

Proof. Statement (1) will follow from well-known (see Berman and Plemmons
[1979, Chap. 6]) properties of M-matrices. Since A <_-M and A is an M-matrix, it
follows that M is an M-matrix and that 0 <-det A -< det M. But if detM detA and
A is irreducible, then M A. Since M #A it follows that detM >0 and M is a
nonsingular M-matrix. ThusM is nonsingular and the splitting is regular sinceM-a -_> 0
and N =M-A >-0. Finally, statement (2) follows from Neumann and Plemmons
[1978, 4].

We point out that past experience has shown (see Kaufman [1983]) that in many
practical situations, we can set a 1 in (2.8). It can be shown that such is the situation
if M-aN has no zeros on its diagonal, or if M is irreducible (see Rose [1983]).
However, if M-aN does have eigenvalues on the unit circle other than 1, then methods
for choosing a, 0 < a <.1, to minimize

y((1-a)I +aM-aN)
are given for certain cases in Neumann and Plemmons [1978].

Of particular interest to us is the case where M is chosen to be a_ symmetric zero
structure matrix S for A. Since A _<-S we have"

COROLLARY 1. LetA be a singular, irreducible M-matrix and let S be a symmetric
zero structure matrix for A. If S A, then Theorem 1 holds forM S.

Let N-S-A and assume for simplicity that S-aN has no eigenvalues other
than 1 on the unit circle. We then consider the following algorithm.

SYMMETRIC ZERO SPLITI’ING ALGORITHM.

1) Factor

PSPT LU

where L and U are lower and upper triangular matrices, respectively, and where P
is the permutation matrix reflecting the symmetric pivoting used to reduce the fill-in
in L and U.

2) Choose an initial vector x co) and for k 0, 1,. solve

(2.9) LUPx tk+l) (PN)x tk)

by forward and backward substitution.

In general there are two extreme possibilities for S. If S A and is not too dense,
then x is simply calculated using the direct factorization method as described earlier.
The other extreme situation is where A has no symmetric zero structure, in which
case S diag (a la," , a,,) and (2.9) reduces to the usual Jacobi method.

The results of some numerical experiments with this algorithm are described in
the next section. Some comparisons are made with another direct-iterative method
and with the Gauss-Seidel iterative method on a selection of test problems. The other
direct-iterative method is based upon the following idea which has been used, for
example, by Jennings [1981] for symmetric positive definite problems. A tolerance
factor f is chosen and M (mij) is defined as follows:

if [ai[[ or =/’,(2.10) mi 0 otherwise.
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With N M-A, the resulting splitting A =M-N is called a magnitude splitting of
A. Observe here that if M A, then A and M satisfy the hypothesis of Theorem 1,
and thus this splitting leads to a combined direct-iterative method as in (2.9). However,
M may have no symmetric zero structure, so the use of a symmetric ordering scheme
to reduce the fill-in in the LU-factorization of M may be ineffective. However, in
addition to (2.10) one could require that only those nonzero mij be chosen such that
aijai O. In many cases, though, the basic structure of A will suggest an additional
constraint on (2.10).

Of course in the Gauss-Seidel iterative method, M consists of the diagonal of A
together with the lower (or upper) part of A. Thus M is already triangular and no
LU-factorization is necessary.

3. Computational aspects. Our purpose here is not to give a comprehensive
numerical treatment of the iterative method based on symmetric zero structure
splittings. Our computational experience with this method is of a preliminary nature
and therefore only sketchy comparisons are now available. Part of the reason for this
lack of a more thorough treatment is that in most applications practitioners do not
explicitly form the relevant matrices. Some exceptions are the work of Kaufman, e.g.
[1983], and the work of W. Stewart, e.g. [1978]. However, the description of the A
matrix is sometimes unwieldy and good examples in the queueing literature are as
yet rare.

Most of our experience has been with contrived very small examples and one
matrix of order 84. The latter’s form arose from a queueing network analysis of a
job line production model studied in the Industrial Engineering Department at North
Carolina State University. The nonzero off-diagonal entries of the matrix (see Fig. 1)

xXxXx
XxXx Xxxx Xx

x Xx
Xx

xx Xxx
Xx x xx x

XxXXxxx XxX XxxXx xXx
Xx XxXxX

x,< 286 nonzero
Xxx off-diagonal

Xx elements

xx
XxX Xx

Xx
xXxXx

XxXXxxx XxxXX
XXXX

XXxXXx XxXxx xXxX
XxX

Xx xXxXx

XXxxx

XxXxX

FIG. 1. Job shop 84 x 84 matrix does not have significant nonzero symmetric structure.
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were chosen as random numbers between -1 and 0. The diagonal elements were
chosen so that the column sums of the A matrix are zero. The jobshop matrix of Fig.
1 has 286 nonzero off-diagonal elements. The symmetric zero structure matrix, Fig.
2, has only 110 nonzero off-diagonal elements. A symmetric zero matrix M was
chosen with 72 nonzero elements, the locations of which were chosen at random from
the symmetric zero structure matrix given by Fig. 2. The splitting with more nonzero
elements inM converged, as expected, in fewer iterations than the splitting with fewer

xXx

XXxX XXXxX X
xXx

XX XX
xXxXxx

Xx xXx

Xx
XxX

XxX
XxX

110 nonzero off-diagonal
elements
Gauss-SeidelM has 156
nonzero off-diagonal
elements

XXxXx

XXXXxXx XXXxXx XXxXX
xXxXX

XX XXXX xXx
XX XXxX

XxX
Xxxx
XxX

XxX

FIG. 2. The zero-symmetric structure ofjob shop matrix.

elements in M; see Fig. 3. However, in contrast to the nonsingular case (see Varga
[1962]), it is possible for a fullerM to cause slower convergence (see Kaufman [1983]).
In fact, Schneider has given an example (see Buoni, Neumann and Varga [1982])
where the Jacobi method converges whereas the Gauss-Seidel method does not.

Comparison was made with the Gauss-Seidel method where M was chosen as
the upper triangle of the job shop matrix. In this case the number of nonzero
off-diagonal elements is 156 in contrast to 110 for the symmetric zero structure matrix.
The Gauss-Seidel method converged in slightly fewer iterations than the method
based on the symmetric zero structure matrix. In particular, after 80 iterations the
latter method produced on average slightly more than 5 digits of accuracy in the
solution and Gauss-Seidel slightly more than 6. Another experiment with the job
shop problem of Fig. 1 was to give it additional nonzero symmetric structure. That
is, positions were chosen at random such that in the original matrix aj 0 but aii O.
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These latter elements were set at nonzero and the diagonal elements were adjusted
so that the column sums were zero. In this modified problem the method based on
symmetric zero structure had 160 nonzero elements in its matrix M, an increase from
110, and the Gauss-Seidel method had 165, an increase from 156. Here the Gauss-
Seidel method converged slower than the symmetric zero form method. This suggests
that, for problems in which there are significantly more elements in M than in the
Gauss-SeidelM and where fill-in and hence the cost of each iteration is not significant,
the method of this paper may be attractive. In addition, there may be cases where
the spectrum of the Gauss-Seidel iteration matrix M-aN is unfavorable (see Rose
[1984]). An additional point of consideration is that the basic structure of the A
matrix may suggest various symmetric zero structure matrices M. For example it is
natural to exclude the four outliers in the matrix of Fig. 2.

Entire symmetric zero structure
matrix, 110 nonzero off-
diagonal elements

72 elements in a symmetric zero
splitting

(C)

0.0 20.0 40.0 60.0 80.0 100.0

FIG. 3. Average number of correct digits versus number of iterations for two symmetric zero splittings.

It has been suggested by Jennings [1981] and others that the larger (in magnitude)
elements of the A matrix could be split into the matrix M with benefit. Figure 4
shows a numerical comparison of the largest 113 off-diagonal elements of the job
shop matrix that have been put in M versus the 113 smallest in M. The indication is
that this type of splitting may have useful applications and may be combined with
other splittings to provide effective direct-iterative algorithms for computing steady
state vectors.
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113 largest in M

(C) ll3smallestinM

(C)

(C)

0.0 20.0 40.0 60.0 80.0 100.0

FIG. 4. Average number of correct digits versus iterations for two magnitude splittings.
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A HIERARCHICAL REPRESENTATION OF THE
INVERSE FOR SPARSE MATRICES*

EUGENIUSZ TOCZYLOWSKI

Abstract. We present a representation of the inverse of a matrix for solving large sparse systems of
linear algebraic equations Ax b, that arises from the bordering method. We analyse the properties of the
method for sparse matrices permuted to a suitable form. The relevant feature of the method is that it
creates nonzero elements only in spike columns above the main diagonal. For an n x n matrix A with ’o
nonzero elements, the number of nonzero elements in the representation of the inverse satisfies the
inequality ’<’o+h.n, where h is a certain constant. It is proved that, under suitable assumptions,
h-<_logz + 1, where is the number of spikes. The computation of the hierarchical form of the inverse
requires at most h " additions and h " multiplications. For the known representation of the inverse, the
solution of the system Ax b requires no more than - n additions and - multiplications.

Key words, sparse matrices, Gaussian elimination, fill-in, bordered block lower-triangular form,
hierarchical form of the inverse

1. Introduction. Let us consider a general sparse system of n linear equations

(1) Ax =b

where x (Xl," ", xn)T b (bl," ", b,), andA =[aii] is an n n nonsingular matrix.
The best known methods for solving such a system decompose the matrix A into a
product A P. L. U. Q, where P and (2 are permutation matrices and L, U are
lower and upper triangular matrices. This decomposition is equivalent to Gaussian
elimination [15]. The permutation matrices P and O are determined either prior to
the start of the Gaussian elimination or in the course of the elimination, in order to
ensure sparsity and numerical accuracy of the elimination form of the inverse. An
extensive survey of sparse matrix techniques is contained in Duff [2].

In this paper we present an algorithm for solving sparse linear systems which is
based on a hierarchical representation of the inverse of the coefficient matrix. The
method originates from the bordering method; see Faddeeva [3]. It is apparently
connected with nested methods for solving sparse systems of linear equations in both
the symmetric case [4] and the nonsymmetric case [11]. In 2 we present the method
for a general system of equations. In the next sections we discuss the properties of the
method in the case of sparse matrices. For the proposed method we define in 3 the
most desirable structure of sparse matrices, the hierarchical bordered block lower
triangular form (HBBLT). In that section we also give some useful terminology which
allows us to analyse the properties of different hierarchical structures of a matrix to
obtain the most desirable hierarchical BBLT form. In 4 we analyse the fill-in and
number of computations of the method in the case when the sparse matrix A is in
HBBLT form. We show that for a matrix A with z0 nonzero elements the fill-in in
the hierarchical form of the inverse is at most h.n, where h is the height of an
appropriate tree of the HBBLT form of A. For the number of computations we show
the bound h .r, where - is the number of nonzero elements in the representation of
the inverse. In 5 we discuss questions concerning an efficient implementation of the
method, some effects of rounding errors and pivoting. In 6 we give two illustrative
examples.

* Received by the editors February 3, 1982, and in revised form April 19, 1983.
Instytut Automatyki, Politechnika Warszawska, 00-665 Warszawa, Poland.
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2. A representation of the inverse of the matrix A. In this section we make no
use of possible sparsity of A. In order to compute a form of the inverse of the matrix
A we assume that all leading principal submatrices of A, i.e.,

(2) At‘
ak akk_]

are nonsingular, for k 1, 2, , n. The discussion how to carry out the elimination
process and how to realize the pivoting for an arbitrary nonsingular matrix A is given
in5.

Now, for a given k, where 1-<_ k <-n, let us consider the system of the first k
equations of (1)

(3) ailxl+" "+aikXt‘ +" "+ai,,x,,=ai.,/l, 1,... ,k,

where, for convenience, we set ai.,,/l
Since At‘ is assumed to be nonsingular, premultiplying (3) by A{ we obtain the

reduced system

(4) xi + a x ai,/l, 1, , k,
]=k+l

where

=A{1. /’=k+l,...,n,n+l.(5)
,;_

At the kth stage of the elimination process the nonzero elements in the kth row
below the diagonal and in the kth column above the diagonal are eliminated. Thus
the leading principal submatrix Ak is reduced to the identity matrix. We assume that
at the end of the kth stage a form of the inverse of Ak is known. Initially for k 1,
A [all] andA-1 [l/all]. At the (k + 1)st stage, after adding the (k /l)st equation
of the system (1) to the system (4), we seek a form of the inverse of the principal
submatrix Ak+l. The matrix Ak+ results from bordering the matrix Ak, i.e.,

(6) Ak hk+l]Ak+l’-
gk+l dk+l

where gk+=(ak+l.1,’’’,ak+.k), ht‘+l=(al,t‘+,’’’,ak,k+l) "r, dk+=ak+l,t‘+X. It is
easy to verify that

(7) At,+l= [A0t‘ ]. [ It, ]. [/t‘ 0 ]. [/t‘ rt‘+l]gk+l Sk+l 1

where Ik is the identity matrix of order k, rk+l =A- hk+l and Sk+ =dk/l--gk+l rk+l.
It follows from (5) that rk+l (a (t‘) (k) )T.l,k /1, ",a k,k + Observe also that Sk + is the Schur
complement (At‘+/At‘) of (6) [1]. For convenience we set s al.

It follows from (7) that

(8) A-1 [k --rk+l] .[k 0 ] [ Ik ] [A ]k+l 1 -1
Sk+l --gk+
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Notice that gk+l, rk+l and S+l are sufficient to give a form of the inverse of the
matrix A -1

k+l, if a form of the inverse A is known. To prove this, let us denote
w (k) (Wl, Wk)7" and v (k) (vl, Vk)7". Then, to compute

(9)

for any column vector v
calculations

(o)

(11)

(12)

(k+l)

W(k+l) -1 (k+l)Ak+l v

(v 1, ", vg /1)7", it is sufficient to perform the following

W
(t) := A-lv (k),

-1
wg+l := (v+l-g+l w(k))’s+l,

(k) (k)
W :-- W Wk+l /’k+l.

The right side of (10) may be computed in a similar fashion, provided that AI is
known.

Since we have A-1 =[1/a11], the formulae (10), (11), (12) define a recursive
algorithm for the computation of A-lb Alb. Let us gather all the data necessary
for the representation of the inverse A-1 in the following matrix"

(13) T

/’21

gk Sk

/’k

-1

The imbedding of one representation of the inverse in another, recursively applied,
constitutes a hierarchical form of the inverse. Thus, for a matrix A, the representation
(13) is called the hierarchicalform of the inverse and is denoted by HFI(A).

THEOREM 1. (i) Assume that for an n x n matrix A the form of the inverse (13)
is given. Then the evaluation of the solution x =A-lb requires no more than n(n- 1)
additions and n 2 multiplications.

(ii) The evaluation of the form of the inverse (13) requires n divisions and no more
than (rt 3 rt)/3 multiplications and rt3/3 n/2 + n/6 additions.

Proof. We will prove (i) and (ii) by induction on the order n. For n 1 the theorem
is true. For the induction step assume that the assertions of the theorem hold for
some n. The matrix An/l of order n + 1 may be considered as a result of bordering
the matrix An of order n, i.e.,

(14) hn+l]An+l-- n-+- +’
To prove (i) let us assume that the form (13) of the inverse of An/l is given. Denote
b (n) (bl,’’’, bn)and x (n) (xl,’’’ ,xn). It follows from (10), (11), (12)that x (n/l)

-1 (n+l)An+lb may be computed by

(15)

(16) Xn+l :-- (bn+l gn+l X (n)) -1
Sn+l

(17) x (n) := x(n)-X,+l rn+l.
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From the inductive assumption, the calculation of x (n) by (15) requires no more than
2 2n -n additions and n multiplications. The calculations of xn+l by (16) requires no

more than n additions and n + 1 multiplications. The calculation of x (") by (17) requires
no more than n additions and multiplications. This gives no more than n(n + 1)
additions and (n + 1)2 multiplications for the computation of x (n+l), which completes
the proof of (i).

To prove (ii) by induction, assume that (ii) holds for some n. It follows from (14)
that to compute the form of the inverse A1+ it is sufficient to compute r, + A lh, +

-1and s, + 1, where sn + =dn+ gn + r, + 1. From (i), the evaluation of r, + requires no
more than n2-n additions and n 2 multiplications. The evaluation of s,+l requires no
more than n additions and multiplications. Together with the inductive assumption
this gives no more than (n+1)3/3-(n+l)/3 multiplications and no more than
(n + 1)3/3-(n + 1)2/2 +(n + 1)/6 additions.

COROLLARY. The solution of the system (1) requires no more than n3/3 + n2-n/3
multiplications and n3/3 + n2/2 5n/6 additions (as in Gaussian elimination).

The method presented here is a modification of the bordering method [3]. The
regular bordering method, however, requires approximately twice as many multiplica-
tions and three times as many additions. Moreover, when used for sparse computations,
it suffers heavy fill-in.

3. The hierarchical bordered block lower triangular form of sparse matrices. If
the system (1) is solved by Gaussian elimination and the matrix A is sparse, sparse
matrix techniques may be used to save storage and computational effort. The pivotal
strategies which tend to keep fill-in small in the course of the elimination may be
classified into two categories" first, those that involve arrangements of rows and
columns at each stage of the elimination process [10], [14, p. 23], and second, those
that involve a priori row and column permutations to transform the matrix A into
various forms that are desirable for Gaussian elimination [14, pp. 33-80]. In this
section we shall be concerned with a priori (preassigned) pivotal procedures. One of
the most favorable forms for Gaussian elimination is the bordered block lower
triangular (BBLT) form

(18) A

All

Ap-I,1
Ap,1

0 0 Alp
A22 A2p

oo 0

Ap-l,2 ap-l,p-1 Ap-l,p
A,, A,,,-I A,,

where the square submatrices on the diagonal, A,, 1, 2, , p 1, are nonsingular
and at least one submatrix Ago, # p, is a nonzero matrix.

If in (18), Ago 0, # p, and the matrices A,, 1, 2, , p are nonsingular, then
A is said to be in block lower triangular (BLT) form.

DEFINITION. A nonsingular matrix A is in hierarchical BBLT form, if one of the
following conditions holds"

(i) A is a nonzero matrix of order one.
(ii) A is in the BBLT form, where the matrix App is of order one and each square

submatrix on the diagonal, A,, 1, 2, , p 1, is in the hierarchical BBLT
form.

(iii) A is in the BLT form and each square submatrix A,, 1, 2, , p is in the
hierarchical BBLT form.
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An example of a hierarchical structure of a matrix A is shown in Fig. 1. The
hierarchical BBLT form is a very desirable form for the elimination method presented
in this paper. Such a structure may be identified as follows. We apply the hierarchical
partition procedure [9] or the p4 procedure [5] (or any other procedure which makes
use of the Steward partitioning and tearing concepts [12], [8], [6]) to a given
matrix zi. without any particular structure. As the result, permutation matrices P and
Q are obtained such that the matrix A P.Q is in BLT form with relatively few
columns, called spikes, which contain nonzero elements above the main diagonal.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
X X

2 XX: X
a xxx_.L_ x
4 L_X_ x x
5 X

8
9
10
11

12
13
14
15
16
17 X
18
19

XXX
xxxxx

X
XX

X
X

X
X

XX X
X

x x

X
XXXXX X

XXX X
XX XXX

X X X X
XX X X

X X X
X X X X

XX XX
20 XX X XXX X
21 X X X
22 X X X X
23 X X X X XXxx X
24 X X X X
25 X X X X X

FIG. 1. A matrix A in the hierarchical BBLT form (x represents nonzero).

To define the most desirable hierarchical BBLT form of a matrix A let us introduce
some terminology. Let V {1, 2,..., n} be the index set for columns (rows) of the
matrix A [ai]. The set V will be identified with the set of vertices of an appropriate
graph. The set Vs c V, Vs {k:aik 0 for some < k} corresponds to the columns
which are spikes. For any column k V we recursively define the set of ancestor
spikes as follows. A spike m Vs, m > k, is an ancestor of k either if there exists a
row such that =< k and ai, 0 or if m is an ancestor of a spike and is an ancestor
of k. If m is an ancestor of k, k is called descendant of m. The spike min {i:i is
an ancestor of k} is called the father of k. Conversely, k is a son of I. If two columns
have the same father, they are called brothers. Each column k V has no more than
one father. A column which has no father is called a root. A matrix A may contain
many root columns.

The father-son relationship defines an oriented graph (V, H), where V is the set
of vertices and H c V V is the set of arcs defined by H {(l, k): is the father of
k}. The graph (V, H) is the forest, i.e., the set of disconnected subgraphs called rooted
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trees, where each rooted tree has a designated root vertex such that there is a unique
path from the root to any other vertex in the tree. Let, for any spike vertex e Vs,
the ordered set of the vertices S(1) (kl, , k,) denote the ordered list of the sons
of the/th vertex, where the ordering is defined as follows: ki <kj if and only if <j.
The ordering of the sons defines the ordering of the tree. To define the ordering in
the forest (V, H) which is the set of trees, additionally assume that the root vertices
of the trees are ordered in the same way. Figure 2 shows the ordered forest for the
matrix A of Fig. 1. The roots are placed at the top of the figure. They are ordered
from left to right. Then the vertices adjacent from the root vertices are placed one
level below in the same order, etc., as in Fig. 2. The level number of a vertex k in
the forest (V, H) is the length of the path from the ancestor root to k. The vertices
of (V, H) with no sons are called leaves. Leaves correspond to these columns of the
matrix A which have only zero elements above the main diagonal. Notice that a root
vertex may be also a leaf. All other vertices are called internal and correspond to spikes.

FIG. 2. The forest of the matrix from Fig. 1.

Let the function ldsc: Vs V denote for each spike k Vs its lowest descendant,
i.e., ldsc (k)= min {i:i is descendant of k}. Each spike column k e V isolates in the
matrix A a square diagonal block Bk, with elements aii, i,/" ldsc (k), , k. By the
definition of ldsc (k), nonzero elements in the matrix A cannot occur in the columns
ldsc (k), , k above the submatrix Bk. The matrix Bk is called a bump. Any diagonal
block which is positioned inside a larger diagonal block we call an internal block.
Each nonspike column k V\ Vs isolates a diagonal block Bk [akk] Of order one. A
diagonal block which is not contained in a larger diagonal block is called external.
Figure 1 presents a matrix A with two external bumps B20 and B25. The bump B2o
is broken up into 6 internal blocks B1, B2, B6, B14, B a8 and B19. The bumps B6, B14
and B8 are divided in a similar way.

The height of a tree T is the length of the longest path in the tree. The height
of the forest (V, H) is the height of the highest tree in (V, H). In the next section it
will become evident that the forest (V, H) should have as small a height as possible.
There is a class of balanced forests for which the height is a logarithmic function of
the number of spikes. We call a tree T of height h balanced if each spike vertex at
levels 0, 1,..., h- 3 has at least two internal sons. Any tree of height less than 3 is
balanced. We call the forest (V, H) balanced if at least one of the highest trees of
(V, H) is balanced.
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THEOREM 2. A balanced tree T with s internal vertices has height h <= [log2 s + 1.
Proof. If h 1, then s 1. If h =2, then s >-2. Thus for h =<2 the theorem is

true. Assume that h _>- 3. The root vertex must have at least two sons which are spikes.
Generally, there are at least 2 spikes at the level l, 0, 1, , h 2. Thus there are
at least 2h-l- 1 spikes at levels 0, 1,..., h- 2. Moreover, there is at least one spike
at level h 1. Consequently s -> 2h-1 and h <= log2 s + 1.

COROLLARY. If the forest V, H) is balanced, its height h <- [log2 sJ + 1, where s
is the number of spikes.

Let us define the function ldir: Vs V, ldir (k)=mini {i: a 0}. In general,
ldsc (k)=< ldir (k) for each k Vs. If m is an ancestor of k, we say that m and k are
properly positioned if ldir (m)=<ldir (k). In order to reduce the height of the forest
(V, H) and to reduce fill-in, the spikes should be properly nested, i.e., ldir (k) ldsc (k)
for each k Vs. Let us assume that for given permutation matrices P and Q the matrix
A P A Q is in the hierarchical BBLT form with some spikes initially not properly
positioned. Then rearrangements of spike columns to provide proper nesting of spikes
may be easily done by an appropriate sorting.

4. Properties of the hierarchical form of the inverse for sparse matrices. In this
section we shall discuss the properties of the form of the inverse (13) in the case
where the matrix A is sparse and is in the HBBLT form. Notice first, that in the
course of the elimination only s i, r2, s2, ’, r,, s, are computed; the nonzero elements
under the main diagonal remain unchanged, and thus new nonzero elements may be
created only on and above the main diagonal in the spike columns only.

Observe that, if at the (k + l)st stage, the (k + l)st column is a nonspike column,
i.e., hk+1 =rk+1 =0; then, when calculating (9) for any v k+1), the formula (12) disap-
pears. Furthermore, if hk+ is a spike column which has its first coefficients equal
to zero, l-<_ k, then the recursive algorithm for computation of rk+l A1" hk+ by
(9), (10), (11), (12) starts from the (l+ 1)st step, i.e., wt)=A[ v(t)=O.

The property that fill-in does not occur in columns which are not spikes may be
generalized as follows. If k is a spike column and Bk is the bump matrix associated
with k, fill-in does not occur above the bump Bk. To prove it, notice that the kth
leading principal submatrix Ak has the BLT form

(19) Ak [
where At is the leading principal submatrix of order l, ldsc (k)-I, and C is an
appropriate rectangular matrix. Thus the above property follows directly from (19)
and (5). We also deduce the following.

THEOREM 3. If the kth column of the matrix A is a spike which has [3k nonzero
elements above and on the main diagonal, then the number of new nonzero elements
created in the kth column does not exceed ’k nk --k, where nk k + 1 -ldsc (k) is the
order of the matrix Bk.

Figure 3 shows the difference in the creation of nonzeros by the Gaussian and
our methods. Shaded areas denote possible fill-in in spike columns. Let k be a spike
column, lk ldir (k), and/3, be the number of nonzero elements in the kth column
of A. Then the Gaussian elimination process may produce n + 1 -lk --’k new nonzero
elements in the kth column. If s is the number of spikes, s ]Vsl, the bound for
possible fill-in in Gaussian elimination equals s(n + 1)--,keVs (Ik +[3’k).

THEOREM 4. If the forest (V, H) of the matrix A has height h, then the number
of new nonzero elements created during the elimination process is less than or equal to
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h n-, where [3 is the number of nonzero elements in spike columns of the matrix A
on and above the main diagonal.

Proof. Consider the set of spikes $i {k:k has level number i}, where 0 _-< < h.
The sum of orders of the matrices Bk, k e $i, is not greater than n, thus the fill-in in
spike columns k e S is less than or equal to n-ks,. The spike vertices are only
at the levels =0, 1,..., h-l; therefore the overall bound is h.n-, where

Ev&. 0
COROLLARY. If the forest V, H) & balanced, then the fill-in & less than or equal to

n (log2 S + 1)--.

2 3 4 2 3 4

FIG. 3. Fill-in during (a) the Gaussian elimination, (b) the hierarchical elimination.

Notice in Fig. 3 that spikes 3 and 4 are improperly positioned. If we interchange
them, fill-in will not occur in spike 4 above the row ldir (4). There is a further way
to reduce fill-in. Assume that we solve the system Ax b but the inverse of the matrix
A is not required. At the kth stage of the elimination process only nonzero coefficients
in (4) are necessary. Thus the storage space associated with nonzero elements of
HFI (Ak) are released and can be used for storing the items associated with new
nonzero elements created at the (k + 1)st stage.

Notice that for any column k, the diagonal block Bk contains the full information
necessary to compute rk and Sk in (13). This follows immediately from (19) and (5).
This property makes it possible to exploit the hierarchical structure of the matrix A
in parallel processing and in alternating sequential/parallel processing, since the
inverses of the disjoint diagonal blocks may be computed independently.

If a diagonal block Bk lies inside a block Bt, the representation of the inverse of
B forms a part of the representation of the inverse of Bt. Let us consider an example.
For the matrix in Fig. 1 the inverses of the 1 x 1 matrices B1," ", Bs, B7," ", Bll,
B3, B5,""" ,B7, B19, B2,"’" ,B24 may be computed independently at the first
stage. In the next stages the inverse of Blz should be computed before B -4 since Bxz
is imbedded in B4, and finally, the inverses of B6, B4 and Bx8 should be computed
before B]0x, since B6, B14, B18 are imbedded in B20. The hierarchical form of the
inverse of the matrix A contains the disjoint representations of the inverses of B20
and B25; the representation of the inverse of B20 contains the inverses of B1, B2, B6,
B14, B8 and B19; the representation of the inverse of B14 contains the inverses of
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B7, Bs, B9, Blo, B12 and B3. Such a repeated partitioning is continued to the level
where only 1 1 blocks remain.

Notice that the forest (V, H) of a matrix A is also the forest of the matrix T
which is the hierarchical form of the inverse of A. For the instance matrix discussed
in the example this may be verified in Fig. 2.

Now we shall analyse the number of computations for the solution of the system
Ax b.

THEOREM 5. Let for an n n nonsingular matrix A the HFI (13) have - nonzero
elements. Then the evaluation of the solution x =A-ab requires no more than z-n
additions and -multiplications.

Proof. The proof is almost identical to the proof of Theorem l(i). The main
difference consists in considering the actual fill-in of matrices and vectors involved
instead of the maximal fill-in.

Assume that for the matrix A,+x in (14) the matrix A, has r nonzero elements
in the inverse representation (13), g,/ has 6 nonzero elements and r,/l =Alh,/l
has p nonzero elements. Thus A,/a has -’= -+6 +p + 1 nonzero elements in the
representation of the inverse (13). The evaluation of (16) requires no more than 6
additions and 6 + 1 multiplications. The evaluation of (17) requires no more than p
additions and multiplications. Hence, together with the bound resulting from the
inductive assumption on A,, we have the bounds r’-(n + 1) for additions and -’ for
multiplications (if b is sparse, the number of computations may be lower). [3

From the proof of the above theorem we also deduce that each nonzero element
in (13) is involved in no more than one addition and multiplication. Now let us estimate
the complexity bounds for computation of the hierarchical form of the inverse (13).

DEFINITION. A nonzero element tii in the HFI (13) is called adjacent to the ruth
level of the forest (V, H) if:

(i) it is located in a matrix Bk associated with the vertex k at level m, but it is
not located in the kth column above the main diagonal;

(ii) m is the maximal level for which (i) holds.
THEOREM 6. Let m < h. Any element tij adjacent to the ruth level of the forest

(V, H) is involved in no more than (m + 1) additions and multiplications during the
computation of the HFI (13).

Proof. Let tj be adjacent to the ruth level and located in the matrix Bk associated
with the vertex k at the level m. Thus the vertex k has m ancestors. If is an ancestor
of k, tii is used in computing rt. From Theorem 5 this requires no more than one
addition and multiplication for each ancestor. Also during the computation of r and
sg, t is involved in no more than one addition and one multiplication. Since ti is not
involved in any other computations, this ends the proof. ]

COROLLARY. The computation of the HFI (13) requires no more than h."
additions and multiplications.

The analogous bound in Gaussian elimination is higher, since the computation
of some elements in the factorization may even require up to n additions and
multiplications.

5. Further remarks. Now let us discuss some questions concerning whether the
proposed method can be implemented efficiently, since eventual complexity in the
data structure of matrix nonzeros may mitigate other advantages of the method.
Moreover, interchange strategies to avoid numerical singularities and to mitigate the
effects of rounding errors in the arithmetic operations should also be realized efficiently.
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We advise implementing the hierarchical elimination algorithm by making use
of row-linked lists where direct access to data via rows is provided [14], [7]. The
memory requirements may not exceed - list items and 4n + h integers. Each item
contains the nonzero value of the element, the corresponding column index and the
pointer to the next item in the same row. 2n integers are used for an array RS that
points to the start of row-linked lists and for an auxiliary array RSAUX that points
to the start of row-linked lists in the transformed subsystem (4). The remaining 2n
integers are used for representing the permutation matrices P and Q. Additionally
only h integers are used for a working stack array which contains the indices of current
ancestor spike columns. In order to ensure the proper nesting of spikes, the function
values ldsc (k) and ldir (k) should be stored, but they may be packed in the free space
of RSAUX.

+1),At the (k + 1)st stage of the elimination process the coefficients a -< k + 1,
/" k + 2, , n in (5) may be computed according to (9)-(12) by scanning appropriate
row linked lists and performing the elimination steps for which the basic operation is
to substract a multiple of one row from another.

The data structure discussed above allows for easy choice of a pivotal element
by interchanging an ancestor spike column with the current column. The following
pivoting strategy may be easily performed. At the (k + 1)st stage let the Schur
complements sk /1,jk a/1 g/1 w be computed for each current spike column/’,
1 ---k + 1, where w (a li, ",a Then we may choose as the pivot column the
lth spike column with the maximal value of ldir (l) among those columns which satisfy
the inequality

IS+l.tl ->u" max Is+l,l,
k+l<=]n

where u (0 < u =< 1) is an input parameter. The value of u settles a compromise between
rounding errors and fill-in. If u 1 then the multiplier wk+ in (12) is less or equal to
one at each step of the elimination process. Notice that at the (k + 1)st step there
must exist a column for which s/,t is nonzero, since otherwise the first k + 1 rows
are linearly dependent.

When considering rounding errors, it seems that for nonsparse matrices the
hierarchical elimination method with partial pivoting strategy (u 1) is comparable
to the Gaussian elimination method with partial pivoting since, for the same pivot

computed at the kth stage of the Gaussian eliminationsequence, the elements a ,.
are equal to the Schur complements s+,j computed in the hierarchical elimination
method. It is very difficult to analyse the propagation of numerical errors in the case
of sparse matrices. We expect that, for a matrix A in hierarchical BBLT form with a
reasonable depth of nesting, the hierarchical elimination method may also be advan-
tageous with respect to numerical errors, since then relatively few nonzero elements
are involved in a relatively few computations. Observe also that, while computations
in the Gaussian elimination are distributed, in the hierarchical method we basically
compute scalar products for which higher numerical accuracy may be obtained.

Other hierarchical approaches for inverting large sparse matrices have been
proposed before. George [4] developed a nested dissection method for sparse sym-
metric matrices. McBride [11] developed a nested method which permits solving
nonsymmetric sparse systems by repeated partitioning of the matrix and by computing
a series of miniinverses (minikernels). In his approach, however, hierarchy involves
exponential growth of the computations in function of the depth of nesting. The nested
algorithms combined with sparse Gaussian elimination require increased program
overhead and storage management that mitigate the possible advantage of low oper-
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ation or fill-in count over conventional methods. In the hierarchical elimination
algorithm the hierarchical structure of matrices is utilized in a natural way with no
additional program and storage overhead.

(20)

6. Illustrative examples.
Example 1. Let us consider the system

-2 0 1
4 2 0
1-2 2
1-1 0

1 0-2
0 2-1

_--1 0 2

0 0 0 1-
0 0 0 2
0 0 0 0
2 0 1 2
1 1 1 0
1 1 0 2
0-1 0 1_

"X--

2
2

-1
2_
2_

(23) HFI(A2)=[’5 0 ]"0.5

At the third stage we add the third equation of (20) to (22). Now X3 is a spike
variable. Using formula (11) we recompute the coefficients in the third row only in
the free column and in column 7. Coefficients in columns 4, 5 and 6 remain equal to
zero. Then we recompute the coefficients in the first and second row in the free column
and in column 7 by (12). Hence, for k 3, the reduced system is

1 0 0 0 0 0 0 0 0.5 0 0.5
1 0 0 0 0 .x HFI(A3)= 0.5 -1
0 1 0 0 0 -2 -2

Continuing this process we obtain the reduced systems and the hierarchical form of
the inverses as follows"

k=4

1
0
0

0

00000 0 [1 0 0 0 0 1
0 1 0 0 0 1 "x=|2
0 0 1 0 0.5 1. [1.5_

and

where x (x a,’" ", x7)r is the unknown vector. We shall describe the elimination
process for the system (20). At the first stage we consider the first equation of (20).
We premultiply it by the inverse of the element all 2, which is equal to the first
leading principal submatrix A of A. For k 1 we have the reduced equation

(21) [1 0 0.5 0 0 0 0.5].x=1.

The HFI of A equals 0.5. At the second stage we add the second equation of (20)
to (21). Notice that x2 is a nonspike variable. Thus at the second stage, the first
equation (21) remains unchanged. To recompute the coefficients in the second
equation, we use formula (11) only for columns 3, 7 and the free column. Columns
4, 5 and 6 remain equal to zero. Hence, for k 2, the reduced system is

(22) [10 0 0.5 0 0 0 0.5] [ 11]1 -1 0 0 0 0
.x=
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HFI (A4)

0.5 0 0.5
0.5 -1

-2 -2
-1 0

0
0
0
0.

k=5

1 0
0
0
0.5
0.5

0 0

1. 1.5
0. 1.

HFI (As)=

0.5 0 0.5

4 0.5 -1
1 -2 -2
1 -1 0

1 0 -2

0
0
0
0.5
1

0

k=6

-1 0 0 0 0 0 0-
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 1

"X-----

-0-
1
2
1
1
1

HFI (A 6)

0.5 0 0.5 0 0 0

4 0.5 -1 0 0 0

1 -2 -2 0 0 0

1 -1 0 0.5 0 0.5
1 0 -2 1 1 0.5

_0 2 -1 1 1 -1

and finally, for k 7, we obtain the solution x (0, 0, 1, 0, 1, 0, 1) 7- and the hierarchical
form of the inverse of the matrix A,

HFI (A)

0.5 0 0.5 0 0 0 0-

4 0.5 -1 0 0 0 1
1 -2 -2 0 0 0 1
1 -1 0 0.5 0 0.5 1
1 0 -2 1 1 0.5 0
0 2 -1 1 1 -1 1

_--1 0 2 0 -1 0 -1

Figure 4 shows the tree of the hierarchical BBLT form of the matrix A which is also
the tree of the hierarchical BBLT form of HFI (A).
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Example 2. Let us consider a matrix A of order 25 which has the structure
presented in Fig. 1. Comparison of the fill-in and the number of computations in the
Gaussian and our elimination methods for the system Ax b is given in Table 1.

FIG. 4

TABLE 1

solution of the
factorization of A system Ax b

method fill-in additions multiplications additions multiplications

Gaussian
elimination method 43 165 271 307 438

our elimination
method 21 105 134 225 279

7. Conclusions. The hierarchical form of the inverse of a sparse matrix allows
us to exploit the hierarchical BBLT structure of the matrix in a very efficient way.
The hierarchical BBLT structure may be identified by the commonly used heuristic
preassigned pivotal procedures. It should be stressed, however, that these procedures
tend to minimize the number of spikes rather than the depth of nesting, and the latter
appears to be a better criterion. A new preassigned pivotal algorithm, which is tailored
for the hierarchical elimination method was developed in [13].

A full evaluation of the hierarchical elimination method requires extensive perfor-
mance comparisons with other available methods for sparse matrices of greater order.
We have begun a program of comparisons and plan to publish the results in a separate
paper.
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paper.
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SPECTRA OF SOME GRAPHS*

KAI WANGS

Abstract. In this paper a method for computing the characteristic polynomial of a graph possessing
an involutary automorphism from the characteristic polynomials of two smaller associated graphs is
presented.

1. Introduction. A graph G consists of a pair (V(G),E(G)), where V(G) is a
finite nonempty set of elements called vertices and E(G) is a finite set of distinct
unordered pairs of distinct elements of V(G) called edges. If G is a graph with
V(G)={Vl,.", v,,}, then the adjacency matrix of G is an n n matrix A(G)=
[w(vi, vj)] where w(vi, vj)= 1 if (vi, v)E(G) and =0 otherwise. The characteristic
polynomial of A(G) is called the characteristic polynomial of G and is denoted by
q(G; x). We refer to [1] for basic knowledge and related topics.

A permutation - on V(G) is an automorphism of G if - preserves adjacency
and z is involutary if .2= identity. In this paper, we will show how to reduce the
adjacency matrix of a graph possessing an involutary automorphism to the direct sum
of two submatrices which can be easily read off from the given graph. We refer to
later sections for the main result of this paper and its applications.

We are very grateful to a referee for the suggestions on an early version of this
paper.

2. Graphs with involutions. In this section, we will study the characteristic poly-
nomials of graphs possessing involutary automorphisms. For our purpose, we will
consider pseudographs. A weighted pseudograph K consists of a finite set V and a
map w" V V--> C, denoted by K (V, w). V is called the vertex set and is denoted
by V(K) if necessary. The value w(u, v) is called the weight of the edge (u, v). For
convenience we assume that w (u, v) w (v, u) for all u, v s V. For a labelled weighted
pseudograph K, let A(K)=[w(u, ui)] be its adjacency matrix and let q(K,x)=
det (xI-A(K)) be the characteristic polynomial of K. An involution - on K is a
permutation on V so that r2= identity and w (u, v) w (’(u), ’(v)) for all u, v V. Let
F={v Vl’(v)=v}, the set of fixed vertices of -. For v 6 V, let v* ={v, ’(v)} if vC_F
or v* {v } if v sF be the orbit of v. Let V* {v’Iv V}. Letf IFI and let w*l f / t,

Then IVI =/+2t. Let V={vl,’", v+zt} be so labelled that F={vl,..., v}, V*=
{v’,..., v’+t} and v,+t+i ’(v+i) for 1 _-<i =<t. Let

ai w(vi, v)

bij w (vr+i, vr+i)

Cij W(l.)f+t+i, US+j)

dij W(Di, Vf+])

for l <=i,j<-f,

for 1 <- i, j -< t,

for l <-i,j<=t,

for 1 =< _--< f, l<=]<=t.

Then the corresponding adjacency matrix for K is given by

A(K)
Z T T
T X Y
T Y X

* Received by the editors November 16, 1981, and in revised form February 22, 1983.
t Department of Mathematics, Wayne State University, Detroit, Michigan 48202.
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where Z [aij], X [bij], Y [cij] and T [dj]. Note that if F , then

A(K)=
Y

Let M Ir03(f2 (R) It) where f2 is the Fourier matrix of order 2 12] given by

Then M is unitary and M* M. An easy computation shows that

M-IA(K)M MA(K)M

I 0 0 T TqFI
//1 1

 i,_l lo
0 0

Note that

X+Y 0
0 X-

is the adjacency matrix for the orbit graph K* with vertex set V* and w*(u*, v*)
given by

w(u, v) if u, v F,
w*(u*, v*)= w(u, v)+w(u, z(v)) if u, v_F,

x/- w(u, v) if u F, v:F or uF, v F,

and X- Y is the adjacency matrix for a cograph to F in K*, denoted by Fc, which
is a weighted pseudograph with vertex set V*-F and weight function w’ defined by
w’(u*, v*)= w(u, v)-w(u, ’(v)). Notice that although F depends on the choice of
orbit representatives, the characteristic polynomial of X Y does not. With the above
notation, we can state our main result in the following theorem.

THEOREM 2.1. Let K be a weighted pseudograph possessing an involuntary
automorphism. Let K* be its orbit graph and let F be the cograph of the fixed point
set in K*. Then

o(K; x)= (K*; x)(F x).

3. An example. In practice, we may construct K* as follows.
1. Start with a convenient induced subgraph of K such that its vertex set is a set

of representatives for the orbits.
2. Multiply the weight of each edge which joins a fixed vertex to a nonfixed

vertex by x/2.
3. Construct a new edge or loop for each unordered pair (u, v) of nonfixed

vertices with weight equal to w(u, r(v)).
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The resulting weighted pseudograph is K*. For F we proceed as follows.
1. Take the complement of F in K*.
2. Multiply the weight of each new edge or loop in K* by -1.
The result is Fc. Usually, we simplify the edges or loops with same end vertices.

We remark that another method to compute p(G; x) is given in [1]. Their method is
too long to be discussed here. We plan to study the relation between these two methods
in a future paper. In the examples, shown in Fig. 1 we use diagrams to show how to
find the characteristic polynomial of a given graph with our method. For convenience,
edges without specific weight have unit weight and edges not shown have weight zero.
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ON THE SIZE OF SEPARATING SYSTEMS AND
FAMILIES OF PERFECT HASH FUNCTIONS*

MICHAEL L. FREDMAN AND J.NOS KOMLOS"

Abstract. This paper presents two applications of an interesting information theoretic theorem about
graphs. The first application concerns the derivation of good bounds for the function Y(b, k, n), which is
defined to be the minimum size of a family of functions such that for every subset of size k from an n
element universe, there exists a perfect hash function in the family mapping the subset into a table of size
b. The second application concerns the derivation of good bounds for the function M(i,/., n), which is
defined to be the minimum size of an (i, /’)-separating system.

1. Introduction. Two problems involving the minimum size of families of parti-
tions satisfying certain separating conditions are considered in this paper. An interest-
ing information theoretic technique is developed and applied to these problems. Our
first problem is motivated by hashing. Let U={1, 2, , n} and let P be a partition
of U into b (possibly empty) blocks. A subset S of U with at most b elements is
separated by P if every block of P contains at most one element of S. A family F
consisting of partitions of U into b blocks is called a (b, k)-system provided that every
subset S with k elements is separated by at least one partition in F. Our first problem
is to derive bounds for the function Y(b, k, n) which is defined to be the minimum
size of any (b, k)-system. A function h from U into {1, , b} is said to be a perfect
hash function with respect to a subset S provided that h is one-to-one on S. A
collection C of functions from U into {1,..., b} is called a (b, k)-family of perfect
hash functions provided that for each subset S of size k, there is a function h in C
which is perfect with respect to $. A (b, k)-family of perfect hash functions provides
a means for storing subsets of size k into tables with b cells. Given the obvious
correspondence between partitions into b blocks and functions with range {1, , b},
it is clear that Y(b, k, n) gives the minimum size of any (b, k)-family of perfect hash
functions.

Our second problem concerns the minimum size of (i, /’)-separating systems. As
defined in Friedman, Graham, and Ullman [2], an (i, /)-separating system is a family
F of partitions of U into two blocks, (Pk, Qk), (Pk Qk U) satisfying the following
condition. For each pair of disjoint subsets, S and T, of size and/’, respectively,
there is at least one partition (Pk, Qk) in F such that $

_
Pk and T

_
Qk, or T

_
Pk

and $

_
Qk. Friedman et al. [2] show that (i, /)-separating systems are motivated by

considerations involving asynchronous sequential circuits. We define M(i, j, n) to be
the size of a mimimal (i, /)-separating system.

In 2 we describe some techniques which produce initial estimates for the
functions Y(b, k, n) and M(i, f, n). A discussion of the relationships between these
techniques and initial estimates motivates an information theoretic result which is
established in 3. This information theoretic result is applied in the final sections of
the paper to improve upon the initial estimates.

Throughout this paper all logarithms are assumed to be to the base 2.

2. Initial estimates. Two related techniques which lead to lower and upper bounds
for these problems are, respectively, the volume bound and the random bound. We
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illustrate these techniques in the context of the (b, k)-systems problem, and remark
that they similarly apply to the (i, /’)-separating systems problem.

The volume bound considers the maximum possible number v of sets which can
be separated by any fixed partition. Since N () sets must be separated in all, we
deduce that

N
(1) H(b,k,n) >--.

v

We refer to the number of sets separated by a given partition as the volume of
the partition. Let G be the family of all partitions having maximal volume. The random
bound considers the necessary length of a sequence of random independently chosen
partitions from G in order for the sequence to comprise a (b, k)-system with positive
probability. The probability that such a sequence of length m jails to comprise a
separating system is at most

If m is chosen so that the expression in (2) is less than 1, then Y(b, k, n)<= m. Hence
we obtain the bound

(3) Y(b, k, n)= Ok_log (1-v/N)/

It is clear that a partition of maximal volume will have block sizes which are as uniform
as possible. In particular, if n > b+, e > 0, then

(4) v

Combining (1), (3), and (4), we obtain (for n > b+)

(5) II -bT Y(b,k,n)=O -klogn/log 1--- where =b!/(b-k)!

A particularly striking discrepancy between the lower and upper bounds in (5)
is the fact that the upper bound depends on n while the lower bound does not. Our
primary interest throughout the remainder of this paper is an analysis of this dis-
crepancy. Let us assume that k lab for fixed c, 0 < c <_- 1 (corresponding to hash
tables with load factor c). Then b/b- grows exponentially in b, and taking logarithms,
our bound in (5) becomes

(6)

bg(a + O(log b) _-< log Y(b, k, n)

<- bg(o) + log log n + O(log b)

(g(a) (l-a) log (1-a)+a log e).

A lower bound for Y(b, k, n) which grows as II(log n) can be derived by appealing
to a simple information theoretic argument. We assign a numbering to the partitions
of a (b, k)-system and we number the blocks within partitions, so that we may speak
of the ith block of the/’th partition. Then a (b, k)-system with m partitions induces
the following assignment of m-dimensional b-ary vectors to the elements of
U={1, 2,..., n}: The value of the/’th component of the vector vt assigned to e U
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is provided that is in the ith block of the/’th partition. Observe that vt vt, for
t’ since is separated from t’ by at least one partition in the (b, k)-system. Therefore,

{v,I U} is a set of n distinct b-ary vectors, implying that

(7) Y(b, k, n) >
log n
log b

Combining (6) and (7), we obtain

max (g (a)b, log log n) O(log b)
(8)

-<log Y(b, k, n) -< g(a)b + log log n + O(log b).

For large b the lower and upper bounds in (8) differ by a factor ranging between 1
and 2, depending on n.

The reader should observe that our interest actually centers on the function
Y(b, k, n) rather than log Y(b, k, n). The discrepancy between the lower and upper
bounds in (8) translates into an extremely large gap" a sum versus a product.

To improve our lower bound, we seek a method which combtnes the volume
bound argument and the simple information theoretic argument. The volume bound
involves the counting of subsets and the information theoretic argument assigns distinct
vectors to the elements of U. A combined argument assigns vectors to subsets of U.
In effect, we show that a typical subset must be separated about log n times in a
(b, k)-system. Before presenting this argument, we need to establish an information
theoretic result which is interesting in its own right.

Yao [5] mentions that R. Graham observed that the randomization technique
yields a good estimate for the size of (b, k)-systems. Melhorn [4] has derived all of
the estimates presented in this section. Berman et al. [1] have also derived some of
these bounds. Friedman et al. [2] have used the random bound method to derive an
upper bound for the size of (i, ])-separating systems.

3. An information theoretic inequality. Let Vbe a set of the form W [_J {.} where
W is a finite set of integers, and let Va denote the set of d-dimensional vectors over
V. Given two vectors u and u2 in Va, we say that u and u2 strongly differ provided
that in some position they assume different integer values. (We interpret as meaning
"don’t care", so that two vectors, which differ only in positions in which one of the
vectors has a., do not strongly differ.)

The concept of strongly differing vectors arises naturally. For example, if we pad
the words of a binary prefix code with .’s so that the resulting words are of the same
length, then these padded words pairwise strongly differ.

Let G be a finite undirected graph. A coloring of the vertices of G with colors
chosen from the elements of Va is said to be strong provided that the colors of any
two vertices connected by an edge strongly differ.

Let w be a strong coloring of a graph G with colors from Va. For each i, 1 -< -< d,
and each e V we let Pie denote the fraction of vertices whose colors contain an e in
the ith coordinate. We let p(w, i) denote the probability that the ith coordinate is an
integer: p(w, i)= e,. Pie. If e is an integer, we let qie denote the conditional probability
that the ith coordinate is e given that it is an integer; namely, qie =Pie/P(W, i). The
conditional entropy of the ith coordinate, denoted H(w, i), is defined by

H(w, i) , qie log qie.
e*
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A set of vertices in G is independent provided that no two vertices in the set are
joined by an edge. The independence number a (G) of G is the maximum size of any
independent set.

THEOREM 1. Let G be a graph on n vertices {v 1, , v,} with independence number
a, and let w be a strong coloring of G with colors from Va. Let p(w, i) and H(w, i) be
the quantities defined above. Then

(9) log <-_ p(w, i)H(w, i).
i=1

Remark. If G is a clique and our coloring contains no ,’s, then (1) reduces to
the classical inequality log n N H(X), where X is the ith coordinate of a random
vector which has a uniform distribution on n values. The proof of Theorem 1 refines
the method in Fredman [3, Thm. 3], which can be regarded as an application
Theorem 1 in a setting involving ,’s and a clique.

Proo[ o[ Theorem 1. For a large integer k, we let C denote the collection of all
sequences of vertices in G of length nk, which contain exactly k occurrences of each
of the n vertices. We define the following graph G whose vertices are the sequences
in C. Two sequences, {v} and (v) are joined by an edge provided that at the first
position in which the two sequences differ, say position s, the two vertices v and
are joined by an edge in G. The number of vertices in this graph, C, is given by the
multinomial coecient (,.,), which is approximated by (n fixed, k large)

(10) 2 log n + O(log k).

We show below (Lemma 1) that the independence number a(G) of Gg cannot
exceed

(11) a(a).
For any graph G’ on h vertices, the chromatic number X(G’) satisfies X(G’) h/a (G’),
i.e.

(12) x(a) IC[/(G).
We deduce from (10), (11), and (12) that

(13) lif log X(G) log a(a
Next, we proceed to show that

d

(14) p(w, i)H(w, i) > lim inf
1

i=1
logX(Gk).

The theorem then follows by combining (13) and (14). To establish (14), we construct
a coloring Wk of Gk using at most

(15) Ok fi ( p(w, i)nk )
i=1 pilnk, pi2nk,

colors. Since

lim
1 d

k-. - log 0 2 p(w, ilH(w, i),
i=1
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this coloring suffices to establish (14). Our coloring wk will be defined so as to color
each sequence in Ck with a d-dimensional vector whose entries consist of integer
sequences. Given a vertex v in G, let w(v, f) denote the [th component of the color
of v under the strong coloring w. Then the/’th component of the color of <l)ir)E Ck
under the coloring wk is the compressed sequence obtained by deleting all ,’s from
the sequence (w(vr, ])). Observe that for each integer m, this sequence contains pi,,nk
occurrences of m. It follows that wk utilizes at most 0k (defined in (15)) possible colors.
Lemma 2(below) establishes that wk is indeed a proper coloring of Gk, completing
the proof.

LEMMA 1. The independence number (Gk) of Gk satislSes (Gk)<-cz(G)"k.
Proof. Consider an independent set I of vertices in Gk. Recall that each vertex

in Gk is a sequence of vertices in G of length nk. Suppose that there are vertices
in ! which have a common prefix of length (say) r-1, and which pairwise differ in
the rth position. Then the vertices which comprise the rth positions of these
sequences form (by definition of Gk) an independent set of G. Thus t-<_ c(G). We can
now argue by induction on m >-0, that there can be at most c(G) sequences in I
which have a common prefix of length nk-m. Setting m nk, we conclude that
Ill --< c (G)", completing the proof.

LEMMA 2. The coloring wk of Gk is proper.
Proof. Let (vr) and (vi,) be two sequences in Ck joined by an edge. Assume that

these sequences have a common prefix of length s- 1 and differ in position s, so that
Vgs and vh are joined by an edge in G. Then for some l, w(v,, l) w(vi,, l) since
w is a strong coloring. Since vgr= vi, for r<s, the prefixes, (w(v,,/); 1-<r <s) and
(w(vj,,/); 1 -<r <s), are identical; and in particular both contain an equal number (say
u) of occurrences of ,. Thus, the colors of (vr) and (vi,) differ in the/th component
at position s- u. This implies that wk is proper, completing the proof.

4. Lower bound for (b, k, n). We now proceed to combine the information
theoretic and volume bounds as discussed at the end of 2. We define the following
graph G G(b, k, n). The vertices of G consist of all pairs of the form (x, R), where
R is a subset of U of size k- 2 and x is an element of U which is not contained in
R. Two vertices, (x, R) and (x’, R’), are joined by an edge provided that R R’. The
number N of vertices in G is n (-). Observe that G consists of disjoint cliques of
size n- k + 2, one clique for each subset R of U of size k- 2. The independence
number c c (G) is simply the number of these cliques, and so N/a n k + 2.

Let C be a (b, k)-system. We use C to induce a strong coloring of G as follows.
The vertices of G are colored with vectors over {., 1, 2,..., b}. These vectors are
composed of blocks of coordinates, each block containing (k_2) coordinates. The ./th
partition Pi in C defines the values of the coordinates in the/th block of these vectors.
Number the (k_2) subsets of {1, , b} of size k -2, and let Zi be the ith subset. Then
the value vi of the ith coordinate of the/th block of the vector (color) associated with
the vertex (x, R) is given by

if x is in the lth block of P, lgZ, and the uth block

vi of P. contains exactly one element of R for each u in Zi,

otherwise.
Since vi cannot assume a value in Zi, it must assume one of the remaining b- k + 2
integer values or the value ..

To see that this is a strong coloring of G, consider two joined vertices (x, R) and
(y, R). Let P be a partition which separates the set R {x, y} t_J R (which contains k
elements), and let Zi be the set of size k-2 consisting of the k- 2 indices of the
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blocks of Pj containing the k- 2 elements of R. Assume block of Pj contains x and
block l’ of Pi contains y. Since/ is separated by Pi, we have that l’, lgZi and
l’g Zi. Thus, for the vertex (x, R), vii l; and for (y, R), vii l’. In other words, the
colors of these two vertices strongly differ.

THEOREM 2. For n > b2+ (e > 0),

Y(b, k, n) l)\bk_l log (b -k + 2)
Proof. Given a (b, k)-system C, consider the coloring w of G(b, k, n) induced by

C as described above. We apply Theorem 1 and show (below) that each partition
in C contributes at most

(16) r
(t 6-2)(b k + 2)(n/b)’-a log (b k + 2)

(k n--z)(n k + 2)

to the r.h.s, of the inequality in (9). Since the 1.h.s. of (9) equals log (n-k + 2)=
fl(log n), the number of partitions in C must then be at least fl((log n)/o-), which
establishes the desired bound.

Now consider the partition P. of C. The components vii, 1 <= <- (k -.), induced by
P under the coloring w, assume b-k + 2 possible non-. values. Therefore, the
conditional entropies (referred to in (9)) of these components cannot exceed log (b-
k + 2). If we count the number L of non-. values contributed by these components
to all of the vertices in G, we easily see that this quantity is maximized if P has block
sizes which are as uniform as possible. Since the sum of the conditional probabilities
in (9), associated with the components vij, is given by L/N, we conclude that the total
contribution of any P. in C to the r.h.s, of (9) cannot exceed (16), completing the proof.

The ratio of the random (upper) bound (5) to the lower bound in Theorem 2 is
bounded by

(17)
bk ) log (b- k + 2)0

(b-k +11
(n > b 2+e for some fixed e > 0).

In particular, the gap in (8) is resolved in favor of the upper bound.

5. Bounds for M(i, ], n). In this section we derive bounds for the minimum size
of (i, ])-separating systems, denoted by M(i, ], n). Define

(i +i)
Z(i,/’)= i/.

For large n (i and/" fixed) the volume and random bounds give

(18) l(Z (i, i))= M(i, f, n)= O((i +i)Z (i, i) log n).

(Note. Again the lower bound in (18) does not depend on n.) We now proceed
to improve the lower bound by applying Theorem 1. This time we use the graph
F F(i,/’, n) defined as follows. The vertices of F consist of all triples of the form
(x, R, $), where R is a subset of U of size 1, $ is a subset of U of size/"- 1 disjoint
from R and x is an element of U not in R or $. Two vertices (x, R, S) and (x’, R’, $’)
are joined by an edge provided that R R’ and $ S’.
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Let C be an (i,/’)-separating system. We use C to induce a strong coloring of F
as follows. The vertices of F are colored with vectors over {., 0, 1}. The mth partition
(P,, O,) in C defines the value of the mth coordinate v,, of these vectors; namely,

0 if {x } R
_
Pm and S

_
Ore, or {x } LI S

_
P,, and R

_
O,,

v,, 1 if {x } R
___
Qm and S Pm, or {x } S

_
Q, and R

__
P,,,

otherwise.

To see that this is a strong coloring of F, consider two joined vertices, (x, R, S)
and (y, R, S). Because C is an (i, /’)-separating system and I{x } t_J R[ and [{y } S[ =/’,
there is some partition (P., Qj) in C such that (say) {x } R

_
Qj and {y } tA S

_
Pi. Thus,

for the vertex (x, R, S), v. 1; and for (y, R, S), vj 0. In other words, the colors of
these two vertices strongly differ.

THEOREt 3. For fixed <- and large n,

( ((i
logn )+f)/i)M(i, f, n)= f Z(i,/’)log

Proof. Our proof closely follows the proof of Theorem 2, except that this time
the conditional entropies on the r.h.s, of (9) play a more significant role. Since F
consists of disjoint cliques of size n + 2-i-/" (one clique for each choice for R and
S), we have that N/a log (n + 2 -f). Thus, the 1.h.s. of (9) is f(log n). Next we
consider the contribution of a given partition (P,, Ore) to the r.h.s, of (9). Assume
that levi- and Io 1- n-t. Then the total number L0 of O’s assumed by the ruth
coordinates of the colors of the vertices in F is given by

n

The total number L of l’s assumed by the ruth coordinates is given by

The total number N of vertices in F is given by

(21) N=n
]-1

Let h (x) denote the entropy function -x log x (1 x) log (1 x). The contribution
of (P, O) to the r.h.s, of (9) is given by

Lo+Lh( Lo ).(22) Cm Lo +L

Substituting (19), (20), and (21) into (22), writing 0n, and assuming that n is large,
we obtain

(23) Cm 0(h (6t)[/i-1(1-/)j-1 -[- ]-1(1 )i-1]).

Therefore, we conclude from (9) and (23) that

(24) M(i,/’, n) (log n min
0<0--<_1/2

-1
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Because i-<_/", we have 0i(1-0)J->_0J(1-0) when 0<-1/2. Therefore, Theorem 3 is
an easy consequence of (24).

The significance of the entropy term in (23) is particularly apparent in the case
1. Without the entropy term, our lower bound for M would only be O(log n), with

it, the bound becomes f((/’/log/’) log n).

6. Remark. Given a vector over V {0, 1, .}, we define its real weight to be the
total number of O’s and l’s among its components. Given a strong coloring w of a
graph G with vectors over V, we define content (G, w) to be the average real weight
(over the vertices in G) of the colors of the vertices. We define content(G)=
minw content(G, w). Referring to the inequality (9) of Theorem 1, noting thatH(w, i) -<

1, we observe that log N/a <= content(G). On the other hand, we have content(G)=<
flog X] (which can be attained by a coloring without any components). Since for
typical graphs it is known that N/a is a good estimate for X, we conclude that Theorem
1 provides a good estimate for content(G) for most graphs.
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Abstract. The shape of a sequence of trees grown by the progressive ordering of the elements of an
infinite random permutation is studied. Ln, the length of the path to the node containing the (n + 1)st
element, is shown to grow, in probability, as In n!(1/2 +... + 1! m), m- being the capacity of a node.
Furthermore, Cn, the number of comparisons needed to insert the (n + 1)st element grows, in probability,
as Ln(m-1)(m+2)/2m. We also show that, almost surely, Ln/lnn[al-e, a2+e], Cn/lnn
[/31 e,/3 + e] for large enough n(e > 0). Here ai,/3i are roots of two certain equations.

Key words, random search trees, permutations, path lengths, generating functions, distributions,
asymptotics, convergence in probability, almost surely

1. Introduction. Consider a sequence w (w(1), w(2),...) of distinct numbers.
One may think of w as a stream of input records for a computer. The computer reads
the records, each in turn, and constructs a sequence of trees {tn}n=0, such that each
t,=t,(w")), (w")= (w(1), w(2),..., w(n))) is an m-way search tree defined recur-
sively, essentially in the same way as in [1]. Namely, an m-way search tree on n
elements t, is either empty or each node contains at most m-1 elements (keys)
K1, K2, , Ki, 1 -< <- m 1, sorted left to right (gl < K2 <" < Ki). Furthermore,
(i) if n <m then all the elements are in the root; (ii) if n->m then the first m- 1
elements are in the root, and the remaining n -m + 1 elements are distributed among
subtrees Tnl,’’ ", T,,, subject to the following conditions" the elements of Tnl are
less than all the elements in the root, the elements of T,, 1 <i <m, lie properly
between keys Ki-1 and Ki of the root, and the elements of Tn,, are greater than all
the elements of the root; Tnl Tnm are also m-ary search trees.

In what follows we informally describe an algorithm to construct t, from w ") by
an example. Consider the permutation w7= (4, 2, 3, 5, 7; 6, 1). Let us construct a
ternary search tree (m 3). Four appears first so it goes into the root and the tree
becomes (). Two comes along and 2 < 4 and the root node is not filled yet. Thus, 2
also goes into the root, and it pushes the 4 to the right, so that the labels of the
root are sorted left to right. The tree now is (3. Three is next; 2 < 3 < 4 so it goes into
the middle subtree. The tree now is. The construction proceeds in this manner

until we end up with the full tree shown in Fig. 1.
It is interesting to notice that more than one sequence may give rise to the same

tree under this construction scheme. For example, the sequence ff7)=
(4, 2, 1, 5, 7, 6, 3) will give the same tree as in Fig. 1. In fact, two n-long sequences
will give rise to the same step-by-step realization of the algorithm provided that their
integer-valued vectors of sequential ranks are identical. (rtn (r(1), r(n)) is the
vector of sequential ranks of a sequence w t" if w(j) is the r(j)th largest in comparison
with w (k), 1 <= k <-/’.) When t, is constructed there are exactly n + 1 available positions
for the (n + 1)st element to be put in, counting vacant slots in partially filled nodes
of t, plus new (still empty) nodes adjacent to the old nodes. The choice of this position
is uniquely determined by the value of r(n + 1).

* Received by the editors July 19, 1982, and in revised form March 8, 1983.
-t-Computer Science Department, The Ohio State University, Columbus, Ohio 43210.
$ Mathematics Department, The Ohio State University, Columbus, Ohio 43210.
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FIG. 1.

Certain characteristics of the tree tn, such as its depth, turn out to be very
instrumental for the problem of estimating the time needed to search for a record
already present in the tree, or expand it to insert a new record. Our goal is to study
the asymptotical behavior of related characteristics of {tn}n=l under the assumption
that w is an infinite random permutation. By the infinite random permutation we
mean a random sequence whose vector of sequential ranks satisfies:

a) r([) is uniformly distributed on Rj {1,...,/’},
b) r(1), r(2). are independent.
Notation. Let L, stand for the length of the path from the root to the node which

will contain w (n + 1), and let H,, hn denote the length of the longest and the shortest
paths respectively from the root to the (n + 1) potential positions for w(n + 1). We
shall also be interested in C,, the number of comparisons required to find the place
for w(n + 1). It should be clear that C, depends on how the current number w(n + 1)
is compared with the elements in each node along the path to its destination. We
assume that these comparisons are made sequentially from left to right. It can be
easily seen that

0_-<h. _-< llog. (n+ 1)l, flog,. (n + 1)]-<_H _<_ [_n.1,
Lm--ld

and all bounds are attainable. Thus, these characteristics may vary widely from one
sequence w to the other, which means it is natural to study their distributions for
large n.

For the special case of binary trees t, (m 2), the distribution of Ln has long been
known, Lynch [2], Knuth [3]; namely,

P(L, k)= 2kS(n, k)/(n + 1)!, 1 <_-k <_-n,

where S(n, k) are the Stirling numbers of the first kind [4]. Knuth also showed that
E(L,), the expected value of Ln, is 2 In n + O(1) as n - o. Later Robson [5] proved,
for the same tree, that its height H, with high probability is also logarithmically
bounded as n .

Ruskey [6] studied expected lengths of the paths leading from the root to all
external nodes in the extended binary tree (see [3] for definitions and properties).
But the random tree he considered is completely different, namely each of (2,")/(n + 1)
binary trees with n internal nodes is equally likely. Among other results we should
mention R6nyi-Szekeres [7], Stepanov [8], De Bruijn, Knuth and Rice [9]; the former

Added in proof: Using algebraic properties of the numbers S(n, k), we have shown recently that Ln is
asymptotically Gaussian with mean and variance both equal to 2 In n.
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two contain the limiting distribution of the height of the unordered random tree, the
latter gives asymptotical value of the expected height for the ordered random tree,
and in both models all the feasible trees are equally likely. (For a very comprehensive
survey of numerous other results the reader is referred to Moon [10] and Flajolet
and Odlyzko 11].)

We now can formulate our main results.
THEOREM 1. In probability,

(1 1) lim
L.

(1 2) lim
C,

=a(m) +...+
-1

2m
a(m).

Remarks. It will follow from the proof of (1.1) that, with high probability, all
but a negligible fraction of n + 1 paths leading to possible locations for w(n + 1) have
lengths between (a (m) e) In n and (a (m) + e) In n, e > 0. Also, observe that a (2)
b(2) b(3)= 2> a(3)= 1.2. Thus cramming two elements into each node, instead of
just one, leads, with high probability, to noticeably shorter trees while the typical
values of C,, the number of necessary comparisons, are kept essentially the same
(--2 Inn).

While Theorem 1 describes the property of almost all trees t, for a fixed (but
large) n, Theorems 2 and 3 concern the asymptotical behavior of almost all infinite
sequences of the trees t,.

THEOREM 2. With probability one,

(1 3) lirn.inf
L
1--O 1,

(1.4) limsup
L.

a2;in n
here

(1.5) ai (x, +/’)

and 0 < x < x2 < (20 are the roots of the equation

(1.6) f(x)=x "4" 2 (X -+-i)-1 ln[(k +2)(k -+-x)-l]- 1= O.
=0 k =0

THEOREM 3. With probability one,

(1.7) lirninf
C,

>
1-n=1,

(1.8) lim2up n

here [3 [3 (x)= y(x)/y’(x), y y(x) being the positive root of the equation

m-1 def

(.9) Y y +y"- =(x),,_ ((x) x(x +1)...+(x +,- 1)),
/=1
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and 0 < x < X2 < (30 are the roots of the equation

(1.10) g(x)--x-(x) In y(x)- 1 0.

Loosely speaking, these statements mean that both L, and C, considered as
random functions of n are almost surely bounded above and below by logarithmic
functions of n.

Notes. (a) Consider the special case of the binary trees t,, i.e., m 2. Then
and, as should be expected, 1 "O1, 2"--a2, where (see (1.5), (1.6)) 0<al
are the roots of the equation

c 0.37, O 2 4.31. The number a2 already appeared in [5], where H,, the height of
t,, was shown not to exceed, with high probability, (c2 + e)In n, e > 0. There were
also given in [5] some ingenious, though incomplete, arguments intended to prove
that E(H,) _-> 3.63 In n + o (In n ).

One of the authors [12] recently proved the existence of two constants Cl
[0.37, 0.50] and c. [3.58, 4.32] such that, with probability one,

lim
h,

=cl, lim
H,

. ooV n
(remember, h, is the length of the shortest path from the root of t, to the possible
location of w (n + 1)). As h, <= L, -<_ H,, and L, h, and L, H, infinitely often almost
surely, we conclude that in this case, with probability one,

It is worth remembering (Theorem 1) that still in probability

lim Ln
,-.oo ln 2 (c 1, c 2).

(b) Table 1 is the table of ci,/3i, (i 1, 2), rounded to three decimal places for
some small values of m.

The table shows that c -/31 and c 2 =/32 for m 2; it must be expected as C, L,
in this case. What is more surprising is the fact that/31 and/32 coincide for m 2 and

TABLE

2 0.373 4.311 0.373 4.311
3 0.318 4.490 0.373 4.311
4 0.287 4.636 0.350 4.552
5 0.267 4.759 0.328 4.865
6 0.253 4.867 0.310 5.202
7 0.242 4.963 0.297 5.548
8 0.233 5.049 0.286 5.897
9 0.226 5.128 0.277 6.243
10 0.219 5.200 0.270 6.585
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m 3. This is a direct consequence of a stronger result which follows from Lemma
1 below" the distributions of C, for m 2 and m 3 are the same.

2. Proofs.
Notation. Let Xnk be the random number of possible positions for w(n + 1) at

distance k from the root; clearly, Xok tOk. Let Ynk be the random number of possible
positions for w(n + 1) such that to reach one of them w(n + 1) has to be compared
with exactly k elements of w(")=(w(1), w(n)). Denote Fnk--E(Xnk), Gnk
E(Ynk). The numbers F,k, Gnk are closely associated with the distributions of L, and
C,. Namely, according to the distribution of r {r(n)}= 1,

YnkX,k
P(C, =klt,)=’,P(L,=klt,)

n+l n+l

so averaging over t, we have

Fnk(2.1) P(L, k)= P(C, k)=n+l’

Introduce the generating functions of Fnk Gnk"

ank
n+l

F, (x) Z F,.,x", F,, (y) E F.y ,
n__>0 k=>0

(2.2t
Gk(x)= , G,kx", G,(y)= Z G,ky k,

>__O k >=O

LEMMA 1. F(x, y ), G (x, y) satisfy

(2.3)

F(x, y)=

G(x, y)=

(1 -x)"-
0x m-1

(ym !)F,

(2.4)
OF(O’ y)- (i + 1)’oxi

and

(2.5)

0_-<i <_-m -2,

n>=O,kO

(1 -x)’- [ axm-1 (p.,-l(y)(m 1)!)O,

(2.6) O’G(O, y)
Ox

i!pi(y), O<--i <=m -2,

(2.7) Po(Y) 1, Or(Y)= Z yS+yt fort>--l.
l<=s<=t

Proof. (a) Observe first that

VnkX ny k,

GnkX ny k,

(2.8)

(2.9)

F,o=n+l if0_-<n_-<m-2, F,o=0 ifn_->m-1,

F,k O if0-<_n-<m-2andk->_l.

Let n ->_ m 1 and T,1, rnm be the subtrees of t, ordered from left to right, whose
roots are adjacent to the root of t, (see Introduction). If r,j stands for the size of T,j,
i.e. the number of elements of w (") contained in its nodes, then

(2.10) Y r. n -m + 1.
j=l



74 HOSAM MAHMOUD AND BORIS PITTEL

Let us show by induction that the random vector r. {r.’}s is uniformly distributed
on the set II.. of nonnegative integer-valued solutions of (2.10), in other words that

-1

(2 11) P(r,q=ii, l<]<m)=ll.,,ml_l= ( n )m-1

Y’. ii=n-m + 1, ii>=O.

It is obviously true for n m- 1; assume that it holds for n u >=m- 1. As the
sequential rank r(u + 1) of w(u + 1) is independent of r(1),..., r(u) and uniformly
distributed on {1,..., u + 1}, by the induction hypothesis, we have" if --lij
(u + 1)-m + 1, then

P(r+l.j ii, 1 _-<j _-<m)

-4- P(’r=i’l<--J<--mandj#s’rs=is-1)
is>=l

-1 -1 ix -1

m 1
(v + 1)-1 Y. is (v + 1)-l(v + 2 m)

s=l m -1 m

Furthermore, for k >_- 1 (and n _>-m 1)

(2.12) X, E ,
1=1

where )-1 is the number of positions available for w (n + 1) in T, which are (k 1)
steps apart from its root. Notice that

(2.13) P(J)-I =alr,q =b)=P(Xb.k-1 =a), 1 _--<] =<m,

for all a and b. Taking expectations of both sides of (2.12), and invoking (2.11),
(2.13), leads to

) F/(2.14) F,,
n Y’, .,-1, n>_-m-1, k>=l;

m 1 il,...,imj=l

here the outer sum extends over all solutions of (2.10).
Therefore, using the notation (n),-i n(n- 1)... (n-m +2), we arrive at

F"- (x)= E (n),,,-,F.x
n>_.m-1

(2.15) =(m-l)!

or

is>--_O,l_s<=m t=l

=m’(YxiFi, -1)(>_ X v)
i>--’O v_O

m--1

(2.16) (1 --x)m-lFk’-l (x)= m !Fk_l(X), k >= 1.
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Since, in view of (2.8),

(2.17) Fo(x Y F,,oX" Y. (n + 1)x ",
>_O O<=n <_<_m-2

the relation (2.16) implies

(1 -x)"-1 Ore-IF(x, y)/Ox m- (1 -x)m- Fm-l) (x)y k (m y)F(x, y).
kl

Initial conditions (2.4) follow directly from (2.8), (2.9).
(b) As in (2.12), for k -> 1 and n -> m 1,

where, for s -> 0, ( is the number of positions available for w (n + 1) in T, which
are s comparisons away from the root of T,., and () 0 for s < 0 (1 -</" =< m).

Define G,k 0 for n --> 0, k < 0. Then, as in (2.15),

G"-l)(x)=(m-1)! E X it a ii, k _j - G ina,k-m+
is >=O,l <=s <=m t=l

(m 1)! (l-x)-m+l Gi.t,_jx + Gi,k_,,,+lx
i=1 i=>0 i>0

or

(2.18) )"-aG"-l)(x)=(m-1) Gt,-i(x)+G,-,,+l(x)(1 x

(in the right-hand expression, Gs (x) =- 0 for s < 0).
By definition of Gnk, we also have Go 8ok, and, for 1 -<_ n <-_ m -2,

(2.19)

0 ifk=0ork_->n+l,

Gnu,= 1 ifl-<k_-<n-1,

2 if k=n.

In particular, Go(x) =- 1, so according to (2.18),

(1 _x),,_
G(x, y)

OX m-1

(m 1)! E yk G,_i(x)+Gk_,,+l(X
kl

(m- 1)! YJ G-(x)Y- -t-Y m-1 2 Gk-(m-ll(x)Y -(m-ll

’ km-1

(m 1) y + y G(x, y) (m 1)O_(y)G(x, y).

Conditions (2.6) follow from (2.19). The lemma is thus proven.
LEMMA 2. Let y > 0 and I I (y), (y) be the posigve roots o[ the equations

(2.20) (z}_ ym , (z}_ 0-(Y)(m 1)
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(() (+ 1).. ( + ix 1), for ix -> 1). Then

(2.21) Fn(y)<-y(h)n/n!, y y(A) =max [1,
(2.22) Gn(y)<=6(r)n/n!, ,5 =6(m)

and (2.21), (2.22) become identities ]:or m 2.

(m 1)(m -2)]A

(3(2) 1),

Remark. In the binary case (m 2), we have A o- 2y and

F,,(y) G,,(y) (2y),ffn !.

So, using a well-known identity [4]

(), Z s(,v),
where S(ix, v) are the Stirling numbers of the first kind, we get (see (2.1) (2.2))

2kS (n, k)
F,k G n!

and

2S(n, k)
P(L, k)=

(n + 1)!

which is the Lynch-Knuth formula mentioned in the Introduction.
Proof of Lemma 2. As the arguments for proving (2.21) and (2.22) are quite

similar, we shall prove only (2.21). Notice first that

P(x, y) (1-x)-
is a solution of (2.3) which satisfies the conditions

(2.23) Oiff(O, y)/Ox (A),, 0 =< -<_ m 2,

((A)0 1, by definition). In view of (2.4) then

F(x, y)=F(x, y)

for m 2, and subsequently

F,(y) coeffx- (l-x)-x =(h)n/n!=(2y),/n !.

Let now m => 3. Simple arguments based on (2.20) and comparison of (2.4) and (2.23)
show that

(2.24) O’/(0, y)/ax’ >- OF(O, y)lax’, 0 < < m 2,

where

Now, if

(x, y)= vB(x, y)= v(1-x)-, max [(i + 1)!/(h )i].
O<: m--2

then (F(x, y) Y,__>o F,(y)x"), (2.24) is equivalent to

(2.25) F, (y) =<, (y), 0 _-< n _-< m 2.

#(x, y) X .(y)x",
n__>0
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Next, we show that (2.25) is also true for n => m 1. Both F(x, y) and F(x, y) as
functions of x are solutions of the equation

d’-15 )_,+1dx--- (1 x (ym !).

So, using Taylor’s expansions of F and F about x 0 and the binomial series

(m+tx-2)(l-x)-+= Z x
,=o m -2

we obtain the recurrence relations: for n >_-m- 1,

"-+a (n-l_-/’)i, 4, F, (y or /V, (y ).(n)m--ln (ym !)
i--0 m

Invoking positivity of (n),,_x and (_J) for n >-_m- 1 and (2.25), by induction we
conclude that

(2.26) F, (y) _<- if’, (y),
for all n _-> 0. The lemma is thus proved.

Proof of Theorem 1. (a) by Lemma 2 (see (2.21),

or, equivalently,

F,k --< Y---r--, y >0,
ynt

(2.27) F,,k <-- Y k, Y=(m)-a(x)-,-x, y y(x), x (O o).
yn!

Observe that y y (x) is strictly increasing, y (0) 0, limx_ y (x) c,

(2.28) y(0+) 0, y(2) 1, lim y(x) .
Introduce the function

(2.29) a a (x) (x -1 +. + (x + m 2)-a)-a x e (0, )"

obviously, a (x) is also strictly increasing,

lim a (x) 0, lim c (x) .
x--0+ X-OO

Denote also k (x, n) a (x) In n. We want to show that

(2.30) E F,k --< el(X)(1 y-1)-a exp [f(x) In n]
k >=k (x,n

(2.31) ., F,,k<--yz(X)(1-y)-Xexp[f(x)lnn] ifx<2,
k>=k(x,n)

where f(x) x 1 a In y, and y y (x) is defined in (2.27).
Consider, for example, x > 2. Clearly y =y (x)> 1, so by (2.27)

Z F,k ’y(1 y--l)-1
k >=k(x,n) Y k(x’n)Ft !"

By the Stirling formula for the gamma-function,

F(z + 1) 2x/z (1 + o (1)), z --> c,

if x>2,
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we have

Therefore,

n F(x + n)F-(x)F-a(n + 1)

F-X(x) exp [(x 1) In n](1 + o (1)).

y’. F,,t,<_,(x)(1-y-1)-lexp[f(x)lnn].
k >_--.k(x,n)

The case x < 2 is treated similarly.
It is easy to check that

(2.32) ,,li_,om+/(x) -1,

and

(2.33)

f(2) 1, lim f(x)=-oo,

f’(x) -(In y )a 2(x)[x -2 +... + (x + m 2)-2];

(2.35)

so f(x) is unimodal and

(2.34) max {f(x)" 0 < x < oo} f(2) 1.

Then, in view of (2.1), (2.30)-(2.34), for all 0<x’ <2 <x"< oo,

P(L, =< c (x ’) In n, or L, ->_ a (x") In n

k<k(x’,n) kk(x" n)

--<_ ,(x’, x") exp [(ln n) max (f(x’)- 1, f(x")- 1)] O,

as n + oo. Since

c(2)=(2-1+...+m-a)-,
it follows then that, in probability,

(2.36) L,,
In n
-+a (2).

(b) Similarly to (2.27),

(2.37) G., =< 6 ()"
y n!’ x >0,

where y is the positive root of

m-1

(2.38) p,,-l(y)(m 1)! (x),-a, p,,-l(y) Y yi + y,,-1.
i=l

This shows that y y (x) is strictly increasing and satisfies (2.28). It can be also verified
that y’(x) [C, C2] where Ca < C2 are two positive constants. Introduce the function

(2.39) /3(x) y(x)/y’(x);
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clearly, B (0+) 0, limx_,oo/3 (x) o. Then, exactly as in (a), one can show that

(2.40) , Gnk<-6x(x)(1-y-l)-lexp[g(x)lnn] ifx >2,
k>--X(x,n), Gnk ----< 62(x )(1-- y -1)-1 exp [g(x) Inn] if x <2,(2.41) k<=x(x,n)

(2.42) X(x,n)=fl(x)lnn, g(x)=x-l-fl(x)ln y.

Now, as in (2.32),

g(0+) =-1, g(2)= 1, lim g(x)=-o.

Let us demonstrate also that, like f(x), g(x) is unimodal. We have, (see (2.42)),

g’(x) 1-/T(x) In y(x)-B(x)
y’(x)
y (x--- -/3’(x) In y (x).

Since y (x) 1 iff x 2, unimodality will follow if we prove that/3’(x) > 0 for x (0, oo).
Taking the logarithmic derivative of both sides of (2.38) leads to, (see (2.39)),

(2.43) /(x) =Ix -1 +... +(x +m -2)-1]-1(yp’,,_1 (y )/p,,-l(y )).

Notice that y’(x)>0, and [x-l+ .+(x +m-2)-1]-a has a positive derivative, too.
Now, as

m--1

O,,-l(y) Y. tojy i, to > 0,
j=l

we also have

(y)p .,x_ (y))
dy

[yp"-I(y)]-I li2tiY ltJY litiY >0,

by the Cauchy-Schwarz inequality. Thus B’(x)> 0, g(x) is unimodal and

max{g(x):O<x < o0} g(2) 1.

The rest of the proof goes exactly as in (a), and we get: in probability,

c.-./(2),In n

where (as y (2) 1)

(2)-’[2-1+"

[2-1 +" + m -1]-1(m 1)(m + 2)(2m )--1.

Theorem 1 is proven.
Proof of Theorem 2. Notice first that

(2.44) h,., _-<L, _-<H,,.

(a) According to the proof of Theorem 1, f(x) is unimodal, and there exist two
positive roots 0 < x < 2 < x2 < o of f(x) 0, so that f(x) > 0 for x (x 1, x2) and f(x) < 0
for x
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Given e > 0, introduce k (e, n) a (x2 -l-- e In n, a (x) being defined in (2.29). As
x2 > 2, by (2.30) we have

P(H, >-_k(e, n)) =P( U
kk(e,n)

(X, > 0))
--< E P(X,k>0)=< E E(X,k)= Z F,

k >=k(e,n) k k(e,n) k =(e,n)

_--< c exp [f(xz + e) In n] cn-Cl,

So

(2.45) P(H. a(x2+6) ln n) <=cn -’.

Similarly,

(2.46) P(h, <- a (x e In n) <- dn -al, d d(e) > O,

(b) Let us show that (2.45) implies that

P(limup H" )

dl dl(e)-> 0.

in other words that, for each a > a2,

P(H,, >=a In n infinitely often)= O.

To this end it would suffice to show (Borel-Cantelli lemma) that

(2.47) P(H, >= a In n) <.
n=l

But (2.47) does not follow from (2.45) as 1 depends on e, and, in fact, goes to 0 as
e gets smaller. Still, a simple idea, (see also [13], [14]), based on the observation that
H increases with n, and Inn is slowly varying, helps to overcome this obstacle.

Choose an integer k so large that kcl 1o Then

-kcP(Hv >=a(x2+e)In (vk))<--C v <o,
v=l v=l

e >0,

so that (Borel-Cantelli!)

P limsup in (.) a2 =(x).

Further, given n, let u(n) be determined by

kv (n)<-n <(v(n)+l)k"

clearly, v(n)=nl/k(1 +o(1))-+ oo as n -+oo. Since

S < Ho,(n)+l)"- [ H((n)+l) ](lnn=ln(vk(n)) ln((v(n)+l)k 1 ( 1 ))+0
v(n) ln v(n)
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we have that

Hn
og 2(2.48) limsup n

with probability one, too.
Similarly, with probability one

hn(2.49) lim,inf _--> c 1, a a (x 1).

A combination of (2.44), (2.48), (2.49) yields finally that with probability one

lirninf 1-n _-> c1,L" lim.sup nL" <_- 2.

Theorem 2 is proven.
The proof of Theorem 3 can be done essentially in the same way, and we omit it.

Acknowledgment. The authors are grateful to Dr. Bruce Weide for introducing
one of them to the problem. Comments made by a referee helped us improve the
presentation.
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ENTROPY VERSUS SPEED IN ERGODIC MARKOV MAPS*

NATHAN FRIEDMAN- AND ABRAHAM BOYARSKYt

Abstract. Let f (fl, f2, fn) be a sequence of positive numbers. We construct a class of piecewise
linear, ergodic Markov maps such that for each -s , there exist an interval I and a partition {/i}’=1
of ! with the property that iz(Ii)=fi, where tz is the unique measure invariant under z. In the trade-off
between entropy (randomness) and the speed of numerically computing the orbit {-J (x)}j__>0 can be assessed.

AMS(MOS) subject classification (1980). Primary 28D20, secondary 26A18.

1. Introduction. There are various numerical procedures for generating sequen-
ces of numbers which appear random. In this paper we are concerned with procedures
of the following type" given a transformation -" I ->/, where I is an interval, we choose
an initial value x I and then iterate. Ideally, the resulting sequence of numbers
{’i (x)}i>__o should appear random and should not take long to compute.

Let (fl, f2,’",fn) be a sequence of positive numbers, such that i=1 fi 1.
Denoting Lebesgue measure on I by A, take consecutive intervals 11, I2,’’’, In such
that A (//)=fi, 1, 2,..., n, and set I U i=1//. Define the piecewise linear map
:I-->I by ?(//) =I for all i. Then ? is ergodic and A itself is the unique absolutely
continuous measure invariant under r. - is just the one-side Bernoulli shift based on
the distribution f (fl, f2,""", fn). From the Birkhoff ergodic theorem it follows that
{?i (x)}i__>0 "exhibits" the distribution f, i.e.,

lim
1 ,(=(x)) f a.e.A.

n-,oo n 1=0

We make the following heuristic remarks" (a) ? has "relatively" large entropy
(measure of randomness [1]), since each interval Ii is mapped onto all the other
intervals with positive probability. (b) The orbit {i(x)}i>_o takes a "relatively" long
time to be produced. This follows also from the fact that ? (Ii)= ! for all i, i.e., at each
stage ] the maximum number of computations (possibly as many as 1 + ln2 n) may
have to be made in order to determine where ?(x) is.

In view of (a) and (b) we see that for a specified distribution of probabilities
f (fl, f2, fn), " "f exhibits f very randomly since for any x, "(x) can range over
all of I, but that the speed of computation.of the orbit {?i (x)}i_>o is slow, since a possible
maximum number of searches must be made at each stage of the iterative procedure
to determine the subinterval containing ?(x).

The purpose of this paper is to present a construction for a class of piecewise
linear, ergodic Markov maps (: is in this class) such that all maps in this class exhibit
a given, fixed distribution f (fl, f2, , fn), but where the trade-off between entropy
(randomness) and the speed of computation of the orbit can be assessed.

2. Preliminaries. Let denote the Lebesgue measurable subsets of I and let/z
be a measure on (I, 3). /x is said to be invariant under the map -" I-> I if, for all
A ,/z (A) /x (.-1 (A)), where -- (A) {x s I" ’(x) A}./x is absolutely continuous
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if there exists an f 1, the space of integrable functions on I, f(x)>= O, such that

(A) IA f(x) dx VA .
We refer to f as a density invariant under r. It is well known [2] that the densities
invariant under r (nonsingular) are the fixed points of the Frobenius-Perron operator
P,: S’1 1, defined by

d I. ]:(s)ds.P*f(x -x
For " piecewise Ca and satisfying inf Ir’(x)l > 1, where the derivative exists, it is shown
in [2] that r admits an absolutely continuous invariant measure.

A piecewise continuous map r" I--> ! is called Markov if there exist points in
I" a0<al<’’ .<a,, such that for/’=0, 1,..., n- 1, r],,.,,+l)is a homeomorphism
onto some interval (a kj).att)).

If r is a piecewise linear, Markov map, then it is shown in [3], where there are
unnecessary restrictions, that the Frobenius-Perron operator, when restricted to the
space of piecewise constant functions on the partition 0 a0 < a <" < a, 1 defined
by r, is a matrix M M (mtt), where

(1) m Ir 1-,%,
r; being the slope of r on/t (aj-1, at), and 8tt 1 if It c r(Ii) and 0 otherwise. We
shall refer to M as the matrix induced by r, and to r as the transformation associated
with M. If the partition 3 {/}’--1 is such that M is irreducible and not a permutation
matrix, then will be called a strong Markov partition. Then M has 1 as its eigenvalue
of maximum modulus and the geometric and algebraic multiplicities of the eigenvalue
1 are also 1 [5]. Hence the system of equations zrM ,r has a unique solution. Since
all fixed points of P, are piecewise constant on [4], it follows that zr, the (left) fixed
point of M, is the unique (up to constant multiples) density invariant under r when
viewed as a step function on the partition .

In order to compute the entropy of r, we consider the Markov chain induced on
by r. The transition matrix T =(ttt) is defined by

x (I -(I;)) x (t,.)
t0 X(I) X (1) m/’

where ttt denotes the proportion of the interval It which is mapped onto It. The left
eigenvector of T is the distribution f. We remark that the n n matrix T yields f
while the n n matrixM yields the step function 7r (zr 1, 7r2, , ,r,), i.e., the density
invariant under r. Thus fi zriA (I). It is possible to employ either T or M to construct
the desired transformations. We have chosen to work with the M matrices since it
appears easier to concatenate transformations with them (see 4). However, in the
definition of the entropy of z, T is the natural choice.

Let - , the space of piecewise linear ergodic Markov maps on /, and let
={I}%1 denote the partition with respect to which - is Markov. Let T be the

transition matrix induced by r and f the resulting distribution on ... Then the entropy
of z is given by the expression [1, p. 91].

H(r)=- ft0 In o
/=1

t=l
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Before proceeding let us give examples of two different transformations in
which exhibit the same distribution f.

Example 1. r 1" [1/4, 1] -> [1/4, 1] is defined by

I{X)={2X3’ 1/4--<X--<21-,
-x +, {_-<x <_- .

Clearly rl e cg, and Yl {(J,1/2), (1/2, 1)}. It is easy to see that

3
2_ T1 1/2

and rr (1, ), i.e.,

rr(x) {’ 1/4_-<x <_-1/2,
1/2<x-<.

It follows from this, or by directly computing the left fixed point of T, that f (, 1/4).
Hence, with the convention 0 log 0 0, we get

H(rl) 3-( In 3
x- + 32- In 32-) .477.

Example 2. Consider now "r2 defined on [0, 1] by r2(0)--0, r2(1/4)= 1 and
r2(1) 0. Then, with respect to 52 {(0, 1/4), (41-, 1)},

3

and fT2 f, where f (1/4, 43-). The entropy of "r2 is

/4) -d 1/4 + in k .562.

That H(r2) is greater than H(rl) is intuitively clear from the fact that the interval
(1/4, 1/2)51 maps onto only one interval, namely (1/2, 1), whereas (0, 1/4)52 maps onto
two intervals.

However, as for speed of computation, the orbit {r (x)}.__>0 can be generated
more quickly than {r2 (x)}j__>0 since once rl (x) (, 1/2), it follows that r/ (x) (, 1),
i.e., no search is required at one of the intervals. This, however, is not the case with
r2, where r(0, 1)= (0, 1) and r(1/4, 1)= (0, 1).

3. Two special Markov maps. Let a x0 < x <’" <x, b be any partition of
J =[ai hi. Let J/=(Xi-l, Xi) and define the piecewise linear, continuous map
by the conditions r(xi-1) xi-1, 1 <- < n and r(xn) Xo. Then:

(i) r(Ji)=Ji+,for l <-_i <n,
(ii) r(J.) U"i= Ji.

r is clearly a Markov map. Hence its Frobenius-Perron operator P, when restricted
to piecewise constant functions on the partition, is represented by a matrix M M.
Let g’ denote the class of Markov maps satisfying (i) and (ii).

LEMMA 1. Let r g. Then it is ergodic, and its unique invariant density rr(x),
which is piecewise constant, is given by

Xi -a

Xi --Xi-1
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Proof. By (1), the n n matrix M is given by

Xi--Xi--1 =i+1,
Xi+l

mi’J= 0, otherwise

for 1 _-< < n and

Xn --Xn-1 l<_]<_n.mn,i b -a

The matrix M has nonzero entries in the superdiagonal and in the nth row. Hence,
it follows from [4, Corollary 2.1] that M is primitive, and therefore z is ergodic. It
remains only to show that zrM zr. From the form of M, we get

N ’n’s-lms-l,s + "rr,,m,,s, s # 1,
Tl’rmr,

r=l [ 7r’nmn, S 1.

For s 1,

x,, a x,, Xn
Tl’nmn,s 1 --71"1.

Xn Xn-1 Xn a

For s # 1,

7rs-lms-l,s + 7rnmn,
Xs-1 a Xs-1 Xs-2 Xs a

+1 ==Zrs.
Xs-1 Xs-2 Xs Xs-1 Xs --Xs-1

Hence zrM zr. Since the support of zr(x) is all of J, it is the unique (up to constant
multiples) invariant density under -. Q.E.D.

Note that fi xi a, which increases with i.
Example 3. Let xi i, 0 <-_ <= n. Then T/’i--i and zr (1, 2,..., n). The induced

matrix M is

-0 1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0

1 1 1
1

If xi g + ih, 0 <= <- n, then the same vector zr (1, 2, , n) is obtained.
Example 4. Let xi c i, 0 < <= n, c > 1. Then

c -1 i-1

71"i: i-1-- E c-]"
C --C j=o

For c 2, zri (2i- 1)/2i-1 which is a slowly rising step function
Example 5. Let xi c n-i, 0 < <= n, c < 1. Then

n--i
C -C (1/c)i_l i-1

7"1"i--- n--i n--i--l--- )i 1-- E C]"
c -c (i/c --(1/C)i-

i=o
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For c , we obtain rri 2 1, which is a very rapidly rising step function. For example,
the first 9 values of this step function are (1, 3, 7, 15, 31, 63, 127, 255, 1023).

Let us now define a class of Markov maps, , similar to the class g, satisfying
the conditions:

(i’) r(J) =J/-1, 1 <i <-n,
(ii’) r(J)= U" J.i=1

LEMMA 2. Let r g. Then it is ergodic, and the unique invariant density rr(x),
which is piecewise constant is given by

b -xi-1r,(x) (x)l,, .
Xi Xi-

Proof. By (1), the n n matrix M is given by

X1 1-</-<n,ml,j b-a
and for 1 < -< n,

X Xi-1
/=i-1,

mi,j Xi Xi-

O, otherwise.

The remainder of the proof is similar to that of Lemma 1. Q.E.D.
Note that f b -xi-1, which decreases as increases.
Remark. Suppose M is an n x n matrix associated with some r e $’ and let r

satisfy rrM rr. Let P be the n x n skew diagonal matrix

1
0

1

1
1

0

and let B PMPr. It is interesting to note that B is the Frobenius-Perron operator
of a transformation r $’ whose unique (up to constant multiples) invariant density
function is obtained by reversing the entries of rr. While the nonzero entries of M
and B have the same values (in different positions), the transformation r* associated
with B is defined on a different partition than r. However, the partition on which r*
is defined, say yo < yl <" < y,, must satisfy:

Yi Yi-1 --Xn-i+l--Xn-i, l<=i<=n.

This result can be viewed as a generalization of [4, Prop. 4.3] for this class of Markov
maps, since in [4] all intervals are assumed to be of equal length.

4. Construction o| ergodie Markov maps. Suppose the Markov maps r") g’ tO $7,
1.<-i <- k, where r")" Ii + I each admit the invariant density rr"}= (rr{, rr2}, rr), as
defined in Lemmas 1 and 2. Since the location of Ii on the real line is irrelevant, we
can arrange the intervals (Ix, 12, , I,) consecutively so that ! LI i"=_ Ii is an interval.

() ()Now define r:I-+ l by letting Tit, r’. r is well defined, since r’: Ii Ii. Let r
(rr {1), rr2), zr{)). Clearly rr is a density function invariant under r, but it is not
ergodic. To see this, let/x be the measure induced by rr, i.e.,

f rr(x) dx.
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Then Ix (r-’(Ii)) tz (Ii) for any i, but 0 < tz (Ii) < 1. We next demonstrate the construc-
tion of a piecewise linear Markov map r" I-->/, such that r is an invariant density
under r and the measure tz is ergodic.

THEOREM 1. Let z (i), 1 <--i <-k, be a collection of Markov maps, r") , such
(i) (i)that .<i) admits the invariant density zr <i) (r’), zr .’, zr, defined in Lemmas 1

and 2. Then there exists an ergodic Markov map z which admits the invariant density
’rr (’rr (’), ’rr (2), ’’,

(i),Proof. Let x) < x (i) <... < x, be the partition used in defining z and let A (i

(i,) (ih) (i)’sbe the ni ni matrix induced by T
(il Let - ,..., z be the subsequence of z in

and "
i) z<’) those in .

From Lemma 1 it follows that if .<i) , then
(i) (0(i)_ Xni--X

7"f ni (i) (i)
X ni X hi--1

(i) T(i)and the last row of the induced matrix M(i) has all its entries equal to 1/zr,,. If s ,
then by Lemma 2,

(i) (i)
X ni --X

X
i)

X

and the first row of M(i) isil(’n"
Let bl =0, and bi Yj, nj, 1 <i <-k + 1. Let n bk+l. Now, define the partition

Xo<X,<" <x. by

XO X (01),
(i)

Xbi+] Xbi I- X X ), l <-i <-k, l <-] <__ni.

r(i) (i) (i)(Xj-1, X and Ii (xi_, x.). We now define z" [Xo, x.] Ix0, x.] as follows:Let
_

(i)rr(i)if " 1 )= I(’), then define 7"(Ib,+i) Ib,+k

I then define r(Ib,+)=ifz(i)/r(i)[,lj )-- () Ik.
k=l k=l

Clearly - is Markov. The matrix induced by " is

where Mii (m r.s(ii)) is an ni ni matrix defined as follows"
(i) If 7"(i) ,,

(ii) (i) r ni,mr, mr,
(i) (i)

(ii) X ni X hi--1m .,.s V 1 <- s <-_ ni,
Xn --Xo

an,d Vi /’,

(q) 0 Vr #m
(ii)(ij) =m Vl <s <nj.m n,.s ,,.1
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(ii) If T(i) ’,
(ii) m (i) Vr 1,FFt r,s r,s

(ii) X i) X (Oi)
m 1.s 11 <-_ s <- n i,

Xn --Xo

and ’i ],
( 0 ’r 1,m
(i]) (ii) Vl <: S : Eli./T/1,s

The primitivity of M and hence the ergodicity of z follows from [4, 4]. It remains
only to show that

Suppose bi <s bi+, and let s’= s-bi. Then
k ni ni h

(i) (ii) (i) (ii) jt) (]i)( ( E’ m + .,,.s, + .’.
r=l ]=1 r=l r=l t=l t=l

i s’ h s’

Let h n if (i) and h 1 if ri) Then

(i)m (ii) (i) (i) )(ii)

(i)(i) )(i)

S’ h,s"

Therefore, it suffices to prove that

h

(2)
t=l t=l

<i) =lift .Now,i)i). 1 if r and i)m<i <i)since ., n,. 1.t

(it) (it,i) X (l} X (oit)
’IT ni (it) (it)nit’l X ni X llit_l

X ([ X ([--I Xbit+l Xbi

Xn --Xo Xn

Similarly,

(] 1) X bit Xbirrl,)m(i 1,1
Xn --Xo

The sum in (2) then equals

(3)
Xn --Xo

(Xbi,+l Xbi,) - 2 (Xbi$+l . (Xb/’+l Xb,),
t= t=l Xn --Xo 1=1

since {i, , i,.} [_J {],, , it} {1, 2, , k}. Finally, the sum in (3) telescopes to yield
x.- x0. Hence the desired sum is equal to 1.

Example 6. Let J1, J2, J3, .[4, ,[5 be an equal partition of [0, 5] and let the distribu-
tion f be given by (, 7

,8,
, 81-), as shown in Fig. 1, where without loss of generality,

we assume the length of each subinterval is 1. We want to construct an ergodic Markov
map, whose invariant density has the distribution f.
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3 4 5

FIG.

First, we divide f into two parts, an increasing part (1/4, 43-) and a decreasing part
(, , ). We now construct two Markov maps, which have, respectively, these distribu-
tions. As in the proof of Theorem 1, we define the set of numbers x(01), x?), x1) to satisfy:

and x(a x(1 3

One such choice is x (01) ), x ?) , x (21) 1. From Lemma 1, we know that 7.(1): [], 1
[1/4, 1] satisfies

7.(1)(1/4) 1/2, 7"(1)(1/2)=1

and 7. (1)(1) 1/4, as shown in Fig. 2.

1

FIG. 2

7.(2)

Analogously, choose x(02), x2), x(22), x(32) to satisfy

One possible choice is X(o2)= 0, x(12)= 1/2, x(22)= , x(32)=-. By Lemma 2, we know that
7.(2): [0,-] [0,-] satisfies

as shown in Fig. 2.
Furthermore, the matrices induced by 7

"(1) and 7.(2) are, respectively,

M(2)= 0
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and

7/"(1) 1, -), 7/"
2) (}, , 1).

Now let us construct the new partition as in the proof of Theorem 1 namely,

(4) 1/4<1/2< 1<<]<.
The concatenated Markov map r" [1/4, ] [1/4, ] defined on this partition, as given in
the proof of Theorem 1, is shown in Fig. 3. The map r induces the matrix

4 4 4 4_

4 4

0 0 1/2 0

o o o
One can readily verify that (1,-, ,-, 1)M (1,-,-,-32, 1). Using the interval lengths of
the partition (4), we obtain the desired distribution (1/4,-,-,-,-).

FIG. 3

5. Entropy. Let f= (fl,f2,’" ",fn) be a sequence of positive numbers whose
sum is one. It is possible to partition f into k strictly monotone (increasing or
decreasing) subsequences f (f(), f()), where f")

In 4 we presented a construction for a piecewise linear, ergodic Markov map
r, whose unique invariant measure tz satisfies /z(L)=/, 1,2,...,n, where
/’1, Jr2,’’’, In are the consecutive intervals on which r is defined. Let I=U_I L and
I() be the subsequence corresponding to f(). Furthermore, r induces an n x n matrix
M whose left fixed point is the density of tz, i.e., the step function zr (zrl, zrz, , rr,),
where f rrih (L), 1, 2,. ., n.

Now we can write M as the block matrix

(1) t
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where M(i) is an ri n matrix. If f(i) is increasing the last row of Mi) has all entries
equal to A (,1,,)/A (I) and each of the other rows has a single nonzero entry. If fi) is
decreasing, the first row of Mi) has entries A (I(i) )/A (I) and all other rows have one
nonzero entry. To simplify matters, let,

if f()is increasing,
if f() is decreasing.

--(i)Then row n* of M(i has entries A (.,.. )/A (I). The transition matrix T induced by r
can be partitioned as

where T(i) is an n n matrix with entries

A(/;) (i)

It is not difficult to verify that all entries of T(i) other than those in row n/* are 0
(corresponding to the entries of M(i)). Since In 1 0 and 0 In 0 is defined as 0, these
0 and 1 terms do not contribute to the entropy of T. Moreover, we have

Hence,

--(i)A(Ii) A (1,)
t.,,i

A,.,lt" A(I) A(I)

(5) H(r):- f A(1) (I]"]=1 i=1

Note that if f (c, c,- , c), then A (I/) c, j 1, 2,. , n, and A (I) nc. Hence

H(’r)
C

ln
1

cn In n.

The given sequence of numbers f can usually be decomposed into monotone
sequences in many ways. Suppose we refine the previous decomposition by splitting
one of the monotone subsequences (of length at least 2), say f("), into two segments

f(p) (p) (p) f(p) (v) (p), ,... f ), <]m+l np

This new decomposition results in a new piecewise linear, ergodic Markov map ’,
defined on the n intervals I, I, , I’. If f(P) is an increasing subsequence, the new
partition has the property

x(;) :(&), in,

and

(6) A(l’m+l):fm+.
Note that in this case h (/’m+l) A (I,.) +f,, and thus

(7) X (Z’): (I)+f..
If ]<") is a decreasing subsequence, it is easy to verify that the new partition

I[, I[,. ., I’, satisfies A (I’) A (I) +f,+l.
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We observe that the map z’ differs from z in that it has one extra interval on
which its range is the entire domain. One would therefore expect that H(r’)>H(r).
We now prove this in the case f(P) is increasing. Similar results establish the result
for f(P) decreasing.

THEOREM 2. Let f (]’1, f., ", f,) be a sequence of positive numbers whose sum
is i and let be a piecewise linear, ergodic, Markov map admitting the invariant measure
tz, i.e., tz(Ii)=fi, where {Ii}7=1 are the consecutive intervals on which z is defined. Let
us split one of the monotone subsequences in f and define the new Markov map r’ as
above. Then H(z’) > H(r), although both z and ’ admit the same invariant measure

Proof. From (5), we have

H(r) Y f In (A (/.))+ f,
h (I)

]=1 i=1 ,l () ]=1 i=1

Z f, In (h (I11-,Z In h (/,)"(")
i=1

Let F zik__ fn’ and A A (I). Thus

[ 1(1 )] ( A .)H(r):F lnA-ln A(/)h(9 :Fin
H=I A(/j)A(//)/A

Using (6) and (7) we get

H(,’)=(F+[) In
]=

(F+f= In )(.()(a +f=) (HT=l,/#m+ a (I (a (I 1) +
From the construction of r in } 4, we have F A. Hence

( (A+fm)A+f f)H(’) In
S(a (+i)+f)(’+1)+

where B =H" 1,**== +1 h (I)(i?. Let

(A +fm)A+fm
B (h. (I+) +.f,, a (<+l)+f"

Since H(r) In G(0) and H(r’) In G(fm), to prove H(r’)>H(r), it suffices to show
that G(fm) is an increasing function of f,. This follows immediately from Lemma 3
in Appendix 1. Q.E.D.

Appendix 1.
LEMMA 3. Let a > 0, B > 0, c > 0 and A > c. Then

G(a)
(A + a )A+a
B(c+a)c+a

is an increasing function of a on [0, c).
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Proof. Let N(a), D(a) denote the numerator and denominator of G(a), respec-
tively. Then

N’(a)=(A +a)A+a(1 +In (A +a)),

Hence

G’(a)

D’(a)=B(a +c)C+a(1 +In (c +a)).

B(c +a)C*a[(A +a)A*a(1 +In (A +a))]- (A +a)A*a[B(c + a)C+(1 +In (c +a))]
D2(a)

B--(c +a)+a(A +a)A+C[ln (A +a)-ln (c +a)]>O. Q.E.D.-D2(a)
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ON A DISCRETE SEARCH PROBLEM ON THREE ARCS*

F. A. BOSTOCK

Abstract. A discrete search game with an immobile hider is posed and solved. The game is a discrete
analogue of a known continuous game where the search takes place on three arcs which connect two points.
A solution to the continuous game is obtained as a limiting case.

In [1, p. 33] S. Gal describes a zero sum search game on three arcs, each of unit
length and connecting two points A and B. The hider chooses any point on one of
the arcs, which we will simply refer to as arc 1, arc 2 and arc 3. The searcher starts
at the point B and moves continuously until he finds the hider, who is immobile. The
payoff to the hider is the distance covered by the searcher before the discovery. This
game comes within a category of search games for which Gal shows there is always
a solution, and he presents optimal strategies in the special circumstances that the
searcher has his strategies limited to a certain set.

In this paper we solve a discrete version of this search game on three arcs, and
although we also limit the type of pure strategy that the searcher can choose, it is
analogously less of a limitation than that imposed by Gal in the continuous case. A
solution of a corresponding continuous game is then seen as the limit of the solution
in the discrete version.

To obtain the discrete game we may divide each of the arcs n (n 1, 2, 3) into
k + 1 equal intervals of length 1/(k + 1) by a sequence of k points An1, A,,2,’", A,.,k
so that for each n 1, 2, 3, A,1 is the point nearest to the point A. The hider may
choose to hide only at one of the 3k points A,i, n 1, 2, 3, 1, 2,..., k or at A
or at B. Starting at B, the searcher moves in a sequence of steps, each time to an
adjacent point, and for our purposes is restricted to those sequences which do visit
each of the 3k + 2 points. The payoff to the hider, who is immobile, is the number of
steps taken by the searcher until discovery. This game we call the discrete search
game Ak on three arcs. It is well known that such a game, where one of the players
has only a finite number of strategies, will have a solution. We obtain a subgame Fk
by limiting the searcher to pure strategies of the following types.

Type 1. Sin,,. Here m,n=l, 2,3 with m#n and i=0,1,2,...,k. Let p
{1, 2, 3}\{m, n}. The searcher goes along arc rn to the point A. If # 0 he goes along
arc n to the point Ani, then returns to the point A, goes along arc p to B, and then
finally along arc n to the point A,.i/l. If 0 he goes along arc p to B, and then
finally along arc n to A.

Type 2. Tm,. Here m,n=l, 2,3 with m#n and i=l,2,...,k. Let p
{1, 2, 3}\{m, n}. The searcher goes along arc rn to the point A,k-i/, then returns to
B, and goes along arc n to A. He now goes along arc m to the point A,k-, then
returns to A, and finally goes along arc p to B.

Type 3. Ui,j and Um,j,. Here m, n 1, 2, 3 with m n and i,/" 1, 2, , k.
Let p {1, 2, 3}\{m, n}. The searcher goes along arc m to the point A.k-i/t, then
returns to B, goes along arc n to the point A,,k-+, and then returns to B again. He
now goes along arc p to A. In the case of U,,i he then goes along arc m to the
point A.k-, returns to A and finally goes along arc n to the point A,,.k-i. In the
case of Umi,,# he goes along arc n to the point An,k-i, returns to A and finally goes
along arc m to the point Am,k-i.
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The game 1-’k is essentially a matrix game and we denote the value by Vk. Of
course the value of Ak is not greater than Vk and the guess is that they are equal.
Certainly it seems clear that there exists a finite subset of the set of pure searcher
strategies of Ak such that any strategy not in this subset will be chosen with zero
probability in any optimal searcher strategy. Let us finally note here that in [1] for
the continuous game, Gal limits consideration to the pure searcher strategies which
correspond to those ot Type 1 in our discrete version.

We now proceed to solve the game 1-’k. The method will be first to solve the
subgame F,, whereby pure searcher strategies are limited to those of Type 1, and
then show that this solution is applicable when Types 2 and 3 are included. Shortly
.we will give a theorem which essentially presents optimal strategies for the game F,.
But first for the benefit of those readers who may not be entirely familiar with the
theory of matrix games, we give a few items of general information which it is hoped
will be helpful in giving a clearer understanding of both the statement and proof of
our theorem.

Suppose C- (cq) is an m n matrix with real number entries. Players 1 and 2
respectively choose a row and a column (each choice being unknown to the other),
and then Player 2 pays to Player 1 an amount equal to the corresponding entry in
the matrix. In repeated play suppose P1 chooses row with probability xi and P2
chooses column f with probability yj; then the players are said to be using mixed
strategies X (x 1, x2, , Xm), Y (y 1, Y2, ", Y,) and we have the corresponding
expectation function E(X, Y)=XCY’. When a particular player chooses a row or
column with probability 1 he is said to be using a pure strategy and that strategy is
often denoted simply by the number of that row or column. It is understood of course
that P1 will be trying to maximize E(X, Y) and P2 trying to minimize E(X, Y). The
fundamental theorem for matrix games [2, p. 37] tells us that for any matrix there
exist a real number v and so called optimal strategies X* for P1, Y* for P2 such that
for all X, Y, E(X, Y*)<-_ v <-E(X*, Y). The X* and Y* are not necessarily unique
but it is not difficult to show that v (called the value of the game) is unique, and
further v E(X*, Y*). In the theorem below it will be observed that although certain
strategies are shown to be optimal there is no indication as to how these strategies
were discovered. The author feels that no real purpose would be served in giving a
detailed description of the method he used in this case, but a few remarks might assist
the reader who wishes to study the matter further. The technique used was based on
a theorem [2, p. 67] which gives candidates for optimal strategies in terms of sub-
matrices. Let it be said that the successful use of this method requires some guesswork,
particularly regarding the choice of which pure strategies were to be played with zero
probability.

It must also be stressed that the method only yields mixed strategies which may
be optimal and must then be checked for optimality. Fortunately in this respect there
is a simple test [2, p. 39] to verify that a given pair of strategies is optimal. This says
that X*, Y* will be optimal and v will be the value if for all i- 1, 2,..., m,/"
1,2,...,n

E(i, Y*) -<_ v <- E(X*, j).

Note that E(X*,/’) and E(i, Y*) are merely the dot products of X* and Y* with the
jth column and ith row vectors respectively. This is precisely the criterion we will use
later in the proof of our theorem.

We return now to F, which we note is a (1 +3k)6(k + 1) matrix game, and
introduce some notation. The mixed hider strategy which chooses each of A 1, A2, A3
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with probability xi/3 (i 1, , k), A with probability x0 and B with probability zero
will be denoted by the (3k + 1)-vector

Xl Xl Xl
9 9X’= Xo,
3 3

Xk Xk 1’3’3’

The mixed searcher strategy which chooses each of S,,i (m, n 1, 2, 3, m # n) with
probability yi/6 (i 0, 1,..., k) will be denoted by the 6(k + 1)-vector

y,=(6 y0 yl Yk-1 Y__g Y___)’6’6’ 6 ’6’

Although X’ and Y’ are not completely general mixed strategies for F we will see
soon that they are of a sufficiently general form to enable us to find optimal strategies
for F. We also let X denote the mixed hider strategy obtained from X’ by putting
xv 1 and x 0 for # p. The mixed searcher strategy Yv is defined similarly. For
reasons that will later be apparent we will let X, Y, X,, Yv be the corresponding
(k + 1)-vectors given by X (x0, Xl, , Xk) and Y (y0, yl, , Yk). Finally we
remark that in this context the symbol A,i (resp. A) will denote the pure strategy for
which the hider chooses the point A, (resp. A), and likewise the symbol S,,j concern-
ing the searcher.

Now by symmetry it is clear that for each i,/" 0, 1, , k

(A,,i, Yj) form=l,2,3,
(1 E’

E’
(X, Y)= E’(X,S.,) for m,n =1,2,3, m n,

where E’ is the expectation function for F k,’ and one may note that E’(Xo,’ S,,i)=
E’(A, S,n). This suggests that we define a (1 + k) (1 + k) matrix W (wgj), i, f
0, 1,... ,k by w0 3E’(X, Y) (the factor 3 is merely for convenience). In the
obvious manner we think of the (k + 1)-vectors X, Y, X,, Yp as being mixed strategies
for the matrix game W. Now suppose we were able to find optimal strategies X*, Y*
and the value v for W, then for all i,/" 0, 1, , k we would have

E(i, Y*) -< v -<_ E(X*,/’),
where E is the expectation function for W. It is not difficult to see that this implies

v
E’E’(X,, Y*’) <= - <- (X*’ Y ).

Then by virtue of (1) it follows from the previously mentioned criterion for optimal
strategies, that X*’ and Y*’ will be optimal strategies for r’ and v/3 will be the value.
Thus it will be enough if we can solve the matrix game W. It may easily be verified
that W is as below.

-3k +3
5k+4
5k+3
5k+2
5k+l

4k+7
4k+6
4k+5

3k+3 3k+3 3k+3 3k+3 3k+3-
3k+6 3k+8 3k+10 5k+2 5k+4
5k+7 3k+9 3k+ll 5k+3 5k+5
5k+6 5k+10 3k+12 5k+4 5k+6
5k+5 5k+9 5k+13 5k+5 5k+7

4k+11 4k+15 4k+19
4k+10 4k+14 4k+18
4k+9 4k+13 4k+17

6k- 1 6k + 1
6k 6k + 2
8k+l 6k+3
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The matrix W is defined exactly by the following equations"

For 1, 2,. , k-l,

For/" 0, 1, 2,. , k 1,

w0. 3k +3, j=0, 1, 2,... ,k,

5k +4, /’=0,
wl= 3k +4+2], O<j<-k,

3k +3, i=0,
wi= 5k +5-i, O<i<-_k.

-1, 0_-<j<i,

Wi+l.j-wij 2k + 1, /" =i,
1, i<j<-k.

W i,j+l Wi]

0, =0,
2, 0<i=</",
2-2k, =/’+1,
4, j+l<i<-_k.

The matrix game W is solved in the following theorem.
THEOREM 1. Let = 1/g k/(k + 1), and let r be the least nonnegative integer

such that gk-r- < 2 (equivalently 2]’--- 1 > 0). Then ]’or the matrix game W,

X*=(0 f, f2 ",f-r-l k-2 -1),0,... ,0)/,-.

is an optimal strategy for Player 1, and

Y* (k(1 + gk--), 1, g, g2, gk-r-2, O, O)/2kgk--I

is an optimal strategy for Player 2. The value v of the game is given by v
2(k + 1)fk- + 4k + 3- r.

Proof. Let W. and Wj,/" 0, 1,..., k respectively denote the row and column
vectors of W. For/" 0, 1,..., k we denote the dot products 2kgk--x Y*. W. and
(k/2)X*. W by p and q respectively.

Elementary calculations will yield

Pl
2kgk__l

2q0--= 2(k + 1)fk- + 4k + 3- r,

and the proof of the theorem can be concluded by proving that"

(2a) P P2 Pk-r,

(2b) pi <=p fori’{1,2,...,k-r},

and

(3a) qo ql qk-r-1,

(3b) qi>-_qo for i,{0, 1,... ,k-r-l}.
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The proofs of (2a), (2b) and (3a) are straightforward and do not in fact involve the
use of our particular choice of r. The proof of (3b) is perhaps worth noting. Since
Wik >---- Wio for 0, 1, , k we have qk -> q0. If now r 0 then (3b) follows. For r _-> 1,
it is easy to verify that, qk-r--qk-r-1 k(k + 1)(1-- 2fk-r) >= O by the choice of r. For
k -r<-_i <-k -2, qi/l-q k >=0 which implies (3b), and the proof of the theorem.

Because the choice of r does not appear in the proofs of (2a) and (2b) we might
remark that player 2 could interpret the choice of r as minimizing the quantity
2(k + 1)fk-r +4k + 3-r.

By the theorem, X* and Y* are optimal strategies of the game F whose value
v’ v/3. We now go on to prove that they remain optimal in the game Fk. In doing
so we find it convenient to prove a somewhat more general result. Let X
(x0, Xl, ,x) be any hider strategy such that x0=0 and xl _>-x2_->. _->x. It is easy
to see that X* is such a strategy since we may show that (k/2)(2ff--- 1)_-<f--as follows. For k ->_ 2 and r ->_ 1 we have 2ff <- 1 <-_ k a/(k- 1), whence 2ff--(k 1) <-
k and hence the result. The remaining cases involving k 1, 2, 3, 4 and r 0 may be
verified directly.

Since E(X*, S120) v;, it will be enough to prove that E(X, $)>-E(X, 82o) for
any pure searcher strategy S of Type 2 or 3. We begin with Type 2, and because
E(X*, S,o) is independent of m and n we need only consider strategies S of the

t=o xt and Do Yto tx,,kind T1i2. Introducing for p 0, 1,. , k the notation No
o

it is straightforward to verify that

E(X, T2)-E(X, Sazo)= ((i 1)N + iNg_g +D_,),

whence E(X, Tli2) >=E(X, S2o).
We pass finally to strategies of Type 3, and we will attain our objective by showing

that against X strategies of the kind Ulzj and Ulg2jz are not better than Tiz. These
strategies only differ from T1i2 subsequent to arriving at the point Az,k-i/, and it
will be convenient to compare expectancies counting this point as the starting point.
Denoting these expectancies by Ex(X, TIg),Ez(X, Uazia) and E3(X, U1i2i2) it is
straightforward to verify that

E2 E1 2=((! +i-k)N-D +jN_g+(k +j-i)N_i+Dk_i)

and

E3-E1 ((/" + i-k)N -D +kN_i +jN_i +Dk_i).

First let co denote the coefficient of xo in E2-E. When <-j,

2j, l <=p <=k -j,
2co (21 +i-k-p), k-j<p <=k-i,
2-(I +i-k-p), k-i <p <=k,

and when -> j,

Cp

(-(j + k p ),

l<__p<__k-i,
k-i<p<_k-f,
k-f<p<=k.

In both cases we observe that if co -< 0 for p then co -<_ 0 for all p => t. Since also
x, x., , x is a decreasing sequence, to establish that E-EI >-0 it will be enough
to show that Y.__ co => 0. This summation of the coefficients may be obtained directly
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or, perhaps more simply, by a difference in stepcounts (bya stepcount we mean, count
each xo, p 0, as 1) of Uli2Sl and Tli2. In both cases Y,pk= 1Co (/’/3)(2k-/’-1) and
the result E ->El follows. In a precisely similar manner it can be shown that E3E.

We can now say that X* and Y* are optimal strategies for the game Fk with
value vk 1/2(2(k + 1)fk-r + 4k + 3 r). The reader will already be aware that the lengths
of the arcs and the equality of the intervals of subdivision play no essential part in
the discrete game Fk. Consider now the game Fk, identical to Fk except that the payoff
is 1/(k + 1) times the number of steps taken by the searcher to discover the hider.
Optimal strategies will be unchanged but the value 3k will be (2(k + 1)fk-r +4k +
3-r)/3(k +1). From the choice of r as the least nonnegative integer such that
(1 + l/k)k-r-1 <2, it easily follows that

k-1 ln2
k +1 (k +1)In (l+(1/k))

whence r/(k + 1) 1- In 2 as k - c.
Also,

Sk= 2 1+

so that Ok 1/2(4 + In 2) as k - oo.

r k In 2
k+l-k+l (k + l) ln (l + (1/k ))

1+ +
k+l k+l

Now consider the optimal strategy X* of the theorem, and for a given m
(m 1, 2, 3) let p (N) denote the probability that the hider chooses a point Ani such
that 1 <= -< N.

Then,

fi 2(1-fN), 1 <N<k-r-1
p(N)

(2/k)iN__l
1, N>k-r-1.

Hence for any real number x such that 0<=x < 1, if Fk(X) denotes the probability that
on a given arc the hider chooses a point whose distance from A is at most x, then

lim Fk(x) lim 2(1--f(k+)x) 2(1--e-X).
koo koo

Turn now to the optimal strategy Y*. Concerning the choice of an S,ns; for given m
and n let p(N), N O, 1, 2, , k, denote the probability that the chosen integer/"
is such that 0 -< ] _<- N.

Then,

k(1 +gk-r-1), N =0,
N-1 k-r-1 N-k+r+l

p(N)= [k(l+gk-r-1)+y,i=o g ]/2kg =1/2(l+g ), l<-N<-_k-r-1,

1, N>k-r-1.

Hence for any real number y such that 0 <- y < 1, if Gk (y) denotes the probability that
for given m and n the point Ans (] 0) or A (/" 0) is at most distance y from A, then

lim Gk(y) lim 1/2(1 + g(k+l)y-k+r+l)

lim 1/2(1 + g
k

(k+l)y-(k-1) (gk+i),./(k+l)) 1/2 + 1/4 e,.

Thus we have found optimal strategies and the value for the continuous game
corresponding to Fk.
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SOME ASPECTS OF CLUSTERING FUNCTIONS*

GERHARD HERDEN"

Abstract. Janowitz’s concept of hierarchical clustering which includes the concepts of hierarchical
clustering due to Jardine and Sibson and Matula is extendedufollowing the main stream of the theory of
partially ordered setsuto describe all connections between hierarchies and isotone functions which measure
the homogeneity or compactness of sets of data. In particular a very general description of those hierarchies
which correspond bijectively to Hubert’s k-clustering functions is presented. As a consequence an exact
characterization of the discrepancies between the original concept of Jardine and Sibson--its generalization
due to Janowitz--and Hubert’s concept of hierarchical clustering is possible.

Introduction. One of the main concepts of general cluster analysis is the concept
of a real valued function f which measures the homogeneity (compactness) of the
subsets of a given finite set S of data (cf. Bock [2, 8]).

A first systematic study of these functions was published in 1977 by L. Hubert
[5]. Following Hubert’s notation these functions will be called clustering functions.
Hubert observed especially that a monotone clustering function induces canonically
a hierarchy (H, h) on $. But he did not clarify this point completely. Clustering
functions which are not monotone do not induce suitable hierarchies on S (cf. Bock
[2, 37] and 1 of this paper).

In 1968 N. Jardine and R. Sibson (11) presented a very useful model of hierarchical
clustering. This model was discussed extensively by both authors in their book on
mathematical taxonomy [12]. On the other hand the model of Jardine and Sibson did
not include many powerful clustering techniques. Especially it did not include the
complete linkage method which had already been studied by Johnson [13] (cf. also
Hubert [3] and [4]). In order to include these techniques Jardine and Sibson’s model
was generalized to a purely order theoretic model by M. F. Janowitz [6] which
includes--at least in its most general form (cf. for example [8])--D. W. Matula’s graph
theoretic model [14] as was noticed by Janowitz (cf. [8]). Janowitz’s idea was based
upon the discovery that Jardine and Sibson’s numerically stratified clustering functions
are just the residual mappings from the nonnegative reals to the set of symmetric and
reflexive relations on S. Hence clustering methods may be regarded as transformations
on certain sets of residual mappings. This allowed Janowitz in particular to use the
powerful tool of residual mappings in his study of hierarchical clustering methods (cf.
his studies in [6, 6] which he continued in [7]).

Numerically stratified clustering functions correspond bijectively to the set of
dissimilarity coefficients on $ (cf. [11] and [12]). In order to save this fundamental
correspondence Janowitz followed in [6] the spirit of Jardine and Sibson’s ideas.

Unfortunately there is no bijective correspondence between the set of dissimilarity
coefficients and the set of monotone clustering functions on S. This was already
observed by Hubert [5] and is clarified completely in the third section of this paper.
In order to overcome this difficulty we show in the first section of this paper how to
modify the original model of Janowitz so that Hubert’s monotone clustering functions
can be studied within a new model of "Janowitz type". Our model emphasizes the
maximal linked sets or the hierarchies on S which one really wants to know.
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In Jardine and Sibson’s concept all clustering methods are subdominant methods.
In contrast to this, we want to study within our model also dominant methods (cf. the
complete linkage method). Especially we would like to describe--for a given monotone
clustering function f--all minimal dominating monotone clustering functions/ca of f
which satisfy some overlapping criterion in the sense of Hubert [5]. In order to
approach this problem we thus clarify--in a first step--all connections between
Hubert’s monotone k-clustering functions and the hierarchies on S (cf. 2). In a
forthcoming paper we shall present our solution of this problem. The discrepancies
between Hubert’s monotone k-clustering functions and k-ultrametrics which were
introduced by Jardine and Sibson (cf. for example [12]) are described completely
in 4.

Following the referee’s suggestions an effort has been made to make our concept
of hierarchical clustering as general as possible. In particular we develop our model
within the mainstream of the theory of partially ordered sets. Furthermore no finiteness
conditions are required. The reader should consult the account of T. S. Blyth and
M. F. Janowitz [1] whenever necessary.

1. Clustering functions and hierarchies.
1.1. The basic situation. Let (L,-<) and (M, -<) be partially ordered sets with 0.

In all "classical" concepts of hierarchical clustering (L, =<) is the power set of a finite
set S of data partially ordered by set inclusion and (M, =<) is the set of nonnegative
reals partially ordered in the usual manner.

Now we consider the complete lattice (L, c) of order ideals of L. For each
nonempty set K cL the order ideal generated by K is denoted by Is:. We shall see
that the maximal generators of certain order ideals of L replace in our model the
maximal linked sets of S which play an important role in many concepts of hierarchical
clustering.

Following the notation of Janowitz (cf. [6]) Res/ (M,/S) denotes the set of residual
mappings g"M -L and Res (L, M) denotes the set of residuated mappings g" L M.
The reader would do well to recall that a mapping g"M L is residual itt g is isotone
and there exists a (necessarily unique) mapping g" L M such that ,g(m)<= m for all
m eM and g,(I)I for all I eL. The mapping is called the residuated mapping
associated with g. We assume the reader is familiar with the basic facts of residuation
theory (cf. 1 ]).

DEFINITION 1.1. An isotone mapping f:LM is called a pre-clustering function
itt there exists an isotone mapping f" L--,M which satisfies the following conditions"

(P0) f(0) 0.
(el) If I eL and if f(I,)<-m for all a el then f(I)<=m.
(e2) f(I,)=f(a) for all a
These conditions imply immediately that f is uniquely determined. On the other

hand it is easy to see that an isotone mapping f. ->M which satisfies the conditions
(P0) and (P1) is residuated. Hence an isotone mapping f’L->M is a pre-clustering
function iff there exists a residuated mapping f’L->M such that f(a)= f(I) for all
a e L. Let P(L, M) be the set of pre-clustering functions f" L -> M. We summarize the
afore-mentioned facts"

PROPOSITION 1.1. There are natural bijections between any pairs of the following
sets" P(L, M), Res (L-, M) and Res+ (M,/).

Some remarks. 1. Let Trip (L, M) be the set of all triples (A, B, h) where A is a
closure map on L, B is a dual closure map on M and h is an (order) isomorphism of
the range of A onto the range of B, then a combination of Proposition 1.1 with a
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result of Blyth and Janowitz [1] implies that there are canonical bijections between
any pairs of the following sets" P(L, M), Res (/_S, M), Res/ (M, ) and Trip (/_S, M).

2. A pre-clustering function f" L -->M is obviously bounded, i.e., there exists some
m M such that f(a)<= rn for all a L. Let I(L, M) be the set of all bounded isotone
mappings f" L ->M with f(0) 0. In order to present a sufficient condition for I(L, M)
to coincide with P(L,M) we assume that (M, -<) is a complete meet semilattice. In
this case for every fI(L,M) the isotone mapping f’L-->M defined by
/(I) := inf {m Mlf(a) <- m for all a I} clearly satisfies the conditions (P0), (P1) and
(P2). Hence I(L,M)cP(L,M) which implies the equation of I(L,M) and P(L,M).
In particular we may conclude that every monotone clustering function in the sense
of Hubert (cf. the introduction) is a pre-clustering function. We now consider the set
C(M, L) of mappings g"M -L such that L Im (g) and arbitrary meets are preserved
by g. There is a natural one-to-one correspondence between I(L, M) and C(M, L)
defined by g" I(L, M) C(M,/S) with g(m) := {a L[f(a) <_- rn } for all m M and
f: C(M,)I(L,M) with fg(a):= inf {m M[a g(m)} for all a

We have just proved that I(L,M)=P(L,M). This implies that C(M,L)=
Res+ (M, ). Thus we have verified the well-known fact that Res+ (M,/S) C(M,/S) if
(M, _-<) is a complete meet semilattice (cf. [1]).

3. The following remark is due to the referee. If L is finite and if (M, <_-) is the
set of nonnegative reals partially ordered in the usual manner then every g
Res+ (M,/]) C(M,/]) can be characterized by the following three properties (cf. also
[6, Lemma 4.1])"

(i) g is isotone;
(ii) g (h) L for some h M;
(iii) for every hM there exists some 8 >0 such that g(h)= g(h +6).
The reader may note the obvious connection with Jardine and Sibson’s numerically

stratified clustering functions. To be more precise let S be a finite set and put
SS := {{a, b }la, b S} t_J{}.

If SS is partially ordered by set inclusion then (SS, ) is obviously (order)
isomorphic to the power set of {{a, b }[a, b S}.

Because of Remark 2 there exists a natural bijection between I(SS, M) and
C(M, SS). The reader may easily verify that this bijection yields to the well-known
one-to-one correspondence between dissimilarity coefficients on $ and numerically
stratified clustering functions (cf. [12]).

4. Let (K, <-) be another partially ordered set with 0. Following the spirit of
Janowitz (cf. for example [8]) we define a pre-cluster method to be a function
F: Res+ (M,/_])-* Res+ (M, g). Because of Proposition 1.1 a pre-cluster method may
also be thought of as a function F’Res (L,M)Res (K,M) or as a function
r. P(L, M) .-.> P(K, M).

If L and K are finite sets and if (M, -<) is a join semilattice then it is easy to see
that all isotone mappings fL" L -->M and fK" K -->M with fL(0) fK (0) 0 are pre-
clustering functions. This proves in particular that the following inclusions hold:
Res (L, M) c P(L, M) and Res (K, M) P(K, M) or equivalently Res/ (M, L)
Res/ (M, ) and Res+ (M, K) Res/ (M, g).

In the finite case we have thus proved--as the reader may easily verifymthat
every L-cluster method in the sense of Janowitz is a pre-cluster method. On the other
hand (L,-<_) and (K, <=) are partially ordered sets with 1. Hence our model may be
regarded as an abstract model of "Janowitz type" (cf. the introduction). We shall see
soon that our model provides just the right tool to study Hubert’s monotone clustering
functions within a very general context.
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The model of Janowitz includes Matula’s graph theoretic model of cluster analysis
(cf. [8]). Hence Matula’s graph theoretic concept may be subsumed in particular under
our concept of pre-clustering.

1.2. Maximal elements and hierarchies. Let f: L M be a pre-clustering function.
For every m Im (f) the "clusters" one is really interested in are those elements a
of L which satisfy the following conditions’

(i) f(a <-_ m
(ii) if a < b then f(b) m for all b L.

The elements a of L which satisfy the conditions (i) and (ii) will be called maximal
elements of f.

Examples. Let L be the power set of a finite set S of data and let M be the set
of nonnegative reals.

1. The maximal elements of f coincide with the sets Pmax(f, e) which Hubert
considered in (5).

2. If f is the diameter-function of some dissimilarity coefficient d on S then the
maximal elements of f coincide with the maximal linked sets of d which Jardine and
Sibson considered in their concept of hierarchical clustering (cf. [12]).

Let H be the set of maximal elements of fi In the case that L is not finite it may
happen that H is empty. This means in particular that the maximal elements of/the
clustersdo not describe fi

On the other hand Johnson emphasized in his now "classical" paper on hierar-
chical clustering schemes [13] the one-to-one correspondence between ultrametrics
and hierarchies (collections of maximal linked sets of ultrametrics) on a finite set S
of data. This means in our terminology that Johnson emphasized the one-to-one
correspondence between diameter-functions f of ultrametrics and hierarchies (collec-
tions of maximal elements of f) on S.

In order to study this fundamental property within our concept of hierarchical
clustering we thus have to look for classes "C" of pre-clustering functions which
satisfy the following conditions"

(i) every f 6 C is completely described by its maximal elements;
(ii) there exists a subset c/S and a bijection g" C Res+ (M, ).
In [10] Janowitz studied the class C of isotone mappings f:L M (with f(0)= 0)

such that for every m M the order ideal {a Llf(a) <- m} is finitely generated. If we
assume M to be a join semilatticemthis would make direct contact with the model
contained in Janowitz [6]mC satisfies the conditions (i) and (ii). In order to prove (ii)
let L be the set of all finitely generated order ideals of L and verify the existence of
a canonical bijection g" C Res/ (M, ).

Unfortunately the elements of C are not necessarily pre-clustering functions.
Furthermore we do not want to hang onto any version of finiteness. Hence we shall
look at a quite different and larger class of pre-clustering functions which satisfy the
conditions (i) and (ii).

Henceforth we assume that every linearly ordered subset of (L, <-) has a least
upper bound. Now we set :={I 1sup (K)6I for every linearly ordered subset
K c I}. Clearly contains all principal ideals of L. Our assumption implies that for
every, order ideal I L there exists some uniquely determined smallest order ideal
I L such that I Ic. Moreover the mapping I --> I is a closure operator on

We are now ready for the following
DEFINITION 1.2. An isotone, m.apping f" L-->M is called a clustering function iff

there exists an isotone mapping f" L ->M which satisfies the following conditions"
(co) f(o)= o.
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(C1) If I and if ]7(Ia) -< rn for all a of an arbitrary set of generators of I then

(C2) f(Za) f(a) for all a L.
We denote by Clus (L,M) the set of clustering functions f:L M. The basic

properties of clustering functions will be summarized in the following
LEMMA 1.2. (i) Clus (L, M) = P(L, M).
(ii) For every f Clus (L, M) and every a L them exists a maximal element b of

f such that a <- b and f(a) f(b).
(iii) Them exist canonical bisections between any pairs of the following sets"

Clus (L, M), Res (I, M) and Res+ (M, ).
(Hence Clus (L, M) is a suitable class of pre-clustering functions we have looked

for.)

Proof. (i) Condition C1 implies that the function f:LoM defined by
/(I) :=/(ic) for all I /S satisfies condition P1.

(ii) For every a L we consider the set A := {b LIP <- b, f(a) =f(b)}. The
inequality (IA)<=f(a) implies that f(b)<=f(a) for all b I).. Hence every linearly
ordered subset K cA has an upper bound in A. Zorn’s lemma leads now to the
desired conclusion.

(iii) Clearly f is uniquely determined for all f Clus (L, M). On the other hand
it is easy to see (cf. the first part of this section) that f: L -M is a clustering function
iff there exists a residuated mapping/:L-M such that f(a)=f(I) for all a

We now characterize those pre-clustering functions f:L M which are clustering
functions.

PROPOSITION 1.3. A pre-clustering function f:L M is a clustering function iff
for every linearly ordered subset K ofL and every m M the following condition holds"

(B) fir(a) <- m for all a K then ]’(sup (K))-<_ m.
Proof. Let K be a linearly ordered subset of L such that f(a) <_- m for all a 6 K.

The inequality f(Ir)<m implies immediately that condition (B) holds.
,(=. Let N be an arbitrary nonempty subset of L such that f(a) <-_ m for all a 6 N.

We must show that f(Iv)_-< m. In order to prove this inequality we first construct
Iv by transfinite induction.

1. NI:= IN.
2. If a is a limit ordinal then we set N := CI0< No and if a is not a limit ordinal

then we set N := {a Llthere exists a linearly ordered subset K of N,,-1 such
that a -<_ sup (K)}.

It is easy to see that every N is an order ideal of L. L is a set. Hence there
exists some ordinal number y such that Ir Nv. Thus it is sufficient to prove that
f(N) _-< rn for all ordinal numbers a. This will be done by transfinite induction.

1. If a 1 or if a is a limit ordinal such that ]’(No)_-< m for all/3 < a then the
desired inequality follows from condition (P1).

2. If c is not a limit ordinal and if [(N,,_a)<=m then we consider for every
aN a linearly ordered set K, = N-I such that a -<sup (K). Condition (B)
implies that f(a)<-[(sup(K))<-m. Hence f(N)<-m because of condition
(P1).

Remarks. 1. IfL is finite then P(L, M) and Clus (L, M) coincide. Hence Remarks
3 and 4 of 1 remain valid for clustering functions.

2. If (M, =<) is a complete meet semilattice we may conclude from Remark 2 of
1 and from Proposition 1.3 that f Clus (L, M) iff the following conditions hold:

(i) f is bounded.
(ii) f is isotone.
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(iii) f(0) 0.
(iv) If f(a) <= m for all a of a linearly ordered subset K c L then f(sup (K)) =< m.
This demonstrates in particular that Hubert’s monotone clustering functions

appear in our formulation as very special clustering functions.
Before we now start to characterize those subsets of L which appear as a collection

of maximal elements of some clustering function f two pieces of notation seem to be
useful.

1. For every nonempty subset H of L and every
2. For every nonempty subset H c L the order ideals of H will be denoted by I
DEFiNiTiON 1.3. A pair (H, h) (H c L, h"H-M) is called a hierarchy if[ there

exists an isotone mapping h’H -M such that the following conditions are satisfied"
(H0) {a e Hlh (a) 0} .
(H1) In L.
(H2) h(a)=/(I) for all a
(H3) a <b h(a)<h(b) for all a,b
(H4) For every b e L there exists some c Hb such that h (c) -<_ h (a) for all a Hb.
(H5) If h (a)<-m for all a of some subset K cH then there exists an order ideal

I /- such that I- c I- and/(I) <= m.
Examples. 1. Let (L,-<_) be a complete lattice and let every principal ideal

of (M,_<-) be a complete lattice. We shall prove a bit later that a pair (H,h)
(H c L, h"H -+ M) is a hierarchy iff the following conditions hold"

(HO) {a Hlh (a) O} .
(H+I) i ell.
(H3) a <b h(a)<h(b) for all a,b ell.

(H+4) For every nonempty subset K =H there exists some beH such that
inf (K) _-< b and h (b) =< inf (h (K)).

(H+5) For every linearly ordered set (J, <_-) and every family {ai}. of elements
of H there exists some beH such that sup (inf.__ ai)-<b and h(b)<=
supi h (ai).

2. Let (L,-<_) be a finite lattice (for example the power set of a finite set S of
datas partially ordered by set inclusion) and let (M, -<_) be the set of nonnegative reals
(partially ordered in the usual manner) then a pair (H, h) (H L, h" H->M) is a

hierarchy if[ the following conditions hold"
(HO) {a e H]h (a) O} .

(H+I) 1 H.
(H3) a <b h(a)<h(b) for all a,b H.

Let Hier (L) be the set of all hierarchies on L. The following theorem clarifies
the connections between all concepts of hierarchical clustering which we have con-
sidered.

THEOREM 1.4. There are natural bijections between any pairs of the following sets"
Clus (L, M), Res (L, M), Res+ (M, L) and Hier (L).

Proof. Because of Lemma 1.2(iii) it is sufficient to prove the existence of a natural
bijection between Clus (L, M) and Hier (L).

1. For every f 6 Clus (L, M) we set Hr := {a Lla is a maximal element of f} and

ht := flHr In order to prove that (Hr, hr) is a hierarchy we define an isotone mapping
ht’H-M by ht(IH):=f(It-) for all I H. Lemma 1.2(ii) implies immediately that
(Hr, ht) satisfies the conditions (H0), (H1) and (H4). The conditions (H2) and (H3)
follow immediately from the definitions of hr respectively hr. In order to prove (HS)
let K be an arbitrary subset of H such that h(a)<= m for all a 6 K. Condition (C1)
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implies that I c {a Llf(a) -< m }. Hence we set I" := {a Hlh,(a) -< m }. Because of
It,-, {a L[f(a) -< m } the desired conclusion follows.

2. Let (H, h) be a hierarchy. For every b L there exists some c Hb such that
h (c) -< h (a) for all a s Hb. This leads to an isotone mapping fh" L M with fh (0) 0
defined by fh (b) := h (c) for all b s L.

In order to show that f, is a clustering function we consider in a first step for
each b s L the set H[’ := {c s H,,Ih (c) <- h (a) for all a s Hb}. In the next step we consider
for an arbitrary nonempty subset N c L the set Kt := tJbrH[’. Now we define an
isotone mapping f-h"/S M by ffh (I):= (I,) for all I s/S. We are now ready to verify
in three steps that fh is a pre-clustering function which satisfies Condition (B). Proposi-
tion 1.3 then implies that fh is a clustering function.

(i) h satisfies Condition (P1). Let I" be an order ideal of H such that/[(I) -<_ m
for all a s IH. Because of Condition (H5) there exists an order ideal JH of H such
that I,- I- and (ju)<= m. The inclusion IH ju now implies that/(In) <-m.

(ii) fh is a pre-clustering function. This follows immediately with the help of (1)
from the definitions of f respectively

(iii) fh satisfies Condition (B). Let N be a linearly ordered subset of L such that
fh (a) <- m for all a N. We consider the order ideal In := [KHr. Because of Condition
(HS) there exists some order ideal J" of H such that I I- I- and (jH) <= m.
fh is a pre-clustering function. Hence we may conclude that f-(I)<-f-.(I-) <-

fh (I, <-- m. This proves Condition (B).
3. For f Clus (L, M) the clustering function which is induced by (Hr, hr) will be

denoted by f+ and for (H, h) Hier (L) the hierarchy which is induced by fh will be
denoted by (H+, h+). In order to finish the proof we have to show that f =f+ and
that (H, h (H+, h +).

(i) f= f/. Let a be an arbitrary element of L. The definition of (He, hf) implies
the existence of some b Hr such that a <_- b and f(a) hr(b). Hence f+(a) <- f(a). On
the other hand we have f(a)<-hr(b) for all b (Hr) and we may conclude that
f(a)<-f+(a).

The reader may easily verify that the equation of (H, h) and (H+, h +) follows if
H :H+.

(ii) H cH/. Let a be an arbitrary element of H. We have to show that a is a
maximal element of fh. Because of Lemma 1.2(ii) there exists some maximal element
b of fh such that a <- b and fh (a) fh (b). We now assume that a < b. The definition of

fh implies the existence of some cH such that b =<c and fh(b)= h (c). But since
h (a) fh (a) fh (b) h (c) and a < c this contradicts Condition (H3).

(iii) H/ H. Let a be an arbitrary element of H/. Then a is a maximal element
of fh. On the other hand there exists some b H such that a -< b andfh (a) h (b) fh (b).
The maximality of a now implies that a b.

We are now ready for a short proof of the first example. The reader may verify
that the proof is sufficient.

1. Let f:LM be a clustering function. We show that (Hr, hr) satisfies the
conditions (H/I), (H/4) and (H/5). But these conditions follow immediately from
Lemma 1.2(ii), the second remark of this section and Proposition 1.3.

2. Let (H, h) (H cL, h’LM) satisfy the conditions (H0), (H/I), (H3), (H/4)
and (H/5). Condition (H/4) implies that (H4) holds. Furthermore we may conclude
from conditions (HI), (H3), (H0) and (H/5) that fh is a bounded isotone mapping
with fh(O)= 0 and that fh satisfies condition (B). Hence fh Clus (L,M) because of
Remark 1.6 of this section.
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We end this subsection with three supplementary remarks:
1. In our concept of hierarchical clustering "clusters" appear in three equivalent

versions" as maximal elements of some clustering function f, as maximal generators
of the order ideals {a Llf(a) < m} for some clustering function f (cf. the description
of the basic situation) or as the elements of a hierarchy (H, h).

2. Let (M,-<) be the set of nonnegative reals partially ordered in the usual
manner. We may defineas is easily verifieda canonical pre-cluster method
Clus-’P(L, M)--> P(L, M) by Clus- (f) := sup {f- Clus (L, M)If- <-f} for all f
P(L,M). Clus-(f) is the uniquely determined maximal subdominating clustering
function of f.

Furthermore for everyf P(L, M) and every m Im (f) we may define a clustering
function f’L M by

i
if a =0,

f(a):= if 0<a andf(a)<-m, for all a sL
L) otherwise,

such that f _-<f for all m s M. This implies that inf {f+ Clus (L, M)lf <- f/} f. Hence
there exists no uniquely determined minimal dominating clustering function of f.

On the other side one may verify that infi (f) is a clustering function for every
linearly ordered family {f}i of clustering functions. Hence we may conclude from
Zorn’s lemma that for every clustering function f/_->f there exists some minimal
dominating clustering function fa with f <-fa <_ f+.

It would be interesting to describe pre-cluster methods which associate with every
pre-clustering function f a minimal dominating clustering function

3. Let C be some "suitable" subset of Clus (L, M). Of particular interest are
those cluster methods T" Clus (L, M)--> Clus (L, M) which associate with every f
Clus (L, M) some maximal subdominating clustering function f C of f and those
cluster methods Ta" Clus (L, M)--> Clus (L, M) which associate with every f
Clus (L, M) some minimal dominating clustering function fa C of (cf. Remark 2).
These methods generalize in a natural way the single and complete linkage methods.
Of course there are equivalent formulations of these methods using Res (/_,M),
Res+ (M, ) or Hier (L) instead of Clus (L, M).

A suitable class C of clustering functions will be studied in the next section.

2. K-clustering functions and K-hierarchies. Let K be a nonempty subset of L.
In order to study a generalized version of Hubert’s monotone k-clustering functions
within our model of hierarchical clustering we consider the order filter FK which is
generated by K.

DEFINITION 2.1. A pre-clustering function f:L-M is called a K-pre-clustering
function if and only if it satisfies the following condition for all a, b L"

(OK) if/ CI Ib F: then there exists some c L such that f(c) <-_ f(I (A Ib)
and I (3 Ib I.

Examples. 1. If (L, _-<) has a greatest element then for every m M the mappings
f," L -M defined by

0 if a =0,
f,(a) := for all a L,

m else,

are clearly K-pre-clustering functions for every nonempty subset K c L.
2. If (L, _-<) is a lattice and if (M, _-<) is a join semilattice then condition (OK) may

be replaced by the following equivalent condition of "Janowitz type""
If inf {a, b } Fc then f(sup {a, b }) _-< sup {f(a ), f(b)} for all a, b L.
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Henceif L is finiteevery join homomorphism f" L M is a K-pre-clustering
function for every nonempty subset K L.

3. Let L be the power set of a finite set S of data and let M be the set of
nonnegative reals. For every natural number k => 1 we set K := {A L IAI k}.

In this case condition (OK) is equivalent to the following condition which is due
to Hubert (5)"

(A) If IA ("1B I->_ k then f(A U B) <- max {f(A), f(B)} for all A, B e L.
Hence Hubert’s monotone k-clustering functions are special K-pre-clustering

functions.
Moreover if f is especially the diameter function of some dissimilarity coefficient

d on S then condition (A) and hence condition (OK) just means that d is a (weakly)
k-ultrametric in the sense of Jardine and Sibson (12).

In order to formulate the basic facts of "K-clustering" we need the following
notation and definitions"

1. P: (L, M) denotes the set of K-pre-clustering functions.
2. The elements of Clus: (L, M) := Clus (L, M) P: (L, M) are called K-

clustering functions.
3. Res (L,M) denotes the set of all residuated mappings [’L-.M such that

[t. e P:(L, M).
4. Rest (, M) denotes the set of all residuated mappings ]r:/_M such that

]eL Clus (L, M).
5. Rest- (M,/S) denotes the set of all residual mappings g"M/S which satisfy for

all tn M and all a, b g (m) the following condition:
(0+K) if I (qlb fqFK f then there exists some c g(m) such that I UIb I.
6. Res;c (M,/_) denotes the set of all residual mappings g’M-/S which satisfy

condition (0+K) for all m M and all a, b g(m).
7. For every I L we denote by /max the set of all maximal elements of L For

each f P(L, M) and each rn M the set of all maximal elements of {a Llf(a)<= rn }
will be denoted especially by L(f)rax.

We are now ready for the following:
PROPOSITION 2.1. (i) There are natural bijections between any pairs ofthe following

sets" PK (L, M), ResK (, M) and Res; (M,/S).
(ii) There are natural bijections between any pairs of the following sets"

Clusc (L, M), ResK (IS, M) and Res: (M,/S).
Proof. After having verified that a pre-clustering function f: L M satisfies condi-

tion (OK) for all a, b L iff the corresponding residual mapping g:ML satisfies
condition (0+K) for all m M and all a, b gt(m), one may use Proposition 1.1 and
Lemma 1.2(iii) respectively.

PROPOSrrION 2.2. (characterization of ClusK (L, M) and Resk (M, L)).
(i) The following conditions are equivalent for every f Clus (L, M)"
(a) f Clus: (L, M);
(b) a b for all rn M and all a, b L (f)rax such that I (q Ib (’] F: (.
(ii) The following conditions are equivalent for every f Res+ (M, )"

(a+) g e Res (M,
(b+) a =b for all m eMand all a, b e g(m)max such thatIa Iof3F: .
Proof. Because L(f),ax gr(m )max for every f e Clus (L, M) it is sufficient to prove

the equivalence of (a) and (b).
(a) : (b). Trivial.
(b) ::> (a). Set m := f(/ LJ I0). A slight modification of the proof of Lemma 1.2(ii)

implies the existence of elements ca and c0 e L(f)ax such that a <_-ca and b <_-co. The
application of condition (b) leads now immediately to the desired conclusion.
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In order to study the connections between K-clustering functions and hierarchies
we introduce two more "overlapping criteria".

DEFINITION 2.2. A hierarchy (H, h) is called a K-hierarchy if[ it satisfies for all
a, b H the following overlapping criteria:

(HK1) If I (qI (qFc # and if h(a)<=h(b) then a _-<b.

(HK2) If II(qFt # then there exists some c H such that h(c)=
/(I UI)and// fqF: # or I f"l/ Fc #- .

The reader may notice that (HK2) is a relatively weak condition. For example
(HK2) is always satisfied by every hierarchy (H, h) if (M, <_-) is linearly ordered. In
this case the hierarchy (H, h) is a K-hierarchy iff a -<_ b or b <-_ a for all a, b H such
that/a 0 Ib (3 F: # .

Let Hierr (L) be the set of K-hierarchies on L and let f" L -M be a K-clustering
function. An easy computationusing the modified version of Lemma 1.2(ii) of the
proof of Proposition 2.2 and condition (b) of Proposition 2.2proves that (Hr, hr)
satisfies condition (HK1). On the other hand (HK2) is an immediate consequence of
condition (OK). Furthermore a careful analysis of the proof of Theorem 1.4 shows
that fh Clusr (L, M) if (H, h) Hierr (L).

Hence we have obtained the following:
THEOREM 2.3. There are natural bifections between any pairs of the following sets"

Clusr (L,M), Resr (/, M), Res (M,/) and Hier: (L).
Examples and remarks. 1. Set L-:= L\{0} and let (L, _-<) and (M, _-<) be complete

meet semilattices. If (M, _-<) is linearly ordered then the reader may verifyrecalling
the ideas of the first paragraphthat a pair (H, h) (H L, h"H -M) is a L--hierarchy
iff it satisfies the following conditions:

(HO) {a HIh (a) O} # .
(H1) I,=L.

(H-2) h is bounded.
(H3) a<b h(a)<h(b)foralla, bH.

(HL-) a <= b or b -<_ a for all a, b H such that inf {a, b} # 0.
(H-4) For every nonempty linearly ordered subset KH there exists some

b H such that inf (K)<=b and h(b)-<_inf (h(K)).
(H-5) If h(a) <- m for all a of some linearly ordered subset K H then there

exists some b H such that a -< b for all a K and h (b)=< m.
2. Let L be the power set of a finite set S of data and let M be the set of

nonnegative reals. For the moment we denote by C the class of all L- clustering
functions f" L-->M with f({a})= 0 for all a $, by U the set of all ultrametrics on S
and by H(L) the set of all pairs (H, h) (H c L, h"H -M) which satisfy the following
conditions"

(H+0) U{A H[h (A) 0} S.
(H+I) S ell.
(H3) A B ::), h (A) < h (B) for all A, B e H.

(HL-) A B or B A for all A, B H such that A f3 B QS.
A combination of our results with some well known classical result (cf. for example

Bock [2, Satz 37.1] or Johnson [13]) leads to the following at least implicitly well
known fact that there are natural bi]ections between any pairs of the following sets" C,
U and H(L).

3. Let (L, <_-) be a join semilattice and let every principal ideal of (M, _-<) be a
complete lattice. If {f.}. is an arbitrary bounded family of K-clustering functions
then it is easy to see that also the clustering function sup., (f.) satisfies condition
(OK). On the other hand the mapping f0" L -->M (cf. the first example of this section)



SOME ASPECTS OF CLUSTERING FUNCTIONS 111

is a K-clustering function for every nonempty subset K c L. Hence we may
define a (K )-cluster method T- Clus (L, M) Clus (L, M) by T- (f) := sup {f-
Clusc (L, M)[) -<f} for all f Clus (L, M). T- associates every clustering function

f: L M with its uniquely determined maximal subdominating K-clustering function.
T- may be regarded as a generalized cluster method of "Jardine-Sibson type" (cf.
their cluster methods (Bk) in [12]).

In a forthcoming paper we shall study (K)-cluster methods T’Clus (L,M)
Clus (L,M) which associate with every clustering function {:LM some (not
necessarily unique) minimal dominating K-clustering function ( of .

3. Dissimilarity coefficients, K-uitrametrics and d-hierarchies. For the remainder
of this paper we assume that (L, =<) is a complete, locally atomic and upper continuous
lattice and that every principal ideal of (M, -<_) is a complete lattice.

Let AL L consist of all atoms and the least element of L. We set ALV := {aij LI
there exist elements ai, aj AL such that aij sup {ai, ai}} and LV := AL V\AL.

Since AL, ALV and LV are subsets of L they are canonically partially ordered.
DEFINITION 3.1. A clustering function d :=ALVM is called a dissimilarity

coefficient iff d (a)= 0 for all a AL.
Examples. 1. Let := L M be an arbitrary clustering function with [(a) 0 for

all a AL then dr :=]]ALV is a dissimilarity coefficient.
2. Let L be the power set of a finite set S of data and let M be the set of

nonnegative reals. The reader may easily verify that every dissimilarity coefficient in
the sense of Jardine and Sibson [12] may be regarded as a dissimilarity coefficient
in the above sense and that conversely every dissimilarity coefficient in the above
sense may be regarded as a dissimilarity coefficient in the sense of Jardine and
Sibson.

Let DC (L) be the set of dissimilarity coefficients on ALV and let P(L V) be the
power set of L V. Clearly we may identify the complete lattices (LV, c), (LV, )
and (P(L V), ).

The results of the first paragraph imply immediately the following very general
PROPOSITION 3.1. There are natural bi.iections between any pairs o[ the [ollowing

sets" DC (L), Res (P(L V), M) and Res+ (M, P(L V)).
Clearly Proposition 3.1 holds also under the weaker assumption that (M, <=) is a

partially ordered set with 0. Hence Proposition 3.1 includes the results of Jardine and
Sibson [12] and Janowitz [6] which establish a natural one-one correspondence
between dissimilarity coefficients and numerically stratified clustering functions or
respectively between dissimilarity coefficients and L-stratified clustering functions (cf.
also Remark 3 of 1.1).

LEMMA 3.2. There exists a canonical order monomorphism diam’DC (L)-
Clus (L, M).

Proof. Because of d(b)<-d(ALV) for all b e ALV we may define a mapping
diam" DC (L) Clus (L, M) by diamd (a) :- sup {d (b)lb <-- a, b ALV} for all d
DC (L) and all a L.

The definition of diamd implies immediately that diamd is a bounded isotone
mapping with diamd (0)= 0. Hence diamd is a pre-clustering function. On the other
hand diamd satisfies Condition (B) since (L,-<_) is upper continuous and we may
conclude that diamd is actually a clustering function. It is now very easy to see that
diam" DC (L) - Clus (L, M) is an order monomorphism.

The image of diamd’DC(L)Clus(L,M) will henceforth be denoted by
Clusd (L, M).
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Remarks. 1. diama generalizes the usual definition of a diameter-function for a
dissimilarity coefficient d in a natural way.

2. This interesting remark is due to the referee" One can define an equivalence
relation on Clus (L, M) by the rule fa "f2 in case fa(a)=f2(a) for all a eL V. Each
equivalence class has a least element, namely, the one of the form diama. Furthermore
Clus (L, M)/_. is canonically partially ordered by <--2 :fl(a)<--rE(a) for all a e LV
and it is easy to see that there exists a commutative diagram with canonical order
homomorphisms:

Clus (L, M) Clus (L, M)/_

DC (I)

3. The reader may notice that the well-known "Ward algorithm" (cf. Ward [16])
may be regarded as a cluster-method Tw: Clus (L, M) Clusd (L, M) c Clus (L, M).

Let a be an arbitrary element of L. In order to clarify the connections between
dissimilarity coefficients and hierarchies a subset K cL is called a-complete iff for
every b _-< a with b ALV there exists some c e K such that b <_-c.

DEFINITION 3.2. A pair (H, h) (H L, h H-M) is called a d,hierarchy itt the
following conditions hold’

(H+O) AL IlaeHIh(a)=O}.
(H+I) 1
(H3) a <b h(a)<h(b) for all a, b eH.

(H(R)4) For every a eL there exists some bH such that a<-_b and
h (b) _-< sup (h (K)) for every a-complete subset K H.

Let Hier (L) be the set of all d-hierarchies on L. The following theorem implies
especially that Hiera (L) is a subset of Hier (L).

THEOREM 3.3. There are natural bi]ections between any pairs of the following sets"
DC (L), Clus (L, M), Res (P(L V), M), Res+ (M, P(L V)) and Hier (L).

Proof. It is sufficient to establish a natural bijection between Clus (L, M) and
Hier (L).

1. Let f be an arbitrary element of Clus (L, M). With the help of Lemma 1.2(ii)
the properties of f imply that (H h) is a d-hierarchy.

2. Let (H, h) be an arbitrary d-hierarchy. One may first note that condition (H4)
(cf. Definition 1.3) is an immediate consequence of condition (H*4). Condition (H+I)
implies that fh is bounded. Now a careful analysis of the proof of Theorem 1.4 allows
us to conclude with the help of condition (H4) that fh (a) sup {fh (b)lb <- a, b ALV}
for all a L and we may conclude from the proof of Lemma 2.2 that fh Clusd (L, M).

3. Because of the proof of Theorem 1.4 we have thus established the desired
bijective correspondence between Clusd (L, M) and Hierd (L).

Remarks. 1. If L is the power set of a finite set S of data and M is the set of
nonnegative reals one may replace condition (H4) by the weaker condition

(H4) For every A eL and every A-complete subset K H there exists some
B eH such that A cB and h(B)_-<max (h(K)).

2. One can define an equivalence relation on Hier (L) by the rule (H1, h
(H2, h2) iff for all a H1 there exists an a-complete subset Ka HE and for all b e H2
there exists a b-complete subset Kb Ha such that h2(c)_-<hl(a) for all c e Ka and
hx(p)<-h2(b) for all p Kb.

The reader may verify (cf. the second remark of this paragraph) that (H1, h
(HE, hE) iff fhl"fh2. In particular each equivalence class has a least element which is
a d-hierarchy.
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We now consider the order filter Fr which we introduced in the second paragraph.
In order to study dissimilarity coefficients which satisfy overlapping criteria we need
two more definitions"

DEFINITION 3.3 (cf. Jardine and Sibson [12]). 1. A subset U cLV is called
(weakly) K-transitive iff for all ai e LV and all a e K the following condition holds:
if aik, akt and a, U UAL for all akt <= a then aij U.

2. A dissimilarity coefficient d :ALV M is called a (weakly) K-ultrametric iff
for all ai LV and all a e K the following inequality holds"

d (aii) <- sup {sup {d (ai ), d (a,), d (ati)}lat <-_ a, a, AL V}.

Let Ur be the set of all (weakly) K-transitive subsets of LV and let DCc (L) be
the set of all (weakly) K-ultrametrics on L. We set" Clus (L, M):= ClusK (L, M)
Clusd (L,M) and Hier: (L):= Hierc (L)f)Hierd (L) and we are now ready to prove
the following:

TaEOREM 3.4 (cf. Hubert [5, Prop. 10]). There are natural bifections between any
pairs of the following sets" DC (L), Clus(L,M), Res (U:,M), Res/ (M, U) and
Hierd (L).

Proof. Let d :ALV M be an arbitrary dissimilarity coefficient with correspond-
ing residual mapping ga:MP(LV). The reader may recall that ga is defined by
ga(m) := {a L VId (a) _-< m } for all m M. Definition 3.3 implies immediately that d
is a (weakly) K-ultrametric itt ga(m) Uc for all m M. Hence we have already
established the natural bijection between DC (L) and Res+ (M, Uc). In order to
complete the proof of the theorem it is thus sufficient to prove that the image of
diam" DCc (L) Clus (L,M) is Clus:(L, M). But it is an immediate consequence of
Definition 3.3(2) that dDC (L) itt diama satisfies condition (0K)--one may use
here the version of the second example of the preceding paragraphwand nothing
remains to prove.

Remarks. 1. The elements of Res+ (M, Ur) may be regarded as natural generaliz-
ations of Jardine and Sibson’s (fine) k-dendrograms.

2. There are three reasons why we excluded the study of strongly K-ultrametrics
or even u-diametric dissimilarity coefficients (cf. Jardine and Sibson [12]):

1. They are excluded for the sake of brevity.
2. (Weakly) K-ultrametrics play a more important role in the models of Jardine

and Sibson and Hubert. For example they lead to the well-known flat cluster
methods Bk.

3. (Weakly) K-ultrametrics enabled us to make direct contact with clustering
functions which satisfy overlapping criteria (cf. also Hubert [5]).

4. Characterization of overlapping criteria. In Jardine and Sibson’s concept of
hierarchical clustering [12] and also in the original concept of Janowitz [6] the
"clusters" are precisely the maximal linked sets (ML-sets) of some dissimilarity
coefficient d. Hence all their hierarchies may be constructed within Hubert’s more
general concept by considering the clustering functions diama. In particular Hubert’s
(monotone) k-clustering functions are natural generalizations of Jardine and Sibson’s
(weakly) k-ultrametrics. In order to clarify the connections between both concepts
completely let Clusc (L, M) be the set of all clustering functions f Clust (L, M) such
that f(a)= 0 for all a AL. We want to solve the following natural problem:

Determine all order filters F: such that every f Clus (L, M) is of the form diama
for some dissimilarity coefficient d DCn (L), or equivalently

determine all order filters Fr such that Clus: (L, M) Clusan (L, M)!
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Clearly Clus (L, M) Clus (L, M) for all nonempty subsets K cL if M {0}.
Thus we may assume without loss generality that M contains at least two elements
0<m.

The following theorem solves our problem’
THEOREM 4.1. The following conditions are equivalent:

(i) diam" DCK (L) Clus: (L,M) is an (order) isomorphism.
(ii) Clus: (L, M) Clusa (L, M).
(iii) IAL\FK -< 3.
Proof. It is sufficient to prove the equivalence of the conditions (ii) and (iii).
(ii) =), (iii). If IAL\FI > 3 then there exist atoms a 1, a2, a3 eL such that aiFr for

all 1 -< -< 3. We set T := {a 1, a2, a3} and TV := {b LI there exist elements ai # aj T
such that b sup {a, aj}}. Now we define a mapping f: L -->M by

0 ifaALkJTV,
f(a):= for all a L.

m else,

The reader may verify immediately that is actually a clustering function with
f(a) 0 for all a AL. We now consider two different elements a, b eL such that
inf {a, b } > 0. The definition of f implies that/(sup {a, b }) m > sup {f(a), ]’(b)} iff
a, b TV. But in this case our assumption on F implies that inf {a, b}F. Hence
we may conclude that f Clus: (L, M).

Because of f(sup(T))=m >sup {f(a)la -<sup(T), a ALV}=O there exists no
d DC (L) such that diama f.

(iii) => (ii). We have to verify the inclusion Clus: (L, M)c Clusa (L,M). Hence
we consider an arbitrary clustering function f: L -->M with f(a) 0 for all a AL. Let
c be an arbitrary element of L. It is sufficient to prove that f(c)_-<sup {f(a)[a <_-c,
a AL V}. Therefore we consider the set A of all atoms b of L such that b _-< c. We
may assume without loss of generality that ]A I=> 3. Because of [AL\Fr ]<_-3 there are
at most two atoms p, q ALLiar. We reconstruct c in a first step by transfinite induction
in the following way"

1. setal:=bl:=p ifp<-c
otherwise set a := b for some arbitrary b A\{q }

2. if is a limit ordinal then we set a := supt< a if cz is not a limit ordinal
then we consider the set A’-1 of all atoms b L such that b -< as-1 and set

as-1 if Ac\(A-1U{q})= @ }as :=
bsup{as-i, } for some arbitrary b 6Ac\(A-1U{q}) else

AL is a set. Hence there exists an ordinal number 3’ such that as a for all c -> 3’.
+ := sup {a, q}On the other handL is locally atomic. This implies that av c or that a

+ sup {a, sup {b 2, q }} b Fc we may con-c. Because of a v q}} and inf {a, sup {b
+clude that [(a -<sup {/C(av), ]’(sup {b , q})}. Thus it is sufficient to prove (by transfinite

induction) that [(as -< sup {[(a )la <-- a, a ALV} for all ordinal numbers a.
1. (a) 0-< sup {(a)la <- a 1, a AL V}.
2. If c i a limit ordinal then we may conclude with the help of condition (B)

that [(as) -< sup0 <s ]’(a0) -< supe <s (sup {[(a)la <- ao, a AL V}) -< sup {]’(a)la --< a, a
ALV} if a is not a limit ordinal then we may assume without loss of generality that
c >- 3 and that A\(A-1 U {q}) # @. Now the relation inf {as-l, sup {b
implies that/(a)_-<sup{[(a_), 1(sup{b2, b})}<=sup{1’(a)la <-a, a 6ALV}. This
completes the proof of the theorem.
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Some supplementary remarks. 1. If L is a finite lattice then Theorem 4.1 remains
valid if we assume (M,-<) to be an arbitrary join semilattice. Hence Theorem 4.1
clarifies also the connections between the original concept of Janowitz [6] and Hubert’s
concept [5]. Let Hierz(L) be the set of all K-hierarchies which satisfy condition
(H0+). We may conclude in particular that Hier: (L)\Hiera (L) iff IAL\FrI > 3.
No hierarchy (H, h)Hier(L)\Hiera(L) can be constructed within Jardine and
Sibson’s or the original concept of Janowitz of hierarchical clustering. Hence Theorem
4.1 demonstrates in particular how Hubert’s concept of hierarchical clustering extends
the concept of Jardine and Sibson and in some sense also the more general concept
of Janowitz.

2. We want to emphasize the following remark: The more interesting part of a
hierarchy (H, h) is H because it contains the "clusters" one is really interested in.
Hence we consider clustering functions fl, f2"L-->M and cluster methods
T1, T2 :Clus (L, M) --> Clus (L, M) and define:

f .-.lf2 Ce, Hl,l Hl,,
T "TT2 T(f)-T(f) for all f e Clus (L, M).

Generalizing the definitions of Janowitz [9] or Sibson [15] two clustering functions
fl, fz L -->M are called globally order equivalent iff fx(a) -<_fx(b) is equivalent to
f2(a) <= f2(b) for all a, b L. Global order equivalence is clearly an equivalence relation
on Clus (L, M) and will be denoted by writing fl ’f2.

Furthermore---following Janowitz [9J--two cluster methods T, T2 :Clus (L, M) -->

Clus (L, M) are said to be order similar iff Ta(f) T2(f) for all f Clus (L, M).
It is very easy to see that the following implications hold for arbitrary clustering

functions fl, f2, f: L ->M and arbitrary cluster methods Tx, T2 Clus (L, M)-->
Clus (L, M):

f -f f --f,

Tl(f)--- T2(f) ==?2 Tl(f)rT(f).

In order to show that the converse implications are generally false let L be the
power set of S := {01, 02, 03} and let M be the set of nonnegative reals. We define
clustering functions fl, f’L ->M by

if IAi-< 1’
fx(A) := if A {{0, 0.}, {0z, 03}}, for all A s L,

else,

0 if ]A[_<- 1,
1 if A ={0,0},

f(A):=
2 ifA={0,0},

for allAeL;

3 else,

and clustering methods T1, T2 Clus (L, M) --> Clus (L, M) by T1 :" idclus (L,M) and

f(A) if A # {02, 03},
T2(f)(a):= /({0a, 02}) if a {02, 03} and if f({0, 02}) =< f({02, 03}) <f(S),

[f({02, 03}) else,

for all f Clus (L, M) and all A e L.
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The reader may immediately verify that fl "-rf2 and that T1 "TT2 but that neither
f and f2 are globally order equivalent nor TI and T2 are order similar.

Thus "---r"-equivalent clustering functions and "---7-"-equivalent cluster
methods generalize naturally globally order equivalent clustering functions and order
similar cluster methods respectively. Within a concept of hierarchical clustering which
emphasizes the "clusters" or "hierarchies" in which one is really interested they seem
to be the more natural equivalence relations on Clus (L, M) and on the set of cluster
methods T: Clus (L, M) Clus (L, M) respectively.

Generalizations of weakly order equivalent clustering functions or weakly order
similar cluster methods (cf. Janowitz [9]) may be obtained by defining:

f "wf2 ’ Hfl\{a s Hl]hl(a O} H2\{a H2lhz(a O},

T1 "w T2:> Tl(f) ’w T2(f) for all f Clus (L,M).

3. In [5] Hubert studied also "clustering functions" which are not globally
monotone on L but which are monotone on some order filter Fr of L. In this case
we replace L byFx t_J {0} and call two "clustering functions" f, f2 :L MK-equivalent
ittflF f21F. Let Clus (L, M)/-r be the set of all equivalence classes of K-equivalent
"clustering functions" then it is easy to see that there exists a canonical order
isomorphism: Clus (L, M)/-r Clus (Fr {0}, M).

Hence we also studied within our model of hierarchical clustering classes of
K-equivalent k-clustering functions in the sense of Hubert.
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A NOTE ON OPTIMAL AND SUBOPTIMAL DIGRAPH
REALIZATIONS OF QUASIDISTANCE MATRICES*

J. M. S. SIMOES-PEREIRA

Abstract. Dropping the symmetry axiom from the definition of a distance, we obtain the definition
of a quasidistance. Matrices whose entries are quasidistances among a finite set of points are called
quasidistance matrices. A digraph with valued arcs realizes a quasidistance matrix when, for a certain subset
{1,..., n} of its vertices, the shortest path from an arbitrary vertex to an arbitrary vertex/" has a length
equal to the entry dii of the matrix.

We give the optimal and suboptimal digraph realizations of quasidistance matrices of order 2 and 3
(except for a special class); these are realizations whose total length is as small as possible. We characterize
quasidistance matrices which have optimal realizations. We prove several results relating quasidistance
matrices to their principal submatrices and to matrices obtained by decreasing all nondiagonal entries in
a column or in a row. We investigate and characterize a class of quasidistance matrices, to be called
shrinkable, which by their definition and properties may be considered the analogues of tree-realizable
(symmetric) distance matrices.

1. Introduction. Quasidistances are "nonsymmetric distances". In operations
research, for instance, the following are frequently used quasidistances" mileages on
a road network with one-way streets; travel times, in particular flight times which
may be shorter in one direction than in the opposite one; transportatiJon costs which
may be lower downhill; transmission costs through a communications network; interna-
tional telephone or postal rates; airline fares and so on.

A quasidistance n-matrix is a nonnegative, square matrix D of order n with
entries di] such that, for i, j, k {1, , n}, dii 0 and dij <dik + dkj. If dij dik + dk.i for
some k distinct from and/’, dii is called composite; otherwise it is called basic.

Let G -(W, E) be a digraph, W and E or, more explicitly, W(G) and E(G), its
vertex and arc sets, respectively; let V

_
W and [VI n. Consider a function f: E R /,

where R / is the set of positive real numbers. This function assigns a length or weight
to each arc of G. For any i,/" W, let d (i,/’) be the minimum value among sums Y f(e)
taken over any directed path P(i, f) from to/’. The digraph G is a realization of the
matrix D if, for some V, d(i, f)--di for i,/" {1,..., n}; the vertices in V are called
external, those in W-V internal. Trivially, internal vertices can be required not to
be sinks nor sources and not to have degree two. Denoting by T(G) the sum f(e)
over E(G), a realization G is optimal if T(G) is minimal among all realizations of D.

The analogues of these concepts for (symmetric) distance matrices, and their
applications, have been investigated (see [1]-[20]); not so for quasidistances. Results
for the symmetric and nonsymmetric cases are not always similar: for example, whereas
a distance matrix always has an optimal graph realization 11 ], a quasidistance matrix
only exceptionally has one. In 2, we characterize these exceptional quasidistance
matrices.

A first pioneering effort on digraph realizations of quasidistance matrices with
integer entries is due to Imrich [8]. Another pioneering effort is due to Patrinos and

* Received by the editors November 9, 1982, and in revised form March 8, 1983. This research was
supported by the Scientific Affairs Division of the North Atlantic Treaty Organization under grant
RG 167.81 and by a grant from the City University of New York PSC/CUNY Research Award Program. This
paper was presented at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April
26-29, 1982.

-i Department of Computer Science, Hunter College and The Graduate School of The City University
of New York, New York, New York, 10021.
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Hakimi [14] who allowed quasidistances to be negative; this assumption, which makes
proofs easier, is, however, somewhat unnatural in many applications. For example,
to realize the matrix

0 4 4 5
0 4
4 0
1 1

their algorithm starts with the leading principal submatrix of order 3 whose realization
is naturally chosen as the digraph in Fig. 1.1. Adding vertex 4 requires an arc (4, u)
of length 3 and an arc (u, 4) of length -1.

FIG. 1.1

In 3, we generalize a compactification and reduction technique introduced by
Zaretzkii [20] for integer (symmetric) distances; this technique allows us to avoid
nonpositive lengths, as long as the originally given matrix is nonnegative.

In the absence of optimal realizations, suboptimal ones become important. Let
z be the infimum of the set of the total weight values for all realizations of D; we
call G a suboptimal realization of D if, given e R /, the arcs of G may be reassigned
(positive) lengths such that z < T(G)< -+e. For obvious reasons, we will then say
that T(G) does not significantly differ from z. More generally, we say that two variables
do not significantly differ when their difference is arbitrarily small. For instance, if,
given e R /, the arcs of G’ and the arcs of G" may be reassigned (positive) lengths
such that - < T(G’) < - + e and - < T(G") < " + e, then we say that T(G’) and T(G")
do not significantly differ. Total weights of suboptimal realizations of the same matrix
are not significantly different; neither are they significantly different from the value
of their corresponding z.

We will refer to optimal and suboptimal realizations (as the case may be) as best
realizations. Best realizations of 3-matrices, except for one special class, will be given in
4.

In 5, we study some properties of submatrices of quasidistance n-matrices and
in 6, we characterize shrinkable quasidistance n-matrices, a result which is the
nonnegative analogue of the Patrinos-Hakimi characterization of hypertree-realizable
quasidistance matrices.

2. Optimal and suboptimal realizations. First we prove:
THEOREM 2.1. A quasidistance 2-matrix D has a suboptimal but no optimal

realization.
Proof. Let
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where a _-< b, without loss of generality. The digraph of Fig. 2.3 realizes D with a total
weight T b + 2e. This realization is suboptimal. In fact, since d21 b, we have T >- b
in any realization of D. A path P(1, 2) must exist, hence one arc leaving vertex 1 and
another (or the same) entering vertex 2 must exist. These arcs can not be in the path
which realizes d.l. Since lengths are positive, we have T>b, hence no optimal
realization can exist. This completes the proof.

Loosely speaking, the realization in Fig. 2.1 yields the realization in Fig. 2.3 by
pasting or attaching most of P(1, 2) into P(2, 1), as visualized in Fig. 2.2.

FIG. 2.1 FIG. 2.2 FIG. 2.3

LEMMA 2.2. A quasidistance n-matrix D has at least n basic entries.

Proof. Let be fixed. If dip is not basic, then there exists q such that dip diq + dq,;
if di is not basic, repeat this argument with q in the role of p. It follows that, for
every i, there is at least one/" such that dij is basic, which proves the lemma.

For h _-> 3, we have:
THEOREM 2.3. A quasidistance n-matrix D has an optimal realization if and only

ifD can be realized by a simple, directed cycle, or, equivalently, D has n basic entries.
Proof. Let G be an optimal realization of D. Since all distances are defined, each

external vertex of G has both indegree and outdegree at least one. The digraph G
cannot have an internal or external vertex of indegree greater than one; in fact, if
L1 and L2 are the lengths of two arcs incident to the vertex v as in Fig. 2.4, then,
after replacing them by the configuration in Fig. 2.5, the total length of G decreases
by e, where e < min {L1, L2}, and D is still realized. Similarly, G cannot have a vertex
of outdegree greater than one. Hence G is a simple, directed cycle.

FIG. 2.4 FIG. 2.5

Conversely, let G be a simple, directed cycle which realizes a matrix D. Without
loss of generality, let (1,2), (2,3),..., (n-l,n), (n, 1) be the arcs of the cycle.
Obviously, T(G) din + dnl. Now, any realization of D needs a path P(1, n) of length
dl, formed by pairwise disjoint subpaths P(i, + 1) of lengths di.i+ for 1, , n 1.
This is proved by induction: P(1, 2) of length dx2 is (obviously) needed and P(2, 3)
can not intersect P(1, 2) without contradicting the equality d13 da2 + d23 which holds
because we assume that G realizes D. Now, if P(1, k) is needed, then P(k, k + 1) can
not intersect P(1, k) without contradicting the equality dl.k/l dlk + dt.t+l. Similarly,
a path P(n, 1) of length d,a must exist and will be disjoint from P(1, n), otherwise
we contradict at least one of the equalities d21 d2n + d, or d,z dnl + d2. The total
length is thus at least the length of G which completes the proof of the theorem.

Another useful result is the following one:
TI-IEOREM 2.4. Let D and D’ be quasidistance matrices, with D obtained from D’

by adding a constant K to all off-diagonal entries in column (or in row i) of D’. If



120 J.M.S. SIM6ES-PEREIRA

G’ is a best realization of D’, then T(G) can not be significantly smaller than T(G’)
for any realization G ofD.

Proof. The arguments being similar, we only consider the case where K is added
to the entries of a column.

With Q a positive (not arbitrarily small) constant, suppose that T(G) < T(G’)-Q.
We will show how to obtain from G a realization of D’ with total weight less than
T(G’)-Q + e, a contradiction of the fact that G’ is best.

Consider all paths coming to vertex in G. Trivially, we may suppose that all
these paths share the last arc, this means that the indegree of is one. If the length
of this last arc is at least K + e, then, by decreasing it to e, we obtain a realization of
/9’ whose total weight T(G)-K is significantly smaller than T(G’) and the statement
of the theorem holds. If, now, the length of this last arc is at most K, then we will
use a technique which modifies G without increasing T(G) by significantly more than
K and which assigns to the aforementioned last arc a length of at least K +e. For
this purpose, let d,,i minii {dii} and let P(a, i) be a path of length dag, which therefore
may only contain internal vertices (Fig. 2.6). Clearly, da _>-K + e.

It is useful to distinguish three types of internal vertices on a path: when the arcs
of the path are removed, vertices of type 1 become sources, those of type 2 transmit-
ters, those of type 3 sinks (Fig. 2.6). Trivially, we may suppose these sources, sinks
and transmitters have halfdegrees at most one (Fig. 2.7).

FIG. 2.6 FIG. 2.7

Loosely speaking, we now modify G by rolling the internal vertices on P(a, i)
along P(a, i) and away from so that the length of the last arc of P(a, i) becomes at
least K + e. To visualize the operation, think of attaching or pasting into P(a, i) the
arcs coming to it and detaching those coming from it, as in Figs. 2.8-2.10. We can

FIG. 2.8

;(R)

FIG. 2.9

;(R)
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FIG. 2.10

achieve a last arc in P(a, i) of length at least K + e without increasing T(G) by more
than K. In fact, for a type 1 vertex, rolling it back by 8 means detaching an arc from
P(a, i), which increases T(G) by ; (Fig. 2.8). For a vertex of type 2, rolling it back
by 8 means detaching an arc from and attaching an arc to P(a, i), which leaves T(G)
unchanged (Fig. 2.9). For a vertex of type 3, rolling it back by B means attaching an
arc to P(a, i), which decreases T(G) by (Fig. 2.10).

Note that we may roll back a type 1 vertex until it coincides with the vertex
preceding it, which retains its own type if it is of type 1 or 2, and becomes of type 2
if it is of type 3; a type 2 or 3 vertex may not become coincident with the vertex
preceding it but may become arbitrarily close to it. Therefore, if nothing precludes
these operations, then they allow us to increase the length of the last arc of P(a, i)
to K + e without increasing T(G) by significantly more than the amount K.

Now, insufficient length of an arc coming to P(a, i), say (x’, x), is the only factor
which may preclude the immediate execution of these operations (Fig. 2.11). Note,
however, that by the minimality of dai, we have d(b, x)>-d(a, x) for any b distinct
from a and i. If P(b, x) had no vertices, then x could be rolled back to a position
arbitrarily close to a; otherwise, we have to roll back the internal vertices on P(b, x)
to positions as far from x on P(b, x) as we need. This is always possible, the only
nontrivial case being a type 1 vertex, say x’, on P(b, x). In this case, depicted in Fig.
2.12, attaching P(b,x) to P(a,x) for, say, a length ’+d;, where is the length of

FIG. 2.11 FIG. 2.12

(x’, x), requires a previous rolling back of x’ on P(b,x) by the amount 8’+e. This
operation increases T(G) by only e, which is not a significant increase.

The argument can be repeated with all vertices a, b,... ordered according to
their increasing distances to vertex i. The proof of the theorem is thus completed.

3. Compactifications, reductions and shrinkability. Among (symmetric) distance
matrices, those which are tree-realizable have been the most investigated. The com-
pactificatio of a distance matrix has been defined, for instance, in [17], where we
see that the compactification of a pendant index leads to a new matrix with a pair of
equal rows (and, by symmetry, a pair of equal columns). By deleting one of these
equal rows and one of the equal columns, we obtain a new distance matrix whose
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order is one unit lower. Obviously, we may define tree-realizable distance matrices
as those which yield the 1-matrix [0] by some sequence of pendant index com-
pactification plus deletion of equal rows and columns.

We introduce here a similar compactification for quasidistance matrices and we
show that those quasidistance matrices which can be compactified, in a way to be
made precise, to the 1-matrix [0], have several properties similar to well known
properties of tree-realizable matrices. We call such quasidistance matrices shrinkable.

Given a quasidistance n-matrix D, let ri=min{(di+db-dab)} with a, b6
{1,..., n}, a and b not necessarily distinct but at least one of them distinct from i.
Let 0 -< r -<_ ri and let f and be nonnegative rels chosen so thatf + r, f <- mina {d},
<= min,i {d}. Denote by D’ a quasidistance matrix obtained from D by subtracting
from all nondiagonal entries in row and from all nondiagonal entries in column

i. A realization G of D can be obtained from a realization G’ of D’ by adding one
vertex to G’ and two arcs: (i’, i) of length and (i, i’) of length f. The operation
which leads from D to D’ or from G to G’ is called a compactification with respect
to by the amount r or by the amounts f, t.

THEOREM 3.1. In a quasidistance matrix D, if r dii + di ]’or some f, then, for
each p .i we have dp dpi + di and dp d + dip. Moreover, setting r r implies setting

f dii and dii.
Proof. By definition of r we have, for each p, d0 + dii <- dpi + dii dpi, hence dpi

dot + di. Similarly, dii + di -< dii + dip dip yields dip dii + dip. As a consequence, the
definitions of f and make the truth of the second statement obvious too.

When the condition of this theorem holds, we say that is a pendant index (from
]) and a compactification by r with respect to yields a matrix where rows and/"
are equal and columns and [ are equal too; removing row and column i, we obtain
a matrix of lower order which is called a reduction of D.

A quasidistance n-matrix D is called shrinkable when a sequence of matrices
D =-Da,""", D [0] with z >= n exists, each one being either a compactification or a
reduction of the preceding one. Such a sequence is called a shrinking sequence. By
convention we also say that an identically zero n-matrix is shrinkable.

Remark 3.2. Shrinking sequences are not unique. To obtain one, we must have,
in each successive matrix (except for the last one), for at least one i, ri > O. Now, if a

sequence of choices of the index leads to a shrinking sequence, then any other
possible choice of at each stage leads also to a shrinking sequence. This follows from
the definitions" in successive matrices, say D and D", the values rq and rq are equal
and given by homologous entries e.xcept for q i, where r r-ri 0. Moreover,

"=d" + ’-those indices q which become pendant in D", i.e., for which ro io di and ro-
+ dob -d (a b), will be removed and for them, due to Theorem 3.1, rq will

remain unchanged since they become pendant until their removal.
Remark 3.3. If D is shrinkable, then all matrices in any one of its shrinking

sequences are shrinkable. If D yields a shrinkable matrix by compactification or
reduction, then D is shrinkable too.

Remark 3.4. Quasidistance 2-matrices are shrinkable.

4. Quasidistance 3-matrices. By Theorem 2.3, a nonshrinkable 3-matrix with
three basic entries has an optimal realization whose total length is the sum of the
basic entries (Fig. 4.1). To find realizations of other 3-matrices, the following lemma
is useful.

LEMMA 4.1. A quasidistance 3-matrix D is shrinkable if and only if
(1) dii + dik + dki dik + dki + dii.
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FIG. 4.1

Proof. Suppose equality (1) holds. We distinguish three cases:
Case 1. For one of the indices, say i,

(2) 0 <= ri dii + dii dgi + dig.

By Theorem 3.1, (2) implies dig dgi 0, dig --dii, dgi dii. As a consequence, ri 0
means that D is identically zero; if ri > 0, then D has a reduction of order 2. Hence
D is shrinkable.

Case 2. Condition (2) does not occur but, for one of the indices, say i,

(3) 0 <: ri dii -" dii < dgi + dig.

First, ri 0 means that dfi dii= 0 and, by Theorem 3.1, (2) would occur for rg. Consider
ri > 0. Again using Theorem 3.1, we reduce D to a 2-matrix, hence, by Remarks 3.3
and 3.4, D is shrinkable.

Case 3. Conditions (2) and (3) do not occur but, for one of the indices, say i,

(4) 0 <: ri di -- dig dig dgi h- dii dgi < min {dii -]- dii, dgi + dig}.

First, ri 0 means that dik dii @ dig and dki dgi + dii which implies that (3) occurs for
r and rg. Now, since ri 0, let e be positive and arbitrarily small and choose
min {dii, dki, ri}-e, f ri- t. By (4) we have

(s) +f < min {d]i + dii, dgi + dig }.

Since dig and dgi are positive (otherwise rg r. 0 and (3) occurs), we have, by (4) again,

(6) +f < min {d]i -- dig, dgi + dii}.

The strict inequalities (5) and (6) and the positivity of the nondiagonal entries of
D imply that, for e sufficiently small, f-<min {dii, dik, ri}. (Obviously, we can also
choose min {dii, dig, ri}- e and show that ri f <: min {dii, dgi, ri}.)

The compactification of D by the amounts f, yields a matrix D’ with r 0 and,
thus, in D’, (3) occurs for/" and k. D is therefore shrinkable.

Suppose now that (1) does not hold. Without loss of generality, let

(7) dig + dgi < dig + dgi + d]i.

Equivalently, dgi +dii-dgi <dii +dig-dig. Moreover, if, say, ri =dgi +dig then, by
Theorem 3.1, dii dig + dgi and dii dig + dgi, which contradicts (7). Similarly, if ri

dii + dii. It follows that

ri dgi + dii dgi < min {dii -+- dig dig, dgi + dig, d]i -- dii}.
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A similar argument shows that

0 dii + dik dig < min {dki + dii dki, dii + dii, dki + dik },

rk dig + dki -dii < min {dig + dkj -dii, dig + dki, dj + dgi}.

If ri=ri=rk =0, then D is clearly nonshrinkable. Otherwise, since com-
pactification do not destroy strict inequality in (7), at most three successive com-
pactification of D yield a new 3-matrix with ri =0 rk 0. By Remark 3.3, D is
nonshrinkable. This completes the proof of the lemma.

THEOREM 4.2. A shrinkable quasidistance 3-matrix D has a suboptimal realiz-
ation of total length T max {dii: i, j 1, 2, 3} 4- e.

Proof. We exhibit the realization for the distinct cases considered in Lemma 4.1.
Since we exclude zero lengths, Case I is realized by the digraph in Fig. 4.2, where

one vertex is and the other represents both j and k.

dj i-dij+e

,.e j-2

FG. 4.2

Case 2 implies di =dii +dik and dki =dkj +di. Without loss of generality, let
dik >- dki, this means, dii + dik >= dki + di. We distinguish three subcases:

Subcase A. We have d.- dj A > 0 which implies 3/= di- dki----> A. The digraph
whose arcs are the solid lines of Fig. 4.3 is the suboptimal realization.

\
\

FG. 4.3

Subcase B. We have dki- dii h > 0 which implies y djk- dii h. The digraph
whose arcs are the solid lines of Fig. 4.4 is the suboptimal realization.

Subcase C. We have dii <--dik and dkj <--dii. The digraph whose arcs are the solid
lines of Fig. 4.5 is the suboptimal realization.

In Case 3, as seen in the proof of Lemma 4.1, we may suppose that ri, ri, rk are
all positive. Without loss of generality, let d be the largest entry of D. Let D* be a
compactification of D with respect to ] where r 0. We distinguish three subcases"
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FIG. 4.4

FIG. 4.5

Subcase A’. Let r. <-rain {d.i, dik }. Choose f ri- e, e. The digraph of Subcase
A realizes D*. To realize D, add the dashed lines of Fig. 4.3, this means, let z be a
new vertex on the path P(i, f) such that d(z, f)=f-e and add a new vertex/’ and
two arcs of length e, (/,/’) and (/’, z). Since dik is the largest entry of D, f is such that
z exists in P(i,f), otherwise di >di; in fact, v precedes z in P(i, f), otherwise

dii>=e +d(v,j)+d(j, y)+e +a -e +e =--e +dill.
Subcase B’. Let r. -< rain {d,, d,}. Choose ri -e, f e. The digraph of Subcase

B realizes D*. To realize D, add the dashed lines of Fig. 4.4, this means, let z be a
new vertex on the path P(I, k) such that d(j, z)= t-e; add a new vertex j’ and two
arcs of length e, (j’, j) and (z,/’). The maximality of dk implies here too, in a similar
way, that z exists and precedes x in P(I, k).

Subcase C’. Let r. > rain {di,, d.}andr. > rain {dii, d,}. Itfollowsthatmin {dii, d,}
dki and min {dii, d,k } dii. In fact, r, dii + dig dik > rain {dii, d,} di, implies di di >
0, which contradicts the maximality of dg. Similarly, r, di, + dig dk > min {di, di}
di implies dq-dit >0, the same contradiction. Hence d, <d0- and di <d-; after
compactification, d, <d and d <d. The digraph of Subcase C realizes D*. To
realize D, add the dashed lines of Fig. 4.5, this means, let w and z be two new vertices
on P(i, j) and P(j, k), respectively, such that d (w,/) f- e and d (j, z) t e; add a
new vertex j’ and two arcs of length e, (z, j’) and (j’, w). Clearly, since ri <di +dii,
we may choose f <-di and -<d so that f+ r,.

Since the realizations of D in these three subcases are obviously suboptimal, the
proof of the theorem is completed.

Now let D be nonshrinkable and D’ obtained from D by three compactifications
by the amounts r, r and rk, respectively. The digraph of Fig. 4.6 realizes D, provided
that the subdigraph spanned by the vertices i’, ]’, k’ realizes D’. Such a realization
of D will be called a straightforward realization and this subdigraph will henceforth
be called the core cycle of the realization. Let A=d(i’,f)+d(j’,k’)+d(k’,i’) be the
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f.

tk fk

f.

FIG. 4.6

length of the core cycle. It follows easily from the definitions that, since different
choices for the values t, ti, tk, , f’, fk are possible, the lengths d (i’,/’), d (/’, k’), d (k’, i’)
may change; their sum A is however invariant.

To obtain a better realization of D, replace each 2-cycle as suggested by
Figs. 2.1, 2.2 and 2.3; i.e. "paste" the arcs of the 2-cycles into the arcs of the core
cycle. If ti +fk <-d(j’, k’), tk +fi <-d(k’, i’), t +f. <-_d(i’, /’), then there is a suboptimal
realization with total weight T A/ e. Figure 4.7 depicts this realization with dashed
lines showing how the arcs were "pasted".

FIG. 4.7

These remarks and Theorem 2.4 immediately yield the following result:
THEOREM 4.3. If max {d: i, j 1, 2, 3} < A, then there is a suboptimal realization

G olD with T(G) A+ e.
We also have:
THEOREM 4.4. /f max {di: i, j 1, 2, 3} > A andD has one or two composite entries,

then there is a suboptimal realization G ofD with T(G)= max {di/: i,j 1, 2, 3}+e.
Proof. Little more than an outline is needed; the figures are self-explanatory and

the reader may fill in the calculations.
First suppose that D has two composite entries, or, equivalently, ri rk =0.

Without loss of generality, let dik be the largest entry of D. Figures 4.9 and 4.10
visualize how to obtain from a straightforward realization (Fig. 4.8) a suboptimal one.
(Note that, if d (y, i) e, the last step is redundant.)
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Now suppose D has one composite entry or, equivalently, rj 0. Figure 4.11
depicts a straightforward realization. Distinct cases arise when the largest entry of D
is dki (Case 1), dki (Case 2), dik (Case 3). The case where the largest entry of D is
is similar to Case 1.

Case 1. Adjust lengths of (/, k’) and (k’, i’) so that fk is as small as possible (Figs.
4.12 and 4.13). Since dkj > di, (i’, i) fits into (i,/’). Since dk > dk, fl + t’ <f’. We can
therefore attach (4 x) and (y, k) to (k, z) as in Fig. 4.14.

FIG. 4.8 FIG. 4.9 FIG. 4.10

fi .." "-\

t i

FIG. 4.11 FIG. 4.12

f

FIG. 4.13 FIG. 4.14

Case 2. First obtain the digraph of Fig. 4.15. By the hypothesis of this case,
d(/’, y) e and d(x,/’) e. Then, if f + tk > d(k’, i’), we obtain the digraph in Fig. 4.16.

Case 3. First obtain the digraph of Fig. 4.15. By the hypothesis of this case,
d(u, v) e. Since dki <dik, tl +f’k <f +t’k. Loosely speaking, we may displace u and
v along the core cycle, while keeping d(u, v) e, as long as t, and f remain positive.
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FIG. 4.15 FIG. 4.16

Now, if t --<_f and f, -<_t,, we obtain the digraph in Fig. 4.17. Otherwise, if even with
d(u,/’) 2e we have t >f, then we obtain the digraph in Fig. 4.18. This completes
the proof of Theorem 4.4.

Only for a nonshrinkable 3-matrix D which has no composite entry and where
A is smaller than the largest entry has no realization been proved to be best.

\\

FIG. 4.17 FIG. 4.18

5. Quasidistance n-matrices. In what follows, an n-matrixD will also be denoted
({il,"" ’, i,}). If D is a principal n-submatrix of another matrix, say ({1,...,
where m _->n, then the entries of D are those in the rows and columns il,’’ ", i, of
({1, , m }) and we say that il, , i, are the indices of D. All submatrices considered
henceforth are principal.

The 3-submatrices of quasidistance n-matrices play a role similar to that of
4-submatrices of (symmetric) distance matrices. Results in this section are the
analogues of results proved in [17] for the symmetric case.

LEMMA 5.1. Submatrices of a shrinkable matrix are shrinkable.
Proof. Let L=({il,... ,i,}) be a submatrix of D =({1,... ,m}). If {Di" l<=i <-z}

is a shrinking sequence of D, we form a shrinking sequence {L)i" 1 =< =< z} of L) as
follows: if Oi is a compactification of Di-1 by r with respect to q, then let L i--1
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when q is not an index of/i and let/i be a compactification of/i--1 by rq with respect
to q otherwise. If Di is a reduction of Di-1, where q was pen.dant from. p, then. we
distinguish four subcases: 1) if neither q nor p are indices of Di-1, set Di D_I; 2)
if both q and p are indices of/_, remove row and column q from/i-1 to get/i;
3) if q is an index of 3i-1 but p is not, note that/i- is a submatrix of both D-I
and D and set/i =/_1; 4) if p is an index of/i-x but q is not, set/i =/i-.

THEOREM 5.2. If a quasidistance 4-matrix D contains a nonshrinkable 3-
submatrix, then it contains at least two of them.

Proof. With no loss of generality, let ({1, 2, 3}) be the only nonshrinkable 3-
submatrix of D. By Lemma 4.1, d2 + d:z4 + d41 d4 + d42 + d21, d3 + d43 + d14
d13 + d34 + d41 and d23 + d3, + d42 d24 + d43 + d32. These equalities imply d12 + d9.3 +
d31 # d13 + d32 + d2i, a contradiction which proves the theorem.

THEOREM 5.3. Ira quasidistance n-matrix D ({1, , n}) contains a nonshrink-
able 3-submatrix, then, for any index ] olD, there is a nonshrinkable 3-submatrix which
contains ].

Proof. Suppose ({1, 2, 3}) is nonshrinkable. Denote by a 1,"’, an-3 the other
indices of D. By Lemma 5.1, for each ai, ({1, 2, 3, ag}) is nonshrinkable and, by Theorem
5.2, it contains at least one nonshrinkable 3-submatrix other than ({1, 2, 3}). This
clearly implies the truth of the theorem.

As a consequence, the existence of nonshrinkable 3-submatrices can be checked
by an algorithm which is quadratic in n: only the (n-1)(n-2)/23-submatrices
containing a fixed index have to be checked, using for each of them, by Lemma 4.1,
4 sums and 1 comparison.

For 3, ., n, let Qi(D) denote the number of i-submatrices which contain a

nonshrinkable 3-submatrix.
THEOREM 5.4. IfD contains a nonshrinkable 3-submatrix, then

Oi(D)>=(ni22) for i=3,...,n.

Proof. Without loss of generality, let ({1, 2, 3}) be nonshrinkable. Denote by
a 1,..., an-3 the other indices of D. While proving Theorem 5.3, we showed that,
besides ({1, 2, 3}), there is, for each aj, a nonshrinkable 3-submatrix ({b, b2, aj}), where
{b, b2} {1, 2, 3}. This proves the statement for 3. For > 3, we may obtain a
nonshrinkable i-submatrix either by joining an (i-3)-subset of {a,... ,an-3} to
{1, 2, 3} or by joining an (i-3)-subset of {ai+,..., an-3} to {b, b2, 6}. The sub-
matrices obtained are all distinct and there are at least

3 i-2 i-2

which completes the proof.
THEOREM 5.5. Let D be an n-matrix, n >=4. If D contains a nonshrinkable

3-submatrix, then it contains at least n -2 (n 1)-submatrices which are nonshrinkable.
Proof. The statement is equivalent to saying that, if D has three (n-

1)-submatrices each with no nonshrinkable 3-submatrix, then D has no nonshrinkable
3-submatrix. Let S {1,. ., n }, D (S) and let (S {a }), (S {b }), (S {c }) each have
no nonshrinkable 3-submatrix. It follows that ({a, b, c}) is the only 3-submatrix of D
which may be nonshrinkable. This contradicts Theorem 5.4 and thus proves Theorem
5.5.

Since any (i 1)-submatrix of an n-matrix D is contained in n + 1 i-submatrices
of D, Theorem 5.5 immediately yields the following result:

THEOREM 5.6. Fori>=4, (n-i +1). O_(D)>=(i-2). O(D).



130 J.M.S. SIM()ES-PEREIRA

6. Patrinos-Hakimi hypertrees revisited. A result formally similar to the
characterization of hypertree-realizable quasidistance matrices due to Patrinos and
Hakimi [14] may be given for strictly nonnegative quasidistance matrices. For this
purpose, let F be the sum of D and its transpose. The matrix F is a distance
matrix and we call it the symmetrization of D. For any submatrix ({i, ], k, l}) of D,
let S d + di + dkl d- dlk Yij d- Ykl, $2 dik d- dki d- djl -F dlj ")lik + ")ljl and S3

dit + du +d +d Tit + /.
THEOREM 6.1. Let D yield D’ by a compactification or a reduction and let F and

F’ be their respective symmetrizations. F’ has at least one nontree-realizable 4-submatrix
if and only if the same is true ]:or F.

Proof. Trivially, compactifications and reductions of a pendant index p not in
{i, f, k, l} do not alter the relations among the sums S, $2, $3 of the submatrix ({i,/’, k, l})
of D. Let now be pendant from q. If q gZ{i,f, k, l}, then, by Theorem 3.1, when
reducing for i, we have the same relations among the sums S, Sf, S of the submatrix
({q,/’, k, l}) of D’ that we have among the sums S, $2, $3 of the submatrix ({i,/’, k, l})
of D. If q s {i,/’, k, l} this conclusion does not hold but this case never happens when
the submatrix ({i, , k,/}) of F is nontree-realizable. In fact, suppose, without loss of
generality, that q k and that the submatrix ({i, f, k,/}) of F is nontree-realizable,
which means that one of the sums S, $2, $3 is strictly greater than the other two.
Using Theorem 3.1, we obtain S=$3, hence $2>S, which implies dt+dl>
dkj d- dik d- dkl -t- dlk, a contradiction to the fact that dfl <- dig + dkl and d0’ <-- dtg+ dg. This
shows that when q k the submatrix ({i,/’, k,/}) of F is tree-realizable, which completes
the proof.

THEOREM 6.2. Let D be a 4-matrix and let its symmetrization F be nontree-
realizable. Then D is nonshrinkable.

Proof. As we saw in the preceding proof, F of order 4 and nontree-realizable
implies that no index of D may be pendant. Moreover, since compactification does
not alter relations among the sums S, S., $3 of D, we may (if necessary) compactify
D and obtain a 4-matrix where, for each i, ri--O. By Remark 3.2 this matrix is
nonshrinkable and so is D.

THEOREM 6.3. Let D be an n-matrix and let its symmetrization F be nontree-
realizable. Then D is nonshrinkable.

Proof. By the hypothesis, F has a 4-submatrix F’ which is nontree-realizable. By
Theorem 6.2, the corresponding D’ is nonshrinkable. By Lemma 5.1, D is also
nonshrinkable.

THEOREM 6.4. Let all 3-submatrices of D be shrinkable and the symmetrization
F ofD tree-realizable. Then D is shrinkable.

Proof. Suppose D is nonshrinkable. By the definitions, Lemma 4.1 and Theorem
6.1, we may suppose that, for every index in D, ri 0. By the definition of ri and
the hypothesis on the 3-submatrices, there is, for each i, at least one pair a, b such
that dai d-dib -dab and dbi 4-d dba. We can obviously choose a and b such that di
and dib are basic; by the hypothesis on the 3-submatrices, dg and dib basic imply d
and dbi basic too. Our reasoning proceeds as follows.

Now let b play the role of i; there is at least one pair u, v such that dub d-dbv d,
and dvb + dbu d with dub, dbu, dbv and dvb basic. We distinguish two cases"

Case 1. There is no pair u,v where is one of u or v. This means that
dub + dbv duo, dub + dbu dvu, dib + dbu diu dub + dbi dui > O, dib + dbv div
dob + db-d > 0. An easy calculation shows that, for the 4-submatrix ({i, b, u, v }) of
F, the sum S is strictly greater than $2 and $3 which means that this submatrix and,
consequently, F, are not tree-realizable, a contradiction.
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Case 2. There is v such that dib + dbv div and dub + dbi dvi.
In this case we repeat the reasoning and, unless Case 1 occurs, we form a finite

sequence of indices denoted, without loss of generality, by 1, 2,..., n, 1 and such
that, for all and with the usual convention that n + 1 is 1,

di-l,i + di,i+l di-l,i+l and di+l,i +di,i-1 di+l,i-1.

Starting with 1, let k be the last index in the sequence such that dig
d12 + d23 +" + dk-l,g and dgl =dg,g-1 +" + d32 + d21. Such a k exists (because we
cannot have dig d,g_ + dk-l,k and dkl < dk.k-1 + dk-,l and it is 3 =< k =< n- 1 (other-
wise we would not have dn-x,1 d,-1,, +d,1 and d1,,-1 =dn +d,,,_). Let s k- 1
and/" k + 1;/’ is therefore the first index such that dlj <dk +dkj and dil <dig +dkl.
Using these inequalities, an easy calculation shows that, for the submatrix ({1, s, k,/’})
of F, the sum $2 is strictly greater than 5"1 and 6’3, which means that this submatrix
and, consequently, F are not tree-realizable, a contradiction. This completes the proof
of the theorem.

Rephrasing Theorems 6.1, 6.3 and 6.4, we obtain:
THEOREM 6.5. A quasidistance n-matrix is shrinkable if and only if its (principal)

3-subrnatrices are shrinkable and its symmetrization is tree-realizable.

Acknowledgments. Thanks are due to Professor Eduardo M. de S, from the
University of Aveiro and the Center for Mathematics of the University of Coimbra
and to Professor C. M. Zamfirescu, from Hunter College for many stimulating
discussions.

Note added in proof. We came across the paper by James A. Cunningham, Free
trees and bidirectional trees as representations ofpsychological distance, J. Math. Psych.,
17 (1978), pp. 165-188, where very interesting applications of distance and quasidis-
tance matrices in psychological research are given. Moreover, a nonnegative version
of the Patrinos-Hakimi theorem is also stated and used. However, for the sufficiency
part of the proof (here Theorem 6.4), the author says only that it can be achieved by
induction; since the details are not trivial, we decided to keep them here.
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CONVERGENT REGULAR SPLITTINGS FOR SINGULAR M-MATRICES*

DONALD J. ROSEf

Abstract. A classic theorem of numerical linear algebra (Varga’s Theorem) says that any regular
splitting of an M-matrix, A, is convergent. However when A is a singular M-matrix, such as might arise in
queuing networks, this general theorem needs some modification. We define a class of block splittings, called
R-regular splittings, and show that any R-regular splitting is convergent. Furthermore, given a block
splitting like block Gauss-Seidel but not quite as special, we show how to tinker slightly to make the splitting
convergent. We show also that some natural splittings require no tinkering at all. In an algorithmic
context, our results indicate how to choose and oider the blocks in a block iterative method for solving a
singular M-matrix system of linear equations so as to insure convergence of the method.

1. Introduction. Consider an n xn matrix Q (qij) with qij < 0 for ; j and

-1 qij 0 for each 1 < j < n. We call such matrices Q-matrices since they arise
in the analysis of queuing network. Q-matrices are a subclass of the class of singular
M-matrices (defined below). It is clear that a Q-matrix is singular since all columns
sum to zero.

An application of the main results presented here says that block Gauss-Seidel
iteration can always be made to work, perhaps after some tinkering, for solving an
irreducible singular M-matrix system of linear equations. Gauss-Seidel iteration, and
its overrelaxed generalization SOR, have been used by Kaufman [KGW], [KSM] to
solve significant problems involving Q-matrices. In these problems n is large, the Q-
matrices are sparse, and iteration is often the only feasible approach.

Let A (aij) be an n xn matrix with aij 0 for ; j. If A is nonsingular
and each entry of A- is nonnegative, written as A -1 >/ 0, then A is said to be a
nonsingular M-matrix. These matrices arise in numerous applications (see [BP] and
IV]) ranging from the numerical solution of partial differential equations to
mathematical economics, and they have motivated research in pure and applied linear
algebra for nearly a century. When confronted with a nonsingular M-matrix life is,
at least in theory, quite pleasant.

Any M-matrix A has nonnegative diagonal entries (all aii 0); a nonsingular
M-matrix has a positive diagonal. In fact, A is a nonsingular M-matrix if and only if
all principal minors of A are positive. For any n xn matrix C, let p(C) ---maxlxl,
where the maximum is taken over the set of eigenvalues of C. Another
characterization of nonsingular M-matrices, and one that allows a convenient
generalization to the singular case, says that A is a nonsingular M-matrix iff

(1.1a) A sI-B

where

(1.1b) s > p(B)

and

(1.1c) BO.
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For a nonnegative matrix B as in (1.1c), it is classic that p(B) is an eigenvalue of B.
See [BP, Chapts. 2, 6]. Many authors use (1.1) as the definition of a nonsingular
M-matrix and define a singular M-matrix (sM-matrix) as in (1.1) with (ll.b)
replaced by

(1.1d) s p(B)

The iterative methods we will consider are induced by regular splittings of A.
These iterations take the form

(1.2) MXn+l Nxn+b

to attempt to solve Ax b. Here A is split as

(1.3) A M-N, M- >/ O, N>/0.

Equation (1.3) defines a regular splitting. Any regular splitting of a nonsingular M-
matrix is convergent; that is, lim xi x where Ax b (Varga’s theorem).

In contrast, a regular splitting of an sM-matrix is not always convergent. Indeed
the well known Gauss-Seidel method, where M is the lower triangle of A, may fail.
We show how to remedy this situation. Our main result is that any R-regular
splitting of an irreducible sM-matrix is convergent. An R-regular splitting, defined in

3, is a block splitting, like block Gauss-Seidel, but more general. Given a choice of
diagonal blocks, there always exist block orderings, that is, block permutation matrices
P, such that PAPr has an R-regular splitting with the same diagonal blocks.

In 2 we define terms and present some known results about sM-matrices we
will use later. Section 3 discusses block splittings in general and R-regular splittings
in particular; our main results are also given here. Section 4 contains most of the
details; the discussion there is mainly graph-theoretic.

We conclude this section with a folk-theorem; that is, a result surely known but
not easily found (see [G] for pieces of the result). It seems worth the telling, however,
since it relates sM-matrices, Q-matrices, and column stochastic matrices, T (tij),
such that

tij---1, <j < n.
i-1

Let us call a diagonal matrix D (dij) (with dij 0 for ; j) diagonal positive if
each dii > O.

THEOREM 0. The following are equivalent:
(i) A is an irreducible sM-matrix;
(iia) A D IQ, D diagonal positive and Q an irreducible Q-matrix, and
(iib) for any such Q, QD2-’-I-T, D2 diagonal positive and T irreducible

column stochastic;
(iii) A D (I- T)D 2, D,D2, T as in (ii).

Proof. An n xn matrix is irreducible iff its graph, defined later, is strongly
connected.

(i) implies (ii). Let A --sI-B, s --p(A), B > 0 and irreducible. Hence Br

has a positive eigenvector, x > 0, such that Brx sx ([V, p. 28], [BP, p. 27]). Let
D1 be diagonal positive with dii xi. Then x De, e (1,1 1) r, and
BrDe sDe so e r (DTA) 0; i.e., DTA Q, an irreducible Q-matrix.
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Any irreducible Q matrix has positive diagonal entries, say qii. Let D2 be
diagonal positive with dii--qi71. Then QD2---I-T, T > 0 irreducible and column
stochastic since O erQD2 er(I-T).

(ii) implies (iii). Immediate.
(iii) implies (i). An irreducible column stochastic matrix, T has p(T) and

hence a positive eigenvector Tx---x. Thus [DI(I-T)D2](Dlx)--0; i.e., there
exists a y > 0 such that Ay 0. So A is singular. Also A D1 (I-T)D2 sI-B,
B >/ 0 and irreducible for s---max dii where D---(dij) D1D2. But By =sy so
s p(B); see [BP, p. 28]. []

2. Preliminaries. Given the definition of an M-matrix as in (1.1), it is not
surprising that our results will depend upon the theory of nonnegative matrices. We
will borrow as needed from this theory as well as from the theory of sM-matrices
given in [BP, 6.4, 7.6]. Some graph theory will also be necessary.

Let A (aij) be an n xn matrix. The graph of A, G (A) (I/,E), will be a
directed graph with n vertices V- {vi} and directed edges (vi,vj) E E iff aij # O.
For an edge e (vi,vj), vj is adjacent from vi while vi is adjacent to vj. The
subscript on vi implicitly assigns an ordering to the vertices in F. Each such
ordering is a bijection V {1,2 n} and represents a matrix in the class PAPr, P a
permutation matrix. The unordered graph represents the whole class PAPr.
Sometimes we refer to a vertex v E V as {1,2 ,n}.

An x,y path in G of length 1 > 0 is an ordered set p [vl,v2 ,vt+] such that
vi is adjacent tovi+, < < 1. IfVt+l=Vl, p is calledacycle. A loop is a cycle
of length 1, i.e., p [Vl,Vl]. A trivial graph consists of a single vertex and no
edge (no loop). If S

_
V, the subgraph induced by S is

G[SI-- (S,E[S]) where E[SI {(x,y) 6 Elx,y S}

Usually our matrices will be irreducible. A matrix is irreducible if G(A) is
strongly connected; that is, iff for any x,y fi V there exists an x,y path. We will also
discuss p xp block matrices A ---(Aij), < i,j < p, with square diagonal blocks.
The block graph G(A) (V,E) will be a directed graph with p vertices V {Vi} and
directed edges (V,.,Vj) iff Aij # O. Each V,. can be considered as the vertex set in the
induced subgraph G[Vi]---G(Aii). Each edge (Vi,Vj) fi E can be considered to be
the set of directed edges from V/ to Vj; i.e., {(vl,vt) EIv V,.,v V}.

Recall that any reducible matrix A can be permuted into reduced triangular
block form; i.e., there exists a permutation matrix P such that

 ll

A A
pApT ..

lAp Ap2 App

where each Aii is square and irreducible or a x null matrix (see [BP, pp. 39,261] or
[V, p. 46]). Graph theoretically the G (Aii) are the strong components of G (A); they
are trivial or strongly connected.

Let A be an n xn irreducible sM-matrix with regular splitting A M-N; that
is, M nonsingular with M-1 >/ 0 and N >/ 0. The matrix H --M-N is called the
iteration matrix of the splitting. The iterative method induced by the splitting
A M-N is convergent iff limt-.** Hi exists (see [BP, pp. 197-198]; we have used
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"convergent" rather than "semiconvergent"). In this case we call the splitting a C-
regular splitting. To determine whether a splitting is C-regular we must examine the
structure of the spectrum of H.

PROPOSITION 1. Let A be an irreducible sM-matrix and A--M-N be a
regular splitting. Then there exists a nonsingular matrix S (reducing H to Jordan
form, say) such that

It M-1N S-1 I S
0

where o(K) < and the possibly empty upper triangular matrix ei has diagonal
entries o ; with Iol 1. Furthermore, H is C-regular if and only if ei does not
exist; i.e.,

with p(K) < 1.

Proof This result is known but is not exactly stated as such in [BP]. The first
part uses irreducibility and follows from [BP, Thms. 6.4.12 (F3), 6.4.16 (3); see also
pp. 152-153, 197]. The second statement follows directly from [BP, Lemma
7.6.9]. r

So we must get rid of e iO’, this is done combinatorially. We will examine the
graph G(H) of the nonnegative matrix H. Usually G(H) will not be strongly
connected. It is never strongly connected for any point or block Gauss-Seidel method.

Let G be nontrivial and strongly connected and define the cycle index #(G) as
the greatest common divisor (god) of the length of all cycles of G. If #(G) we
say G is primitive; for general G, we say G is strongly primitive if each strong
component is primitive or trivial. We apply the theory of nonnegative matrices (V,
Thm. 2.3] or [BP, pp. 32-35]) to obtain

PROPOSITION 2. For A and H as in Proposition 1, H is C-regular if G (H) is
strongly primitive. If there exist a nontrivial strong component of G and no such
component is primitive, H is not C-regular.

Proof As discussed above, H can be permuted (PHPr) into block triangular
form (either upper or lower) where the diagonal blocks correspond to the strong
components of G(H). Hence the eigenvalues of H are the eigenvalues of the
nonnegative diagonal blocks. They have graphs G with cycle indices t(Gi) if they are
nontrivial. Any trivial G corresponds to a eigenvalue hi--0. If G (H) is strongly
primitive, each irreducible diagonal block Hk with nontrivial graph Gk has a simple
positive eigenvalue p(Hk). Furthermore p(Hk) < is the unique eigenvalue of this
maximum modulus. So ei does not exist. On the other hand if no G(HK) is
primitive (and one is nontrivial) the Hk with p(Hk) has other eigenvalues on the
unit circle. See the references for more detail. El

3. R-regular splittings. To motivate the notion of an R-regular splitting, consider
the block 2x2 matrix

(3.1) A--- A21 A22
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The corresponding block Gauss-Seidel splitting is

MI1 0 N
(3.2) A M2! M22 0

If A is irreducible, M21 # 0 and N12 # 0. Since the iterative method will involve
solving linear systems with MI and M22, it is reasonable to demand that MI be
irreducible. If not there exists a permutation matrix P such that PIMIP is block
triangular. Hence we can permute A into a form like (3.1) and (3.2) with M
irreducible but smaller than the original MI of (3.2). Notice that M22--A22 and
that we can continue the process just described (on A22) until A has p, say,
irreducible diagonal blocks Mii, < < p, and corresponding conformable off-
diagonal blocks, Mij. Computationally, it does not matter where the off-diagonal
blocks go; they represent matrix multiplications. The diagonal blocks represent linear
equations solving, and they stay on the (block) diagonal under appropriate (block)
permutations PAPT.

We formalize the preceding discussion as follows. Let A (Aij) be an
irreducible block pxp matrix (1 < i,j < p) of order n. A block splitting of A is a
splitting A--M-N where M (Mij) and N (Nij) are block p xp matrices
conformable with the block structure of A and p > 1. For example, when
M D-L and N--U where D, -L, and -U are the block diagonal, block lower
triangle, and block upper triangle of A, the splitting, A M-N, is the block
Gauss-Seidel splitting. A special case is the point Gauss-Seidel splitting where
p n and D is diagonal.

Any block Gauss-Seidel splitting (with irreducible diagonal blocks) arises from a
partitioning of V in G (A) (V,E) into disjoint subsets Mi, < < p (user chosen,
say) such that the induced subgraphs,

(3.3) Gi (Mi,Ei), Ei {e (v,w) 6- E Iv, w 6. Mi}

are strongly connected. If the Mi chosen are not strongly connected, find the strong
components of each [AHU, 5.5] and start over with a larger p. These Mi are the
vertices of a graph G-- (M,E) with p vertices and edges (Mi,Mj) iff (v,w) 6. E for
some v 6. Mi, w 6. Mj. Now any (re)ordering of the vertex set M induces an
ordering on the vertices in the Mi by ordering them consecutively. This in turn,
induces an ordering on all of V. The final ordered graph G (V,E) is G (PAPr) for
some permutation matrix P. Furthermore the G --(mi,Ei) are G (Oii), where Du
are the diagonal blocks of the induced Gauss-Seidel splitting. For nonsingular M-
matrices any Gauss-Seidel splitting is convergent; for sM-matrices we must order the
vertices in M appropriately.

The splittings we will consider are somewhat more general than block Gauss-
Seidel splittings. We will require M--D-L, D block diagonal and L >/ 0 strictly
(block) lower triangular. N (Nq) will be nonnegative such that

(3.4) A0 D-L-U(N)

is irreducible where

(3.5) N L(N) +D(N) + U(N)
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and L (N), D (N), and U(N) are strictly block lower triangular, block diagonal, and
strictly block upper triangular, respectively. In short some of the lower triangular part
of .4 M-N may be put into L(N) or D(N). While there may be little gain in
taking L (N) ; 0, D(N) 0 could result from clever sparse LU approaches to
factoring the diagonal blocks. Note that, in relation to (3.4),

(3.6) A (D-D (N)) (L+L (N)) U(N).

If the .4ii of A (A/j) are irreducible, then Ao irreducible implies A is irreducible
since the edges of G(A) contain the edges of G(A0).

Let A M-N be a block splitting of an nn matrix A (Aij), < i,j < p.
We define an R-regular splitting to be a block splitting such that:

(ia) M is block lower triangular with M D-L, D block diagonal and L > 0
strictly block lower triangular;

(ib) N L (N) + O (N) + U(N) > O, L (N), O (N), and U(N) as in (3.5);
(ii) Di-1 > 0, < <p;
(iii) A0 D-L-U(N) is irreducible;
(iv) G(A0) has a monotone cycle (a cycle c---[i,i2 it,i] with il ; i, and

ij > ij+l, < j < l-1).
While conditions (i)-(iv) may appear to be special we claim that they are a

natural generalization of a block Gauss-Seidel regular splitting. Conditions (ia) and
(ii) insure that M-1 > 0; together with N > 0 of (ib) this implies M-N is a regular
splitting of .4. If the Dii are nonsingular M-matrices, as in our setting, Di- > 0 iff

Dii is irreducible. Usually the Dii will be irreducible since the Zii will be irreducible;
as noted above, (iii) then implies that A itself is irreducible. Note that L of
M D-L need not be the strictly lower triangular part of A; L 0, however, since

.40 is irreducible. The monotone cycle condition (iv) may fail for an arbitrary block
splitting. However, since G(A0) (V,E) must have a cycle, cycle vertices of V can be
reordered so this cycle is monotone (the remaining vertices of V can be arbitrarily
ordered). Ordering vertices vj E Vi E V consecutively induces a reordering on the
whole vertex set V of G (A0) and G (A); this corresponds to a (block) permutation
PAPr and PAoPr. Clearly G(Ao) remains strongly connected; however, the blocks in
the original L and U(N) may migrate across the diagonal and, hence, the reordering
also redefines L and U(N). We summarize in

PROPOSITION 3. Let A be an irreducible sM-matrix and A M-N be a block
splitting such that D is the block diagonal of M. Suppose each diagonal block Di is
an irreducible nonsingular M-matrix. Then there exist (block) permutation matrices
P such that PAPr has an R-regular splitting with the same diagonal blocks.

Proof. The conclusions follow from the discussion above. We make a remark. If
D is the block diagonal of A itself and each D is irreducible, then Di is an irreducible
nonsingular M-matrix as shown in [BP, Thm. 4.16, p. 156]. r

Our main result is
THEOREM 1. .4ny R-regular splitting of an irreducible sM-matrix, A, is

convergent. Furthermore, given any block splitting of A, there exist (block)
permutation matrices P such that PAPr has an R-regular splitting with the same
diagonal blocks.

Proof. In the next section we will show that the graph of the iteration matrix, H,
of an R-regular splitting is strongly primitive. The first .statement then follows from
Proposition 2 while the second statement follows from Proposition 3. t2

In analogy with the nonsingular M-matrix case 9 (see [V, p. 92]), we can show



CONVERGENT REGULAR SPLITTINGS 139

that SOR splittings for 0 < o < are R-regular, hence convergent, if the block
Gauss-Seidel case, o 1, is R-regular. However, the monotonicity of o(Ho,) as in [V,
p. 92, eqn. 3.79] is unsettled.

COROLLARY 1. Let A D-L-U be an irreducible sM-matrix with R-regular
splitting M D-L, N U. Then the SOR splitting

(3.6a) Moo 09
-1 (D-oL)

(3.6b) N,-- U + o-l(1-w)D

0 < o < 1, is also an R-regular splitting, hence convergent.
Proof Note M,o D,o-L, Do w-ID, and U(No,) U, D(N,o) o-(1-w)D.

Clearly, A0,--o-D-L-U is irreducible and G(A0,) G(A) so verification of R-
regularity is straightforward, t2

COROLLARY 2. Let Ao be as in the definition of an R-regular splitting, and
write Ao--(Ai). If Ai # 0 and Ai # 0 for some j, then G(A0) has a
monotone cycle. In particular if A M-N is any block (point) Gauss-Seidel
splitting of an irreducible sM-matrix with irreducible diagonal blocks such that
Aij 0 and Aji # 0 (aij 0 and aji 0), then this splitting is R-regular, hence
convergent.

Proof Any cycle of length 2 with two distinct vertices is monotone. The
remark in the proof of Proposition 3 insures that the diagonal blocks Du have
D[[ > O.

Recall that a block splitting must have at least p--2 blocks; for technical
reasons our exposition excludes the case of a single block, M itself, with M- > 0
(each entry positive). Such an M might arise naturally by choosing M to be an
irreducible "submatrix" of A as we see in

THEOREM 2. Any regular splitting of an irreducible sM-matrix A with
M- > 0 is convergent. For example, if M is obtained from A by setting some off
diagonal entries of A to zero and such an M is irreducible, then the corresponding
splitting is regular and convergent.

Proof Let A have regular splitting A M-N, M- > O, N >/ O. Then the
kth column of H M-N has all entries positive or all entries zero, and there exists
a permutation matrix P such that

H1 PHPr Z2 H2

where Zi 0, Hi > 0, 1,2 and Z1 and H2 are nlxnl and n2xn2, respectively.
Thus the strong components of G (H1) consist of n trivial vertices and the complete
graph on n2 vertices, so G (H) is clearly strongly primitive.

For the second statement we have from Theorem 0 that A DQ--M-N, D
diagonal positive and Q a Q-matrix. Thus Q M1-N1, M1 D-1M, N1 D-N,
M1 is irreducible and M is obtained from Q by setting some off-diagonal entry of Q,
say qij, to zero. Note Qre 0 implies Me --Nre >/ 0 with strict equality in the
jth entry. Hence M" is irreducibly diagonally dominant implying Mi-1 > 0 and
M-1 > 0; see IV, pp. 23, 85]. t2

4. Iteration graphs. Let A be an irreducible sM-matrix and write

(4.1) A D-L-U
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where D (dij), L (lij), and U (uij) are diagonal, strictly lower triangular, and
strictly upper triangular nonnegative matrices, respectively. The iteration matrix

(4.2) H (D-L)-IU (I-L1)-IU1, L1 D-IL, U1 D-1U

is called the point Gauss-Seidel iteration matrix.
there is no loss in considering matrices

(4.3) n (I-L)-U.

The second equality of (4.2) says

In this section we study the graph of H, which we call an iteration graph, and relate
it to the graph of A -I-L-U. We will also see that we can reduce more general
splittings to this context.

Let G (V,E) be a graph with ordered vertices V {vi}. A path
P [i1,i2 ,it] will be called monotone if ij >/ ij+l, < j < 1-1; that is, vertices
are nonincreasing along the i,it path. The path p is 1-monotone if P [il,...,it-1] is
monotone and it-1 < it. Thus a 1-monotone path has length >/ 2, and a monotone
cycle is a 1-monotone path with it l.

PROPOSITION 4. Let L (lij) be a strictly lower triangular nonnegative matrix.
Then (i,j) is an edge of G((I-L)-1) if and only if there is a monotone (i,j) path in
G (I-L).

Proof We use induction of the size, k, of the vertex V of G; the case k is
trivial since (1,1) is a loop of both graphs. Write

(4.4) (I-L) -ll (I-L1)

where both the (n- 1) x matrix 11 and the (n- 1) x (n- 1) strictly lower triangular
matrix L1 are nonnegative. Note that G (I-L1) is the subgraph of G induced by the
vertex set V1 {2,3,...,n}. Now

(4.5) (I-L)- 0

(I-L1)-ll (/-L 1) -1

If j the result follows from the induction hypothesis applied to the k n-1
vertex graphs G (I-L 1) and G ((I-L 1)-1).

Suppose j and let (I-L1) -1 (tkl) and (S2,...,Sn)T; note both (I--L1)-and Ii are nonnegative. Then (i,1) E E of G((I-L) -1) if and only if tipSp 7 0;
that is, iff there is a monotone i,p path (corresponding to tip) followed by an edge
(p,1), p > 1. Thus (i,1) E E iff there is a monotone (i,1) path in G (I-L). r

PROPOSITION 5. Let L be as in Proposition 4 and U-- (uij) be strictly upper
triangular and nonnegative. Then (i,j) is an edge of H-- (I-L)-Iu iff there is a
1-monotone (i,j) path in G (A I-L-U).

Proof. Let (I-L)-1-- (/i.), H--(hij), and consider the entries hij ,likUkj,
k < min(i,j). Thus hij ; 0 iff some lik 7 0 and ukj ; 0; that is, iff there exists a
monotone (i,k) path in G(I-L) and an edge (k,j) in G(U). Since G(I-L) and
G (U) are edge disjoint, this implies hij 0 iff there exists a 1-monotone (i,j) path in
G (A ). []

Note that Proposition 5 implies that any edge (i,j) with < j of G(A) (also
G(U)) is an edge in G(H) since p (i,i,j) is 1-monotone in G(A). In addition
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Proposition 5 immediately implies the following
COROLLARY 3. If G(A) has a monotone (i,i) cycle, then G(H) has a loop

(i,i).
PROPOSITION 6. Let A,L,U, and H be as in Propositions 4 and 5. Then there

exists an i,j path p [kl,k2,..o,kl+l] of length >/ and k < kl+l--j, called a
special (i,j) path, in G (A) iff there exists an (i,j) path in G (H).

Proof. Both parts are by induction on path length l. Suppose the special i,j
path, p, exists in G(A). Ifp has length then (i,j) is an edge of both G(A)
and G (H). If >/ 2 let q be the first index such that kq-1 < kq. If q l+1, then p
is 1-monotone and (i,j) is an edge of G(H). Otherwise Pl [k,k2 ,kq] and
p2-- [kq,...,kt+l] are both shorter special paths in G(A), hence (kl,kq) and (kq,kt+l)
paths exist in G (H) by induction. Thus G (H) has an (i,j) path.

Conversely suppose p [kl,k,...,kt+l] is an i,j path in G(H). If 1, (i,j) is
an edge of G(H) hence a 1-monotone (i,j) path exists in G(A). Otherwise
p [kl,...,kq] and P2- [kq,...,kt+], for any 2 < q < l, are shorter paths in G(H)
implying, by induction, special paths in G (A) and, hence, a special (i,j) path. D

Consider (4.1) and (4.2) where A has a block Gauss-Seidel splitting
A- (D-L)-U. Then, as in (4.2), the iteration matrix H--(D-L)-Iu can be
rewritten as H (I-L1)-1U where L1 D-1L and U1 D-1U. In the present
context D-1 will be a block diagonal matrix with full diagonal blocks since Di71 > O.
This means that L and U1 will be less sparse than L and U. More precisely, if
Lij(Uij) has a nonzero in the kth column, then oilLij (Di[luij) has its kth column
completely nonzero (in fact, positive). We will use Propositions 5 and 6 to examine
the relation between G (A ) G (A I-L1-U1) and G (H).

Consider a block square matrix A and graphs G(A) (V,E) and
G(A)--(V,E). Let (Vi,Vj) E, ; j. Then (v,v) E for some Vk Vi and
v V. We will say that G(A) faithfully represents G (A) if: (x,y) E for some
x Vi, y Vj with ;j implies (v,y) E for all v Vi. It is clear from our
discussion above that G(A ) faithfully represents G (A 1) when A1 I-L1-U1 and

(4.6) L1 D-1L, U1 D-1U

If G(A)=(V,E) is strongly connected, then G(A)---G(A) is strongly
connected but G (A 1) is usually not. Note that in G (A 1) no vertex x E V,. is adjacent
to any vertex y E Vi except y x; that is, the subgraphs of G (A 1) induced by the Vi
contain ki nonadjacent loops where Di is ki ki. For each V,. let
IV,. {w Vil(x,w) E,x Vj, j}; Wi can be viewed as the set of input
vertices to Vi in G (A 1). The structure of G (A 1) is as follows.

PROPOSITION 7. Let A D-L-U and A1 I-L-U1 with D block diagonal,
DiV > 0 and >/ 2, L and U as in Proposition 5, and L1 and U1 as in (4.6). Then
G(A ) faithfully represents G (A 1). If there exists an x,y path in G (A) for x Vi
and y Vj, j, then there exist x,y paths in G(A1) for all x Vi.
Furthermore, if G(A) is strongly connected, the subgraph of G(A1) induced by
S JiWi is strongly connected; each vertex v V-S is a strong component loop
adjacent only to a nonempty set of vertices in S.

Proof The first statement summarizes the previous discussion.
Suppose there exists an x,y path in G(A) with x V,.,y Vj, ;j. Then

there exists a Vi,Vj path in G(A) --G(A1), say p [Vi Vk,,Vk,...,Vk, Vj], with
each vertex Vk, distinct. Since G(A 1) faithfully represents A1, each vertex of Vk, is
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adjacent to the same vertices of Wk,/, in G (A 1). Hence x,y paths exist in G (A 1) for
all x E V/.

To show that the subgraph of G (A 1) induced by S is strongly connected we need
only consider anyx E Wi c V. andy Wj with ;j since > 2. An x,y path
exists in G (A) implying, as shown above, an x,y path in G (A 1) using only vertices in
the Wk.

Since G(A1) is strongly connected and faithful each vertex in V,., and hence
Vi-W., is adjacent to each vertex in some Wj, ; j. Finally, since distinct vertices
in Vi are not adjacent and since no vertex in Vi-Wi is adjacent to any Vj-Wj, ; j,
by definition of the IV,., each vertex in V-S is a strong component adjacent only to
vertices in S. rq

We see now that for strongly connected G (,4) and A1 as above, the iteration
graph G (H), H (I-L 1) -1U1 has a structure like G (A 1).

THEOREM 3. Let A and A--I-L-U be as in Proposition 7 with G(A)
strongly connected and H (I-L1)-U1. Then G (H) has a unique nontrivial strong
component, C---(Z,F). Each vertex v V-Z is a trivial strong component
adjacent only to a nonempty set in Z.

Proof We combine the results of Proposition 7 and Proposition 6 applied to
G(,41). Note first that S of Proposition 7 has a least two vertices; since G[S] is
strongly connected, there exists a special k,k path (cycle) and hence a k,k cycle in
G(H) where k ---max(iliS). Let C--(Z,F) be the strong component of G(H)
containing k. Let x V-Z and y E V. We show that if there exists an x,y path in
G (H), then y fi Z.

Note that the structure of G (A1) implies that special v,k paths exist in G (A 1)
for all v fi V. Hence there are v,k paths in G (H) for all v fi V. Suppose there is an
x,y path in G (H); i.e., a special x,y path in G (,41). Then x and y can be restricted
to the set S since there are no x,y paths in G (A 1) for y V-S (except loops) and
any x,y path for x V-S, y S implies an x,y path where x fi S and y fi S by
Proposition 7. Furthermore this x,y path is a special x,y path since vertices in any
Vj are ordered sequentially. So impose this restriction and note that since G I[S is
strongly connected there exists a k,x path in G (,41). Combining this k,x path and
the special x,y path implies a special k,y path in G (,41). Hence there is a k,y path
in G (H), as well as the y,k path, so y Z. ca

The structure of G (H) is further revealed by the following observation. If any
w E IV,. of Proposition 7 is in V-Z then IV,. c V-Z and hence Vi c V-Z. This
follows since the vertices in the Vi are ordered sequentially, and if there is no special
k,wi path for some wi W1 there is no special k,wi for any wi fi W. Clearly, there
is no k,v path for v fi V,.-W,. at all.

So far we have considered the setting A --D-L-U where D is block diagonal
and L and U are strictly block triangular. We now consider more general block
splitting, A (D-L)-N, as discussed in 3 with D and L as before and N as in
(3.5). We write

(4.7) N L (N)+D (N)+U(N)

and

(4.8) N1 D-N =-- LI(N)+DI(N)+UI(N)
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L (N) and Lt (N) are strictly block lower triangular, D (N) and D1 (N) are block
diagonal, and U(N) and Ut(N) are strictly block upper triangular. All these
matrices are nonnegative as are L, D, and Lt D-1L. Note that we may write

(4.9) (I-L 1) -1 I+L2 L2 " 0

Theorem 3 provides the structure of H1 (I-L1)-IU(N) where G (A) is strongly
connected. We need to examine H (I-L)-INt; observe that

(4.10) H Ht+Hv.+H3

H1 as above, and,

(4.11) H2---- (I+L2)LI(N)+L2DI(N)

(4.12) H3--- Dl(N)

Note that H2 is strictly block lower triangular, and recall that H3 is block diagonal
with nonnegative diagonal blocks, say H3i--Di-ftDu(N), as specified in (4.7) and
(4.8). An important point is that the entire kth column of H3i, especially the k,k
diagonal entry, if any entry in the k th column of Du (N) is positive.

Graph-theoretically, the situation is as follows. G(H) (V,F1) is a graph as
described by Theorem 3. To this graph edges F2 and F3 will be added (unioned)
corresponding to edges in G (H2) and G (H3) to produce G (H). Note that G (H2) is
acyclic; even more, edges in F. are of the form (vi,vj), vi E Vi and vj Vj, # j,
the Vk as in the discussion surrounding Theorem 3. Since G(H2) is acyclic, the
added edges F2 will cause no cycles between the vertex sets Vi c V-Z, although
some of the vertices in these subsets may merge into the strong component containing
Z. Still there remains only one nontrivial strong component in G (V,F tO F2).

Consider now the addition of the edges in F3 to G. Again we need only be
concerned with vertex sets Vi c V-Z. Suppose some edge (x,y) fi F3 causes a cycle
when added to G, y Vj c V-Z, say. Then there is a positive entry, say dkt, of the
matrix Djj (N) with y represented by the column index l, and hence H3i (hij) has
hkt 0 for all k. Thus (x,y) . F3 for all x Vj, including the loop (y,y). This
means that any new strong components caused by adding F3 to make the final graph
G (H) will be primitive. We summarize the situation in

PROPOSITION 8. Let A--D-L-N and At I-L-N, D and L as in
Proposition 7 and N and N1 as in (4.7) and (4.8). Then G (H), H (I-LI)-IN, is
strongly primitive if G(H), H (I-L1)-UI(N) is strongly primitive.

We are now in a position to complete the proof of Theorem 1, 3. We will show
G (H) is strongly primitive where

H ---M-1N (D-L)-IN (I-Ll)-tN,

N1 as in (4.8).
Proof of Theorem 1.
[1] The matrix Ao---D-L-U(N) of condition (iii) in the definition of an R-

regular splitting will play the role of A in the application of Theorem 3.
A I-Lt-U(N). Since A0 is irreducible, G(HI), H (I-L)-IU(N) has the
structure of G (H) of Theorem 3.
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[2] We show G(H) is strongly primitive. First recall that G(A0) has a
monotone cycle and note G(A0)--G(A). This implies that G(A) also has a
monotone cycle since vertices in the subsets Vk of Proposition 7 and Theorem 3 are
ordered sequentially. Applying Corollary 3 with A --A insures that G(H1) has a
loop. Theorem 3 asserts that this loop must be in the nontrivial strong component of
G (HI). Hence G (Hl) is strongly primitive.

[3] By Proposition 8 G (H) is strongly primitive where H (I-L)-N. rq
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THREE VERSIONS OF A GROUP TESTING GAME*

F. K. HWANG

Abstract. We consider a game between two players G and H such that G is to choose a subset from
a given set and H is to identify G correctly by using a sequence of symmetric group tests to gather
information. We study three versions of the game varying in degrees of restrictions imposed on G in
choosing the subset. Namely, in the first version, G assumes no restriction; in the second version, G can
choose only the cardinality of the set; and in the third version, the choice is random. We determine the
value of the game for the first version and give strategies for H which yield good upper bounds on the
value of the game for the two other versions.

1. Introduction. We introduce a game which is derived from the symmetric group
testing scheme as proposed by Kumar, Sobel and Blumenthal [1]. There are two
players in this game. To emphasize their different roles, we will call them G (a female)
and H (a male) respectively. The equipment for the game can be assumed to be a
set of n coins; all look alike except that some coins are genuine and some are
counterfeit. We will denote the set of coins by N and the counterfeit subset by D.
Then the game is for G to choose D and for H to choose an algorithm which identifies
D, where an algorithm here means a sequence of symmetric group tests. A symmetric
group test can be applied on any subset of coins g, and there are three possible
outcomes, labeled genuine, counterfeit and mixed. The genuine outcome reveals that
all coins in g are genuine. The counterfeit outcome reveals that all coins in g are
counterfeit, and the mixed outcome reveals that g contains some genuine and some
counterfeit coins, but is otherwise ambiguous. Note that H can always identify the
set D correctly by using the algorithm which tests the coins one by one. Therefore,
we assume that H chooses from only those algorithms which identify D correctly,
and an algorithm is evaluated by the number of tests it uses.

The game can be played in three different ways:
(i) G is almighty (A-version). In this version G always knows in advance what

algorithm H selects and G makes sure that the set D is chosen in such a way that it
is most unfavorable to the particular algorithm chosen. In game theoretic terminology,
the payoff to G given T is

max f(D, T),
D

where f(D, T) is the number of tests consumed by T when D is the counterfeit subset.
The value of the game to G is

V(A) min max f(D, T).
T

(ii) G is just (J-version). In this version G wants to play a fair game and therefore
chooses D without using her prescience power. Since the coins all look alike to H,
G, by relinquishing her foresight, has also no reason to distinguish the choice of one
subset over another for D as long as they have the same cardinality. Therefore, we
can consider the payoff to G given T as

max f(d, T).
d

* Received by the editors November 18, 1980, and in final revised form March 25, 1983.- Bell Laboratories, Murray Hill, New Jersey 07974.
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f(d, T) is the expectation of f(D, T) over all D with cardinality d. The value of the
game to G is

V(J) min max f(d, T),
T d

(iii) G is merciful (M-version). In this version G does not choose D to maximize
f(D, T). Instead, she chooses D randomly from all subsets of N and informs H so.
Strictly speaking, a game in the game theoretic sense no longer exists when G does
not act as an adversary of H. But we use the same terminology as before. The payoff
to G given T is now simply the expected number of tests:

El(D, T)= E --f(D, T)
D_N

(f(d
d=O

We also define

V(M) =rnn f(d, T).
d=O

In this paper we study all three versions of the symmetric group testing game.
We first prove that V(A)= n. Then we give two algorithms for the J-version and
study their payoff functions. We also give an algorithm which we prove to be near
optimal and which we conjecture to be optimal for the M-version. Finally we mention
that the M-version can be generalized to include the binomial population case studied
in [1]. We give an asymptotic analysis for two algorithms for the binomial case.

2. Some preliminary remarks. A tertiary tree is a rooted tree such that each node
has indegree one (except the root, which has indegree zero), and outdegree at most
three. Nodes with outdegree zero are called terminal nodes and nodes with positive
outdegrees are called internal nodes. The path for a node v is the alternating sequence
of nodes and links connecting the root with v, but not including v. The length of a
path is the number of nodes in it. The sum of all terminal node path lengths is also
known as the cost of a tree. Let C(T) denote the cost of a tree T rooted at v with
n terminal nodes. Let v, 1, 2,...,/’,/’_-< 3 denote the nodes at the other ends of
the/" outlinks of v and let T, 1, 2,..., h, denote the subtrees of T rooted at v.
Then it can be easily verified that:

THE DECOMPOSITION LEMMA. C(T) Y= C(T/) +/,.

A symmetric group testing algorithm can be represented by a tertiary tree where
each internal node v is associated with a test g(v) and the three outlinks of v are
associated with the three possible outcomes of the test. The test history at a node v
is the sequence of tests and outcomes associated with the path for v. Any subset of
N which is consistent with the test history at v is called a solution point at v. S(v),
the set of all solution points at v, is called the solution space at v. Note that the solution
space at any terminal node must consist of a single solution point.

From now on an algorithm will always be interpreted in its tree form. Suppose
that H chooses the algorithm T and G chooses the counterfeit subset D. The number
of tests needed to identify the n coins is simply the path length of the terminal node
v of T with S(v)= {D}. The payoff to G is then the maximum path length of T for
the A-version, and the average path length of T for the M-version. For the J-version,
let l(d) denote the average path length over all terminal nodes v such that S(v)
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consists of a solution point with d elements. Then the payoff to G is the maximum
of l(d) over all d.

Let T denote an algorithm for identifying the counterfeit subset in a set of n
coins. Since the solution space of the root of T contains 2" points and each test is at
most a 3-partition, the maximum path length of T is at least flog3 2hi, where [x]
denotes the smallest integer not less than x, and the average path length is at least
log3 2 .631 n. Define

[log3 2"
log3 2"

for the A-version,
for the J- and the M-versions.

Then In is a lower bound for the value of the symmetric group testing game. We call
it the information bound.

An algorithm is called regular if it satisfies the following three conditions:
(i) A test will not be performed if the outcome is known in advance,
(ii) No test will include coins already identified,

(iii) Two coins known to have the same identification will not be included in the
same test.

It is clear that any irregular algorithm can be made regular without increasing
the number of tests for any D chosen. Therefore, from now on, we assume that we
only deal with regular algorithms. Note that condition (iii) implies that we can never
rule out the possibility of a mixed outcome for any test involving more than one coin.

3. The A-version. In this section we prove that V(A)= n, the number of coins
in the given set N.

THEOREM 1. In the A-version, n tests are necessary and sufficient to identify n
coins.

Proof. The sufficiency of n tests is immediate, since this can always be achieved
by testing each coin individually.

To show that n tests are required, consider the variant of the problem in which,
whenever a "mixed" outcome is obtained, G also provides H with a specific pair of
coins that have opposite identifications within that mixed group (but without specifying
which is genuine and which is counterfeit). Certainly this cannot increase the maximum
number of tests required, since H now has more information. We shall show that
even in this case, given any algorithm T, there exists a consistent sequence of responses
for G that forces at least n tests to be used.

The strategy that G uses is essentially to respond "mixed" whenever possible.
In order to keep track of the responses made so far and their consequences, G
maintains a graph structure, whose vertices correspond to the unidentified coins, plus
the sets of coins already identified as genuine and counterfeit. Two vertices in the
graph will be joined by an edge if and only if they are known to have opposite
identifications. Thus, by transitivity, any two vertices connected by a path with an
odd number of edges must have different identifications and hence will be joined by
an edge. It follows from this that each connected component of the graph will be a
complete bipartite subgraph.

Now we describe how G will respond to each test in sequence and how the graph
will be altered in the process. If a single coin is tested, then G responds "genuine".
At this point all coins in the same component with that coin have been identified
(coins on the same side of the bipartite graph are genuine and coins on the other side
are counterfeit), so the entire component is removed from the graph.
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If a group test is applied, the regularity conditions imply that it must involve
coins from more than one component. In this case, G responds "mixed" and chooses
two coins from different components that she informs H have opposite identifications.
This adds to the graph the edge joining the corresponding two vertices and all edges
that follow from this, merging the two components into a single complete bipartite
subgraph.

It is now a simple observation that each test can only reduce the number of
connected components in the graph by 1. Since the graph initially has n connected
components, each an isolated vertex, and since the last test must reduce the number
of connected components to zero (all coins identified), it follows that at least n tests
are required. The proof is complete.

Notice that, if H is restricted to algorithms that test only one or two element
sets, then he will be in a situation where a "mixed" outcome automatically provides
a pair of oppositely identified items. Thus, in this case, the graph structure described
in the proof provides a particularly convenient way for H to keep track of what he
knows from the tests performed so far. In the following sections we will be especially
interested in the class P of such testing algorithms, and we will see that this viewpoint
is a useful one.

4. The/-version. We give two algorithms, both in class P, for the J-version.
Assume that the n coins are labeled by the numbers 1 to n. The chain algorithm:
(i) Test coins 1 and 2 as a pair.
(ii) Suppose the current test is on coins and + 1. If the outcome is mixed, test

the pair of coins + 1 and + 2 next; if not, test the pair of coins / 2 and / 3.
The star algorithm:

(i) Test coins 1 and 2 as a pair.
(ii) Suppose the current test is on coins and j with </’. If the outcome is mixed,

test coins and j + 1 next; if not, test coins j + 1 and/" + 2 next.
It should be understood that for both procedures, if some coin in the prescribed

pair is not available, then we simply test what is available (and do not test if nothing
is available).

Note that, for both these procedures, all coins which have been tested but not
yet identified belong to the same connected component of the previously mentioned
graph structure. Therefore any test with a nonmixed outcome identifies all coins
previously tested and results in a subproblem with smaller values of n and d. Further-
more this recurrence is bound to happen except in the following two cases (without
loss of generality assume d <-n/2):

(i) 2d- 1 -< n -< 2d for the chain algorithm,
(ii) d 1 for the star algorithm.

These observations allow us to write down the recurrent equations (where the subscript
C is for the chain algorithm, the subscript $ is for the star algorithm and E is for
expectation)’

(Ix denotes the smallest integer -> x),

(n-2i)
Ec(d, n)=

\d + l-i
{Ec(d + 1 i, n 2i) + 2i 1}



THREE VERSIONS OF A GROUP TESTING GAME 149

n-2i)d-1 d-l-i
+E {Ec(d 1 i, n 2i) + 2i 1}

n-l-2i)d d-i
+ _, {Ec(d i, n 1 2i)+ 2i}

[n-l-2i)a-l\d-1-
+ E {Ec(d 1 i, n 1 2i) + 2i}+

where ; 1 if 2d 1 =< n <- 2d, 0 otherwise;

n -2-i)d-i
Es(d, n) Y {Es(d-i, n -2-i)+i + 1}

n -2-i)n-a d-2 1
+ E {Es(d-2, n-2-i)+i+l}+---6n,

where 1 if d 1, and 6 0 otherwise. (It is understood that () 0 for any negative
x or y.) Define

C(d, n Ec (d, n ( nd)
and

Then the recurrence equations for Ec(d, n) and Es(d, n) can be changed into recurrence
equations for C(d, n) and S(d, n) to allow us to work with integral numbers.

Values of C(d, n) and S(d, n) for 0-<_d-<_n <= 10 are given in Tables 1 and 2
respectively (dT-(n) is defined as those d <= n/2 for which E.(d, n) is maximum).

Three conjectures seem to emerge from Tables 1 and 2:
(i) (1/n)E(dc(n), n)n.
(ii) dc(n)= [n/2J([xJ denotes the largest integer <_- x ).
(iii) (1/n)E(ds(n),n)>-(1/n)E(ds(n +2), n).
Table 3 gives values of dc(n), ds(n), (1/n)E(dc(n),n), (1/n)E(ds(n),n) for

11 <= n <-20. The credibility of the above three conjectures is enhanced.
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TABLE
C(d,n)

0 1 2 3 4 5 6 7 8 9 10

0 0 2 2 3 3 4 4 5 5
4 7 12 17 24 31 40 49 60

2 7 18 37 64 102 151 214 291
3 2 12 37 88 176 316 523 816
4 2 17 64 176 400 802 1467
5 3 24 102 316 802 1776
6 3 31 151 523 1467
7 4 40 214 816
8 4 49 291
9 5 60

10 5
dc(n) 0 0 1,2 2 3 3 4 4 5
(1/n)E(dc(n),n) 0 1 .778 .75 .74 .733 .718 .714 .707 .705

TABLE 2
S(d,n)

0 2 3 4 5 6 7 8 9 10

0 0 2 2 3 3 4 4 5 5
4 7 13 18 27 34 46 55 70

2 7 16 36 60 102 148 220 295
3 2 13 36 90 173 323 525 845
4 2 18 60 173 380 788 1423
5 3 27 102 323 788 1778
6 3 34 148 525 1423
7 4 446 220 845
8 4 55 295
9 5 7O
10 5
ds(n) 0 0 1,2 1,3 3 3 4 5
(1/n)E(ds(n),n) 0 .778 .813 .72 .75 .706 .721 .695 .706

TABLE 3
An extended table

n 11 12 13 14 15 16 17 18 19 20

dc(n) 6 6 7 7 8 8 9 9 10 10
(1/n)E(dc(n),n) .700 .698 .6949 .6936 .6912 .6893 .6883 .6875 .6860 .6854

ds(n) 5 5 5 7 7 7 8 9 9 9
(1/n)E(ds(n),n) .690 .696 .6859 .6902 .6835 .6855 .6810 .6829 .6796 .6803
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Furthermore, values in Table 3 throw support to two new conjectures.
(iv) E(dc(n),n)>E(ds(n),n) for n > 11.
(v) ds(n)= 2 [n/4] 1 except for n 1 (mod 4).
For large n, we can divide the n coins into smaller piles, say, ni coins for the ith

pile, and use an algorithm designed for ni coins for the ith pile. Then the expected
number of tests for the n coins is the sum of the expected numbers of tests over all
piles. For example, if each pile contains 19 coins, then

1
max Es(d, n 9 max Es(d, 19) .6796,

n d d

which is less than eight percent over the information bound .631.

5. The M-version. Let P’ be the subclass of algorithms in P in which a single
coin is tested only for the last test, i.e., when all unidentified coins belong to the same
connected component. We show that any algorithm in P’ has the same expected
number of tests for the M-version and we derive this number explicitly.

Let T be an algorithm in P’. Suppose that at the internal node v, T tests the two
coins X and Y. Then X and Y must be in separate components by the regularity
condition (iii). Certainly both X and Y can be either genuine or counterfeit. Further-
more, since they are in separate components, their identifications are independent.
Therefore all four possible combinations can occur. We now show that the solution
points which are consistent with each of the four combinations are equinumerous.
Let s be a solution point consistent with one of the four combinations. Let Sx be
obtained from s by changing the identification ofX and all other coins in its component.
Similarly we can define sv and Sxv. Then s, Sx, sv and Sxv all correspond to different
combinations of possibilities for X and Y, and hence the four solution subspaces
corresponding to these four combinations are equinumerous. This implies that a test
of a pair always distributes one fourth of the solution points to each of the genuine
outcome and the counterfeit outcome, and two fourths to the mixed outcome. Since
the cardinality of the solution space at the root of T is 2n, the cardinality of the
solution spaces at all internal nodes must be a power of two. Let f(i) denote the cost
of a tree rooted at a node whose solution space has 2 elements. Then

f(O)=O,

f(1) 2,

f(i)= 2f(i-2)+f(i- 1)+2’ for 2 -< -< n, by the decomposition lemma.

Let F(t) denote the generating function of f(i). A straightforward analysis shows

F(t)
2t

(1-2t)2(1 + t)"

Furthermore, it is easy to verify that

f(n) - n2" +
3

Therefore,

In 2 is a good asymptotic approximation for f(n).
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Note that

f(n)12" 2/3(n2"+[(2"+1)/3J)<li "41

(log3 2)n 2"
.10
.06

for n -> 1,
for n _-> 1 O,
for n _-> 100.

In fact, we conjecture that V(M)=f(n)/2’.

6. Some concluding remarks. We can extend the M-version to cases where G
chooses D with a probability distribution and informs H about it. A random choice
of D is equivalent to a uniform probability distribution. Another simple case is the
binomial distribution in which

n’ p ’(1 p) for all N’ N,

where n’ is the cardinality of N’ and p is the probability of any coin being defective.
This is the case studied in [1]. While several procedures had been proposed in [1],
due to computational difficulties, the expected numbers of tests for these procedures
were given only for small values of n.

Note that when p is small, then the advantage of a symmetric group test over an
ordinary group test (which does not have the counterfeit outcome) is much less since
it is unlikely that all coins in the test group are counterfeit. The large p" case is
mathematically equivalent to the small p" case by reversing the definitions of genuine
and counterfeit. Therefore, the interesting case for symmetric group testing is for p
to be close to .5, or similarly, the number of genuine coins and the number of
counterfeits are close. The algorithms in the class P’ are particularly suitable for such
situations. We now give an asymptotic analysis for the chain algorithm and the star
algorithm.

For n large, both the chain algorithm and the star algorithm can be treated as
recurrent processes where the recurrent points aroe coincident with either a genuine
outcome or a counterfeit outcome. Therefore, the expected number of tests per coin
can be approximated by the ratio

expected number of tests between two recurrent points
expected number of coins identified between two recurrent points

expected number of coins identified between two recurrent points

since 1 + numerator denominator.
For the chain procedure, the denominator equals

2(p2 + q2) + 3(p2q + q2p) + 4(p3q + q3p) + 5(p3q2 + q3p2) +...

2(p 2 + q2)(1 + 2pq + 3(pq)2 +. .)+ 3pq(1 +pq + (pq)2 +...)

+ 2(pq)_(1 +pq + (pq)2 +...)

2_!_p q2 3pq
+ 2(pq)_______z 2 +pq(12+)2)+ )2pq 1-pq (1-pq (1 -pq)

Therefore, the expected number of tests per coin is (1 + 2pq)/(2 +pq).
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For the star procedure, the denominator equals

2(p2 + q2) + 3(p:Zq + q2p) + 4(p2q2 + q2p2) + 5(p2q3 + q2p3) +...
=p(2+3q +4q2+. .)+q(2+3p +4p+. .)

-P2(2-q)7:,--S
q 2(2 if2)(1 3

Therefore the expected number of tests per coin is . Note that

21 + 2pq <=- for all p.
2 +pq 3

Hence the chain algorithm is always better than the star algorithm for n large (actually
it is also true for small n), an interesting contrast to conjecture (iv) of 4.

Another interesting observation is that as the options of G decrease and the
information to H increases from the A-version to the J-version, to the M-version,
and to the binomial population case, the value of the game to H seems to decrease
steadily as suggested from the upper bounds we obtain, i.e., from n to .68 to to
(l+2pq)/(2+pq).

Acknowledgment. The author wishes to thank M. R. Garey for a careful reading
of the paper and useful suggestions.
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PERFORMANCE OF HEURISTICS FOR A COMPUTER RESOURCE
ALLOCATION PROBLEM*
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Abstract. Attention is given to the problem of maximizing the number of pieces packed into a fixed
set of bins whose capacities may differ. Instances of this problem arise in the allocation of computer
resources such as processors and memory. Since the problem is NP-hard, the worst-case behavior of several
approximation algorithms is investigated. In particular it is shown that the asymptotic worst-case perform-
ance bound of the first-fit-increasing rule is 2, while the iterated first-fit-decreasing heuristic can be
implemented so that its asymptotic bound does not exceed {.

Key words, approximation algorithms, worst-case analysis, bin-packing, storage allocation, multipro-
cessor scheduling

AMS subject classification. 68-E99

1. Introduction. In a variant of the classical one-dimensional bin-packing prob-
lem, we seek to maximize the number of pieces packed into a fixed collection of
finite-capacity bins. Motivations for the study of this problem include the desire to
maximize the number of variable-length records stored in a multivolume memory and
to maximize the number of independent tasks which can be executed by a multipro-
cessor system in a given time period.

For the abstract bin-packing model we consider in this paper, it is assumed that
the bins may differ in size. Thus, our problem is mathematically equivalent to the
optimization criteria mentioned above when storage volumes may have unequal
capacities or when processors may differ in speed.

Since it is easily confirmed [GJ] that our problem is NP-hard, we focus our
attention on efficient (polynomial-time) approximation algorithms in an effort to
guarantee near-optimal packings. Worst-case performance ratios are employed to
gauge the relative merit of several packing heuristics. Our research parallels the
pioneering efforts of two earlier publications [CLT] and [CL], wherein the investigation
was restricted to problem instances involving bins of equal size.

The next section introduces the notation we use to discuss and examine the
behavior of packing algorithms. Sections 3 and 4 contain worst-case analyses for the
smallest-piece-first and the first-fit-increasing rules, respectively. We show that each
may asymptotically pack only half the optimal number of pieces, but no fewer. In 5
we study the iterated first-fit-decreasing heuristic. We prove that it can be implemented
so as to guarantee asymptotically packing at least two-thirds the optimal number of
pieces. In the final section we list a few conclusions drawn from this effort.

2. Notation. Let L={pl, p2," ",pN} denote a list of N pieces. Let B
{B1, Be, , BM} designate a set of M bins. We use a function s: L U B - R/ to identify
the size of each piece and bin.

Let nAL6(L, B) represent the number of pieces of L packed into B by an algorithm
ALG. Let no(L,B) stand for the maximum achievable number. We define the
asymptotic worst-case performance bound of ALG as the least real number R such
that, for all L and B, no(L, B)<-RnALG(L, B)+ C where C is some constant.

* Received by the editors March 1, 1982, and in revised form April 20, 1983.
t Computer Science Department, Washington State University, Pullman, Washington 99164.
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We will use the term "increasing" for the more precise but cumbersome "non-
decreasing". Similarly, we will employ "decreasing" rather than "nonincreasing".
ALGx (ALGo) denotes the implementation of ALG in which B is first sorted into a
sequence of increasing (decreasing) bin sizes.

3. Smallest-piece-first. Observe that an optimal packing can, theoretically,
always be constructed using only the no(L, B) smallest pieces of L. Although we
typically cannot afford the time required to generate such a packing, its existence
suggests that assigning the pieces of L in order of increasing size should yield an
effective approximation algorithm.

The smallest-piece-first (SPF) heuristic initially sorts L into an increasing sequence
of piece sizes then assigns each piece in turn to the bin having the least filled space,
with ties broken in favor of the bin having the lowest index. In other words, if we
view B as arranged from left to right, SPF packs L in "horizontal" levels. The algorithm
halts when the first piece is encountered which is too large to fit in any bin. This is
natural, since no other unpacked piece can fit either. SPF is of time complexity
O(N log N), dominated by the initial sort.

It is known [CLT] that when the bins of B have the same size the asymptotic
worst-case performance bound for SPF is 2. That is, as N andM grow large, instances
exist for which the ratio of the number of pieces contained in an optimal packing to
the number in an SPF packing approaches arbitrarily close to 2. We now demonstrate
that relaxing the aforementioned restriction on B has no significant effect on the
worst-case behavior of SPF. It will be shown in the next two sections that the same
cannot be said for some other packing algorithms.

To construct L and B such that no(L, B)= 2nSPFo (L, B), let M N 2k for any
positive integer k. Let s(pi)=S(Bk+i) 1 and s(pk/i)=s(Bi) 1 +e for l=<i <-k and
for some e in the range (0, 1). See Fig. 3.1. It is not difficult to prove that 2 is an
upper limit as well for SPFo’s performance bound, but we turn our attention instead
to SPFx and show that its worst-case bound is slightly better (i.e., has the same
asymptotic ratio but a better additive constant).

l+e

M/2 binsM/2 bins M/2 bins M/2 bins

n spvo (L, B M/2 n o(L, B) M

FIG. 3.1. Packing instance in which n0(L, B) 2nSPFo (L, B).

Using the example described in [CLT, Thm. 1], we display L and B such that
no(L, B) 2nspF,(L, B)- 1. Let N= 2M- 1, let s(B1) s(B2) s(B4) 1, and
let L contain M pieces of size 1/M and M- 1 pieces of size 1. See Fig. 3.2. We now
prove that this bound is tight.
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THEOREM 3.1. For all L and B, no(L, B) <-_ 2nSPF, (L, B) 1.
Proof. First we will show that we need only consider instances in which the SPFt

packing contains no empty bins. Suppose there are empty bin(s), the first of which
is Bi, 1 _-<i =<M. Since s(B1)<=s(B2) <=s(Bi), only the i- 1 _->0 smallest pieces of
L will fit into B1 BE"" I,J Bi in any packing. Thus we may rearrange an optimal
packing so that it leaves B empty as well. We may then delete Bg from B without
affecting nSPFi (L, B) or no(L, B). Repeated applications of this construction remove
all empty bins from the SPFt packing.

Hence nsPF1 (L, B) _->M. Simple capacity arguments guarantee that an optimization
algorithm cannot find room for more than M- 1 additional pieces as large as the first
piece SPF fails to pack.

1/g

M bins M-1 bins bin

n SPF! (L, B) M no(L, B)= 2M-

FIG. 3.2. Packing instance in which n0(L, B) 2nsPFi (L, B) 1.

4. First-fit-increasing. Like SPF, the first-fit-increasing (FFI) rule is an attempt
to insure good results by packing the pieces of L in order of increasing size. But FFI
assigns each piece in turn to the lowest-indexed bin into which it will fit. In other
words, FFI packs L "vertically", a bin at a time. The procedure terminates when it
encounters a piece it cannot pack. Clearly FFI is of time complexity O(N log N).

When all bins must have equal capacity, FFI is substantially superior to SPF.
With this restriction the worst-case performance bound for FFI is (see [CLT]).
Allowing bin sizes to differ has a disastrous impact on FFI: we will show that FFI’s
asymptotic worst-case performance ratio is no better than that of SPF, namely 2.

For an L and B such that no(L,B)=2nFFk,(L,B), refer to Fig. 3.1 of the last
section. It is relatively simple to show that this worst-case coefficient cannot exceed
2, but let us concentrate instead on FFIt since its worst-case bound turns out to be
slightly more attractive (i.e., has the same asymptotic ratio but a smaller additive
constant).

A careful review of the proof of Theorem 3.1 shows that, with minor modifications,
its arguments hold for FFI as well. Hence we know that, for all L and B, no(L, B)<-
2nFFIt (L, B) 1.

We now demonstrate that this bound can in fact be achieved. Let N- 2M- 1.
Select an e in the range (0, 2x-t]. Let s (B1) I and let s (Bj) 2- (2t-i)e for 2 _-</" -<_M.
Let s(pj) 1-(2t-i-1)e for I<_-j_<-M- 1 and s(pi) 1 for M-_<j_-<2M- 1. See
Fig. 4.1.
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2t-3e 2t-4e

B1 B:z B3

1-2e 1-e

BM-2 BM-1 B4

2M-2e 2M-3E

n vvi, (L, B) M

1-4e 1-2e -e

BI B2 B3 BM-2 BM-1

no(L,B)= 2M-

FIG. 4.1. Packing instance in which no(L,B)= 2nFFI,(L,B)-- 1.

5. Iterated first-fit-decreasing. Despite our intuition that a successful approxima-
tion algorithm must pack a sublist L’ containing the N’ shortest pieces of L, we have
observed that the worst-case behavior of both SPF and FFI suffer due to the early
and irreversible placement of the smallest pieces of L’.

Consider then the iterated first-fit-decreasing (FFD*) algorithm. FFD* also sorts
L into an increasing sequence of piece sizes. Next an upper bound on no(L, B), say
n,o, is computed using bin and piece capacities. That is, we sum the increasing sequence
of piece sizes until the inclusion of one more piece would exceed the total capacity
of B. An attempt is made to pack a sublist containing the n,b smallest pieces of L, in
a decreasing sequence of piece sizes, by assigning each piece in turn to the lowest-
indexed bin into which it will fit. If a piece is encountered which cannot be packed,
the largest piece in the sublist is discarded and a new packing attempted. FFD*
terminates when the sublist has been shortened sufficiently to allow all of its remaining
pieces to be packed.

The performance of FFD* has been studied in [CL] when bin capacities are
equal. For this special case, no more than M iterations are necessary, making its time
complexity O(N logN +MN logM); FFD* always packs as many pieces as FFI; its
asymptotic worst-case bound lies in the range [78-, ].

Allowing the bin sizes to differ, it is easy to see that still no more thanM iterations
are required (consult the capacity arguments in [CL, Thm. 2]). Hence the time
complexity of FFD* is unaffected. But the interested reader should have no difficulty
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in constructing packing instances for which FFIo (FFIt) packs more pieces than FFD*D
(FFDt*).

3In the following example, no(L,B)>nFFDS(L,B)--1. Let M 2k- 1 for any
integer k > 1. LetN 3(2k-1) 2. Let s(Bj) 2 +(1/2)i for 2 <_-] <2i+1 and 0<-i <k. Let
s(pj) 2 + ()k-1 for 1 --</" _--<2k-l, let s(pi) 1 + (21-) for 2k-l- 1 + 2 --</" <2k-l- 1 + 2i+1

and 1-< < k. See Fig. 5.1.
Thus we know that is a lower limit on the asymptotic worst-case performance

bound of FFD*o. We have not seriously attempted to establish an upper limit on the
FFDg bound since, as we will soon show, the asymptotic bound for FFD* can be no
higher (and is, we think, likely to be lower).

2 + (1/2)k-,

+ (1/2)k-,

bin 2 bins 4 bins 2k-1 bins

n FFD (L, B) M

2+(1/2)

bin 2 bins 4 bins 2k-1 bins

no(L, B (3M 1)/2

FIG. 5.1. Packing instance in which n0(L, B) > nFFD3(L, B)- 1.

The next example and its accompanying figure depict the worst set of problem
instances we have been able to contrive for FFD*. LetM 4k for any positive integer
k. Let N= llk. Select an e in the range (0,). Let s(B)=2-4e for l<=f<=2k,
s(Bi)=3-6e for 2k <j<=3k ands(Bi)=4 for 3k <j<-4k. Lets(pi)= 1 for l <=j<=5k,
s(pj) 1-e for 5k < j=< 7k and s(pj)= 1- 3e for 7k < j-< l lk. See Fig. 5.2. Thus
no(L, B) 11---8-r/FFD*(L B). Note that this ratio holds for an entire family of instances,
although we can set k- 1, reduce s(B4) to 3 and realize a single instance in which
no(L, B) !8-tn FFD:(L, B) + -.
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.,,1
2k bins

1--E

3e

3e

3e

1-3e

1-3e

k bins

3e

1-3e

k bins 2k bins k bins k bins

n FFD’(L, O 8k no(L, B) lk

FIG. 5.2. Packing instance in which no(L, B) !nFFDt*(L, B).

3THEOREM 5.1. For all L and B, no(L, B) <---nFFD’(L, B) + 1.
Proof. We assume the existence of a counterexample and derive a contradiction.

Suppose there exists a list of pieces L ={pl, p2,""" ,prq} and a collection of bins
B {B1, BE, BM} such that n0(L, B) >-rtFFD*(L, B) + 1. For notational con-
venience assume s(pl) -> s(p2) -->" --> s(pN) and s(Bx) <= s(B2) <--" --< s(Bt). Thus at
each iteration, the FFD* heuristic attempts to pack the sublist {pj, Pj+I,""", pr} for
some 1 <-]<-_N.

Letf represent the index of the first piece examined by FFD* during its next-to-last
iteration. Note that we may assumeN is the index of the last piece examined. Therefore
during this iteration the sublist {Pt, Pr+l,"" ,pr-x} is packed. Letting L’ denote

3{pr, pr+x,""" ,Pu}, it is easy to see that no(L,B)>gnFFO’(L ,B)+ 1. From the set of
all counterexamples we select one with minimum M.

We now restrict our attention to the comparison of an arbitrary optimal packing
of L versus the FFD packing of L’. When no confusion results, the reference to L or
L’ will henceforth be omitted but implied.

For simplicity, normalize piece and bin sizes so that s(pr)= 1 and assume, as we
may, that s(px) s(p2) s(pt-x) 1.

CLAIM 1. The FFD packing contains no empty bins.

Proof of Claim 1. The size of such a bin must be less than s(pu), implying that
it is also empty in the optimal packing. Hence, we can delete the bin from B,
contradicting the presumed minimality of M. El

CLAIM 2. Each bin of the optimal packing contains at least two pieces.

Proof of Claim 2. No bin of the optimal packing can be empty, else we can delete
it from B and delete any pieces it had contained in the FFD packing from both L
and L’, contradicting the minimality of M.

Suppose some bin Bi, 1 <-i <-M, contains a single piece p. in the optimal packing.
Consider where FFD packed p. (or Pr if f <f).

If pi(pr) is packed by FFD in a bin Bk, k -> i, then the FFD packing of Bi must
contain a piece p as large as pi. Suppose we delete B from B and delete any pieces
it had contained in the FFD packing (most notably p}) from L and L’. If the optimal
packing had contained p as well, we move pj (if it remains) to the position formerly
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occupied by p; otherwise we merely delete pj from the optimal packing. Either
construction contradicts the minimality of M.

If pj(p) is packed by FFD in a bin Bk, k < i, then we delete Bk from B, delete
the piece(s) it had contained in the FFD packing from L and L’, and in the optimal
packing move the remaining former contents of Bk to the now empty Bi (since
s(Bk)<=s(Bi)), contradicting the minimality of M.

Finally, if the FFD packing does not contain p(p), it must be that/" N and it
is easy to see that the minimality of M is again contradicted. (3

CLAIM 3. s (pv) > 32-.
Proof of Claim 3. From Claim 2 we know that no(L, B)>-2M. This and the fact

3that no(L,B)>-nFFD’(L’,B)+I implies no(L,B)-nFFD(L’,B)>2M/3. Thus the
optimal packing must find room for an additional 2M/3 pieces, each of size 1. The
FFD packing therefore includes at least one bin Bi, 1 _-<i-M, such that s(B)-s (the
contents of Bi)>-- and hence s(pv)>. [3

As an immediate consequence of the last two claims, we observe that s(B1)> 4

Let us scrutinize the FFD packing. We will use the term k-bin to designate a bin
containing exactly k pieces. Let B1 represent the collection of one-bins and let I
denote the number of bins in B 1.

CLAIM 4. I > 0.
Proof of Claim 4. If I 0, then nFFD(L’, B) -> 2M and simple capacity arguments

imply no(L, B) < 3M. 1
Clearly Bt is the last one-bin (i.e., all one-bins are "left-justified"). Moreover,

each Bi, 1 <- <- I, contains Pr+i-1. We denote the single piece in Bt, namely Pr/t-x, by z.
CLAIM 5. The optimal packing of B 1 requires exactly 21pieces, each of size less

than s(z).
Proof of Claim 5. Immediate from Claim 2 and the fact that 3s(pN)>

s(z)+s(pr)>s(Bt)>-_s(B_l)>-_...>-_s(B). [3
Let J represent the number of pieces in L’-{p} not contained in B1 in either

the FFD or the optimal packing. Let K denote the difference between the number
of pieces the optimal packing places in B-B 1 and the number placed there by the
FFD rule.

CLAIM 6. K <- J/2.
Proof of Claim 6. Suppose B, I < <-M, is a k-bin, k >_-2, of B -B 1. Suppose

further that Bi contains k + r, r _-> 1, pieces in the optimal packing and that less than
2r of them are in the FFD packing of B-B 1. From the optimal packing of Be we
know (k r + 1)s (z) + (2r 1)s (pr) -<- s (B). From the FFD packing of B we know
ks(z)+s(pu)>s(B). Combining these and using the fact that 2s(pv)-s(z)>O, we
conclude that r < 1, a contradiction.

We now complete the proof of Theorem 5.1 by observing that 41/J +K >_-
3no(L, B) > nFFD(L’, B) + 1 => (3I +J 1) + 1 and by Claim 6 we derive I -< 0, contra-

dicting Claim 4. E

6. Concluding remarks. The superior worst-case behavior of FFD* makes it
worth its added complexity. We conjecture that its true performance bound is of the
form no(L, B) <- nFFD*(L, B) + C for all L and B and for some positive constant C.
The proof of Theorem 5.1 was straightforward and should, we hope, leave the reader
with an understanding of how we arrived at the result. This may unfortunately not
be the case for attempts at proving tighter bounds, particularly if one must resort to
the adoption of a weighting argument approach (see, for example, [CGJ], [CL], [DFL]
or [Jo]). In any event, such a proof cannot rely on Claim 3 and hence must deal with
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several bothersome issues including "regular" two-bins which may contain four pieces
in an optimal packing and "fallback" two-bins which may contain three.

Additionally, we remark that for each class of algorithm considered it was
advantageous to first sort B into an increasing sequence of bin sizes. The author has
participated in one other work involving bins of different sizes, [FL], and in that effort
it was similarly profitable to use increasing bin sizes. It would be interesting to learn
of some general result addressing when, if ever, it is more appropriate to arrange bins
by decreasing size.

[CGJ]

[CL]

[CLT]

[DFL]

[FL]

[GJ]

[Jo]
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IT’S HARD TO COLOR ANTIRECTANGLES*

ANDY BOUCHERf

Abstract. The maximum number of elements in an antirectangle of a convex board equals the minimum
number of rectangles it takes to cover that board. It is shown here that the dual of this theorem, that the
minimum number of antirectangles needed to cover a convex board equals the maximum size of any rectangle
of the board, is not generally true.

A board is a finite subset of the set of all unit squares whose corners are integer
lattice points in R e. A board B is said to be (horizontally and vertically) convex if,
whenever two unit squares in B are on the same horizontal or vertical line, all unit
squares on that line between the two are also in B. A rectangle of B is a subset of B
whose members form a rectangle. An antirectangle of B is a subset of B, no two of
whose elements are in the same rectangle.

Chaiken, Kleitman, Saks, and Shearer [1] have shown that, for convex boards,
the maximum number of elements in an antirectangle of B equals the minimum number
of rectangles it takes to cover B (i.e. a 0). The dual of this theorem is that the
minimum number of antirectangles needed to cover B equals the maximum size of
any rectangle of B (i.e. that X w). It is shown here that this dual need not hold for
all convex boards. Specifically, it does not hold for the board in Fig. 1. Notice that

E
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[C

this board is convex and w 144. Now, a covering by antirectangles of any board is
equivalent to a coloring of that board, no two squares in the same rectangle receiving
the same color. So, suppose the board could be colored with 144 colors. Then we may
arbitrarily assign the colored squares of ABCD the colors shown, necessarily no two
being the same. Now, what color may we give square E? Since WXYZ has 126

* Received by the editors July 22, 1980, and in final revised form July 7, 1983. This research was done
at Smith College, supported in part by the National Science Foundation under grant SPI 79 26984.

" Balliol College, Oxford, England.
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squares, and since it cannot use any of the colors 1--18, WXYZ must use all the colors
19-144. But then E, in a rectangle with all the squares of WXYZ, must not be colored
using any of these, i.e. it must use a color among 1-18. Symmetrically, considering
W’X’ Y’Z’, E must use a color 19-36. This is impossible, so B is uncolorable, that
is, X >

Acknowledgment. The author wishes to thank M. O. Albertson for his assistance
given throughout the work on this problem.
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ITERATIVE METHODS FOR COMPUTING STATIONARY
DISTRIBUTIONS OF NEARLY COMPLETELY

DECOMPOSABLE MARKOV CHAINS*

J. R. KOURY,t D. F. McALLISTERt AND W. J. STEWART:

Abstract. We propose new methods which combine aggregation with point and block iterative techniques
for computing the stationary probability vector of a finite ergodic Markov chain. These techniques are also
compared numerically with several methods which have recently appeared in the literature for the class of
nearly completely decomposable Markov chains.

Key words, point and block iterative methods, aggregation, nearly completely decomposable Markov
chains, stationary probability factor

1. Introduction.
1.1. Background. The application of finite Markov chains throughout the biologi-

cal, physical and social sciences, as well as in business and engineering, is well docu-
mented. For example, queueing networks have been used extensively in modeling
computer systems. They provide the basis upon which new designs may be evaluated
and a means to estimate the change in performance due to an increase in capacity of
one or several of the system components. The effect of changes in both workload
characteristics and system software may be determined from appropriate queueing
network models. However, since the class of queueing networks amenable to solution
by analytical techniques is very restrictive, it often becomes necessary to numerically
analyze the underlying Markov chain.

This is the approach adopted by Kaufman [Kauf81b], Kaufman, Gopinath and
Wunderlich [Kauf81] and Kaufman, Seery and Morrison [Kauf81a] in the study of
queueing network problems that.commonly arise in communications theory. Such
problems include networks with overflowing queues where the associated transition
probability matrix has a symmetric zero-structure and order approaching 30,000.

Another important application area related to finite Markov chains is the solution
of homogeneous systems of linear equations arising from compartmental models of
biological and physical systems. Such models have been studied extensively, for
example, at the Oak Ridge National Laboratory (see Sheppard and Householder
[Shep51 ], Funderlic and Heath [Fund71 ], or Funderlic and Mankin [Fund81]). Applica-
tions include studies of the increase of atmospheric carbon dioxide as a result of
increased fossil fuel combustion and the study of the dynamics of carbon through
closed ecological systems.

A third area of considerable current importance is that of reliability analysis.
Unlike the previously described application areas, it becomes necessary to study the
transient behavior of the Markov chain rather than its stationary behavior. The methods
that are described herein may have potential for application in the study of the transient
behavior.

The Markov chains that arise in these applications are typically finite, homogeneous
and ergodic. Furthermore, they usually involve a very large number of states and a

* Received by the editors December 29, 1982, and in revised form March 24, 1983. This research was
supported in part by the National Science Foundation under grant MCS80-04345. A version of this paper
was presented at the Sparse Matrix Symposium, 1982, Fairfield Glade, Tennessee, October 24-27, 1982.

t IBM, Raleigh, North Carolina.
$ Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27650.
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relatively small number of nonzero transition probabilities, thus making the transition
probability matrix Q large and sparse. The fundamental problem is to compute and
analyze the unique stationary distribution vector x (Xl, x2,""", xn)T which has the
properties:

(1.1) xTQ=x, x>O Yi, Y x- 1-Ilxlll.
i=1

In the case where Q is large and exhibits a nearly completely decomposable (NCD)
[Cour77] structure, a method of "aggregation" can be incorporated into some steps
of a standard iteration procedure (such as the power method or the method of
Gauss-Seidel). The main thrust of this paper is to show that aggregation combined
with point and block iterative techniques can produce methods which converge rapidly
to the stationary probability vector x. We also compare these new methods with some
methods which have recently appeared in the literature. For a discussion of other
methods relevant to this problem see [Harr83] and [Fund83].

We first review some numerical techniques currently in use for computing station-
ary distributions of Markov chains.

1.2. Current numerical methods. Let M be a finite n state aperiodic Markov
chain with transition probability matrix Q of order n. We will assume that Q is
irreducible and hence by the Perron-Frobenius theory of positive matrices the eigen-
value 1 is a simple dominant eigenvalue of Q. In this case, M has a stationary probability
distribution x which satisfies (1.1).

There are many methods in the literature which compute x or an approximation
to x.

Iterative methods. The most well known and perhaps oldest methods are iterative
and are variants of the power method"

Let x() be a positive starting vector with norm 1. Then the power method is
defined by the sequence

It may be shown that if the eigenvalues of Q are arranged in decreasing order

(1.2) /’1 1 > Ix21_-> IA3I=>.,, =>
then, asymptotically, we have

which implies that the sequence converges linearly to x with convergence factor
the magnitude of the subdominant eigenvalue of Q. This is the technique used in the
Recursive Queue Analyzer of Wallace and Rosenberg [Wall66]. As is obvious from
relationship (1.3), if ]h 2[ is close to 1, convergence may be excruciatingly slow. Unfortu-
nately, this phenomenon is almost assured in the case that n is large since all of the
eigenvalues of Q lie in the unit circle of the complex plane. This is also the case if Q
is nearly completely decomposable (NCD).

Let M be a perturbation of a completely decomposable Markov chain M* and
let Q and Q* be respectively the corresponding transition probability matrices. Then
M is said to be NCD if

(1.4) Q=Q*+eC,

where 0 < e << 1, Q* is a block diagonal stochastic matrix and the row sums of C are
zero. If Q* has N blocks, then 1 is an eigenvalue of Q* of multiplicity at least N. Since
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the eigenvalues of a matrix are continuous functions of the elements, it must be the
case that Q has at least N-1 eigenvalues which are close to 1. In particular ]A21 must
be close to 1.

A variant of the power method, called simultaneous iteration [Stew81] is used
for finding stationary distributions in the Queueing Network Analysis Package (QNAP),
[MeriT8]. Rather than iterate with a single vector as in the power method, iteration
is carried out with m > 1 trial vectors and it can be shown that the rate of convergence
is asymptotically proportional to ]A,,/11.

Single step approximation methods.
i. Courtois aggregation. The decomposition and aggregation technique of Simon

and Ando [Simo61] may be used to obtain an approximate solution when Q is NCD.
Let Q and x be partitioned according to the blocks of Q*, i.e. if

0

Q, 022
Oo

then

(.5) Q=

Qll 019. QIN

021 022 Q2N

QN1 QN2 QNN

and x

The scalar e is defined to be

0

e= Q-
Q22

"..

Q

Courtois [Cour77] refers to e as the maximum degree of coupling of the subsystems
represented by the diagonal blocks of Q. He suggests approximating Q* by distributing
the probability mass in a given row and outside the diagonal block into the elements
of the row within the diagonal block. Unfortunately it is not known how this should
best be done. (It is known that there is an uncountable set of block diagonal stochastic
matrices Q* with the given block structure which has the same stationary probability
vector x as Q [Dodd81a] but the vector x must be known in order to find such a Q*.)

After forming a matrix Q* from Q we compute the stationary probability vector
x* of each block Q*"

(1.6) x*TQ =x*T, IIx,*lll- 1, IIN.

We now perform an aggregation step which may be described as follows.
Let 1 denote a vector all of whose elements are 1. Define the N x N matrix P as

the matrix whose (I-J)th element is given by:

(1.7) Pu xQul.
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Then P is a stochastic matrix Furthermore it is irreducible and hence has a stationary
vector X, such that

X7‘P=XT‘ and Ilxll 1.

An approximation to x may now be computed from using I =Xix*, 1 <=I <-N.
Courtois shows that is an O(e) approximation to x.

ii. Inverse iteration. The eigenvector problem can be reformulated as a linear
system problem by noting that if xT"Q x7‘ then

(1.8) Sx (l-QT‘)x 0, Ilxlll- 1.

Hence x lies in the null space of the transition rate matrix

S=I-QT‘
Since 0 is a simple eigenvalue of S, rank (S) n- 1 and inverse iteration can be applied
to solve system (1.8) as follows:

Let x<) be any initial approximation to x. For k 1, 2,...

solve Sy(k) =X(k) for y(k) and set x(k+l)=y(k)/lly(k)[I 1.

In this case the sequence converges in a single iteration even if x) is a random vector,
since the corresponding eigenvalue is known exactly. If A is large, general linear
equation solvers are not appropriate for solving (1.8) and it is necessary to exploit the
structure of the problem. It is often the case that the matrix A can be partitioned and
permuted so that it has a (block) banded structure [Mull80], [Stew78] and one can
employ a sparse or banded matrix solver with a direct matrix factorization routine as
a subprocedure. Although convergence is immediate, storage requirements are high
and the calculation is expensive. We will not include this technique in our numerical
tests.

2. New methods.
2.1. Single step methods.
i. G. W. Stewart’s method (GWSD). An approach somewhat similar to that of

Courtois was proposed by G. W. Stewart [Stew80]. His method has the advantage
that it does not require the distribution of the probability mass which is outside the
diagonal blocks to within the diagonal blocks. In addition he provides an error analysis
of the procedure which results in effectively computable error bounds.

Let Q be partitioned as given in (1.5) and assume that each of the blocks Qn,
1 _<- I =< N, is irreducible. Then, again by the Perron-Frobenius theory each has a simple
dominant eigenvalue or Perron root A, 1 _-< I-<_N, and corresponding left and right
eigenvectors vI, ui respectively. Assume v and u have been normalized so that
vfu 1. Define the N N matrix B as the matrix whose (I-J)th element is given by"

Br. vTQ,.u., 1 =</, J <= N.

Then B is irreducible and has a left eigenvector z corresponding to its unique dominant
eigenvalue. Stewart shows that the vector i defined by

i zivl, 1 <- I _-< N,

is an O(e) approximation to x.
ii. Vantilborgh’s O(e2) approximation (VANTD). Using Courtois’ method, Van-

tilborgh [Vant81a,b] has developed an algorithm to produce an O(e2) approximation
to x.
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Let be an approximation to the left Perron eigenvector, x, of Q and define
B, -IIx . Courtois [Cour77] shows that a necessary and sufficient condition for x
’is

X B-1,I for I 1, 2," , N.

This motivates the search for an ideal matrix * *Q[I,ideal]. The Q[I,ideal] is any row
stochastic matrix formed from Q1 by adding the off-diagonal block row mass of Q
into the diagonal submatrix in such a way that (2.1) holds.

Courtois [Cour75] and Courtois and Louchard [Cour76] describe procedures for
obtaining an O(e2) approximation to the steady state probability vector. One of these
involves modifying the results obtained from an O(e) approximation without regard
to the original amalgamation of the diagonal blocks. Vantilborgh approaches the
problem by finding a better way to amalgamate the off diagonal blocks into the diagonal
blocks. He shows that all three methods are mathematically equivalent.

Let the vectors be partitioned as follows:

a=[ h an ].
n-n(N) n(N)
elements elements

Consider the matrix

n-n(N) n(N)
columns columns

n- n(N) rows

n(N) rows

where

1 ql,p(2.3) Q* Q+,.rp1 then x* BflxN + O(e2),

and q=[QNll,’", QN,-ll].P
xNT_1QN_I,Nj

Having formed this approximation to *Q[N,ideal], its left Perron eigenvector must
be determined Using the resulting subvector with Courtois’s normalization procedure
produces an O(e2) approximation of Blxn.

If

The following results will be given in terms of the Nth diagonal block. The results can
be easily extended to treat the Ith aggregate, 1-< I =< N-1.

From [Vant81] we have

(2.2) x(Q+Oz.(l-O)-lOc,) =x.
Equation (2.2) defines the matrix *Q[N,ideal] which will be approximated.

Using matrix forms of Taylor and Laurent series, Vantilborgh determines the
following approximations to *Q[N,ideal],T X[xl, XN_I]T.

1 XN
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2.2. Iterative methods. The preceding methods for approximating the stationary
probability vectors of stochastic matrices have been direct "one step" methods. In
many cases this approximation will be sufficient for the application at hand. For more
accurate solutions, iterative algorithms can be employed.

Classical methods of computing the stationary probability vector require time
complexity O(n3). When modeling queueing systems, the state space quickly becomes
too large to make such algorithms tractable. However, the special structure of nearly
completely decomposable systems allows the application of iterative algorithms with
time complexities considerably less than O(n3) for n large. In this paper we will
investigate combining the aggregation procedure embedded in Courtois’s direct method
with existing iterative algorithms such as the power method [Dodd81] and block
iterative techniques which have the effect of greatly increasing the convergence rate
for most nearly completely decomposable systems. We will compare these with Vantil-
borgh’s extension of his O(e2) direct approximation to an iterative process which
produces an error of O(ek) on the kth iteration.

We first describe the application of Courtois aggregation as a subprocedure in an
iterative algorithm (cf. [Dodd81]).

Let be the approximation to x produced by the current iteration of the iterative
technique being employed. We form the N N stochastic matrix P:

Pu (fO,J1)/llfilll, 1 <= I, J <= N,
where 1 is a vector of l’s of conformable length. Let Y be the stationary probability
vector of P:

yrp=yr.
We then modify using Courtois aggregation as follows"

fi YI, 1 <=I <=N.x, ’-il Jll,
We note that this method requires to be on the unit hypercube.

In combining aggregation with the above classical methods we have the following
generic algorithm:

1. Initialize x() using Courtois’s direct method.
2. Perform some number of either point Gauss-Seidel, block Gauss-Seidel or

power method iterations.
3. Perform a Courtois aggregation.
4. Perform some number of iterations for the method being used in step 2.
5. If convergence has been reached, stop. Else go to step 3 with the new approxi-

mation.
In [Mull80], Muller has described an iterative procedure for solving (1.8) with S

replaced by a perturbed matrix . The n, n element of becomes

where k is a small, real, positive scalar. We note that Courtois aggregation requires
that x be a probability vector. Muller has modified Courtois aggregation to treat the
solution of nonhomogeneous linear systems [Koury83]. In [Koury83] it is shown that
this technique is inferior to solving the homogeneous system and we will not consider
it further.

We now define the classical iteration schemes which we use with Courtois aggrega-
tion. For the initial vector in each case we set x( to the vector produced by Courtois’s
direct method. The vector xk) is the vector obtained on the kth iterate.
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i. Block Gauss-Seidel (BGS). For the homogeneous system (1.8), block or group
Gauss-Seidel becomes [Berm79]:

I--1 N
T,,,(k) eT,(k) T,(k-1)Snz -Y Y. S I=1 N,Olj&J IJ&J

J=l J=l+l

where S has been partitioned like Q. For each iteration, after computing the right-hand
side, we use an LU decomposition of the diagonal blocks to solve for xk). Note that
this implies that the diagonal blocks of S must be nonsingular.

ii. Point Gauss-Seidel (GS). A special case of block Gauss-Seidel is point Gauss-
Seidel. If the blocks of S are I x 1, we have

X})=--I/s#X]=I j=i+l

Note here that the diagonal elements of S must be nonzero.
iii. Power method (DMS). In the power method, xtk) is obtained by multiplying

the matrix Q on the left by the iteration vector:

T(k) xTtk-Z)Q.

Its convergence properties were discussed in 2.
The three preceding classical algorithms have been studied previously. The analysis

of their convergence properties can be found in several sources (e.g., [Varga62],
[Young71], [Berm79]). Point Gauss-Seidel and block Gauss-Seidel are known to
converge or diagonally dominant M-matrices [Varga62, p. 91] and the structure of
NCD queueing networks provides a natural partitioning of the state space which we
use in block Gauss-Seidel.

iv. Vantilborgh’s iterative method (VANTI). In 2 we described Vantilborgh’s
direct method which produces an O(e2) approximation to x. Vantilborgh shows that
if x* is within O(ek) of x, then using this approximation to compute the matrices Q*,
1 <-I _<-N, produces an O(ek+) approximation to x. Therefore, Vantilborgh’s O(e2)
technique can be extended naturally to an iterative method. The iteration scheme is
as follows:

1. Initialize k to 1.
2. Perform CD (Courtois’s direct method) to compute x).
3. k - k + 1. Use X?(k), 1 _-< I_-< N, to form matrices Q* (equation (2.3)).
4. Determine Perron vectors of each Q* and concatenate subvectors as in Vantil-

borgh’s direct method.
5. Normalize x(k)using Courtois’s procedure to obtain an O(ek) approximation

of the stationary probability vector.
6. If the desired convergence has been reached, stop. Else go to step 3.

3. Test matrices. Matrices of four different types were used to test the various
algorithms (cf. [Koury83]). The first is an 8 x 8 matrix taken from [Cour77, p. 85]
with .00045 subtracted from q6,2 to make the matrix stochastic. A set of five randomly
generated matrices comprise the second test group. The third group of test matrices
was taken from a queueing network model of a multiprogramming system analyzed
in [Vant81]. Kaufman, in [Kauf81], describes a model of two nodes of a packet
switching network which we used to produce our last group of test matrices.

i. Courtois’s matrix (COURTOIS). An 8 x 8 matrix [Cour77, p. 85] has appeared
in several places in literature relevant to NCD systems (e.g., [Stew80], [Vant81],
[Dodd81]). For this matrix, e 10-3. The subdominant eigenvalue, A2 is close to one
which implies that the power method will converge slowly.
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ii. Randomly generated matrices (N). These five matrices are of order 16. They
were produced by first generating numbers from a uniform distribution on [0, 1 ]. These
numbers were then scaled according to their corresponding blocks by multiplying them
by the scaling factors shown in the diagram below with t successively set to 1, .1, .01,
.001, and .0001 producing the matrices N1 through N5:

1 a a/2 a/5
a 1 a a/2
c/2 a 1 c

a/5 a/2 a 1

Each row was then multiplied by the appropriate scalar to produce a row stochastic
matrix.

The maximum degree of coupling, e, varied from .816 for a 1 to .00044 for
a =.0001. The eigenvalues tended to show a large separation between the Nth and
(N+l)st eigenvalue and the matrices were more dense than those produced by
queueing network models.

iii. Multiprogramming model matrices (V). These matrices were generated from
the multiprogramming model of [Vant81]. Similar models have been studied in
[Konh76], [Konh78], and [Gele78]. A diagram of the model is shown in Fig. 1.

L users

it+i2 <-M

i3 i /1(i)

FIG.

In the model there are U users which produce jobs according to a state independent
Poisson process, each user having rate A. In the inner model, there is a CPU represented
by S with state dependent exponential mean service rate/xl(i) where il is the number



172 J. R. KOURY, D. F. McALLISTER AND W. J. STEWART

of customers in queue $1. The analogous parameters for the secondary memory are
$2, i2 and tz(i2).

When a job is produced by a user, it immediately enters the inner model if
il + ia < M, otherwise it enters queue 03. When a job completes service at the CPU it
goes to secondary memory with probability and to 03 or $1 with probability b.
When 4 + 1, which is usually the case for computer systems [Cour77], the matrices
produced by the model are NCD. The parameter , also effects the decomposability
of the system. When arrivals to the inner model are slow relative to the service rates
of the CPU and secondary memory, many state transitions occur within the inner
model before the value il + i2 changes. Hence, each state with constant values of i + i2
represents a subsystem which can be analyzed separately.

Two sets of service rates were used for the CPU and secondary memory [Vant81 ].
They are

64 3i
(3.1) /xl(i)

i+ 16, /z(i) + 6

and

112 24i(3.2) /xl(i)
i+ 16

/x(i)
i+ 6

By varying these parameters, matrices with different maximum degrees of coupling
and dimension could be produced. The matrices derived from this model are block
tridiagonal and the blocks themselves are tridiagonal. There will be rn + 1 diagonal
blocks each with size 1 + il + i2.

iv. Packet switching network model matrices (K). In [Kauf81] Kaufman describes
several models of a two-node packet switching network. We used the six-dimensional
model with buffer reservation and processor sharing. The model consists of two
symmetric nodes.

Local and foreign packets arrive according to a Poisson distribution with respective
parameters A and Ar. The trunk transmission rate is exponential with mean _mr. Packets
received from the trunk are serviced at exponential rate _mr. New packets are processed
at exponential rate _ms, or _ms-_mr if a packet from the trunk is being serviced. When
a packet is determined to be foreign, it must be stored in the output section of the
buffer until an acknowledgment is received from the other node verifying its reception.
Packets wait in the input section of the buffer until being processed. The buffer has
size B with a sliding partition separating the input and output sections. The number
of packets in the input section is designated by i; j denotes the number in the output
section, and k is the number of outstanding acknowledgments for packets transmitted
across the trunk. The indices i’, j’, and k’ have the same meaning for node two. It is
possible for k and k’ to be as large as W, the window size.

The network model is Markovian and any particular state can be described by a
6-tuple (i, j, k, i’, j’, k’). As local traffic predominates and the service rates for foreign
traffic decrease, the activity at the two nodes becomes more independent. Decomposa-
bility can be forced by having 99% or more local traffic. The resulting matrices are
block diagonally dominant with each block having constant values for j, k, f, and k’.

This model produced matrices with some interesting properties. First, there were
more diagonal blocks produced than were desirable, causing the solution of the
aggregate system to be too costly. This problem was alleviated by concatenating
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adjacent diagonal blocks together to form larger blocks. In addition, a block can be
very nearly cyclic, thus producing an eigenvalue arbitrarily close to -1 for some
matrices.

Finally, it should be noted that these matrices grow very fast as the values of B
and W are increased, e.g., with B 10 and W=4, the state space has dimensions
34,225.

4. Numerical results.
The following acronyms will be used:
GWSDmG. W. Stewart’s direct method;
CDmCourtois’s O(e) direct method;
VANTD--Vantilborgh’s O(e2) direct method;
VANTI--Vantilborgh’s iterative method;
BGSA--block Gauss-Seidel iteration with aggregation;
BGSblock Gauss-Seidel iteration;
GSAmpoint Gauss-Seidel iteration with aggregation;
GS--point Gauss-Seidel iteration;
DMSADodd, McAllister, and Stewart’s power method with aggregation.
The results of the algorithms applied to the test matrices are given in Appendix

I and Tables 1 and 2. The following conventions are used. Courtois’s matrix is
designated by his name. The V’s refer to matrices generated from the multiprogram-
ruing model described in [Vant81], with A denoting service rates given by equation
(3.1) and B denoting service rates given by equation (3.2). K denotes matrices derived
from Kaufman’s packet switching network where the smaller diagonal blocks were

TABLE
Matrices run using true probability vector as stopping criterion.

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

N1 16 0.817D+00 GWSD 622 0.292D+00 0.358D+00
CD 321 0.296D+00 0.362D+00

VANTD 725 0.308D-01 0.461D-01
VANTI 9 6648 0.141D-11 0.869D-11

BGSA 8 4015 0.293D- 11 0.148D- 10
BGS 10 2557 0.247D- 11 0.187D- 10
GSA 11 5282 0.338D- 11 0.312D- 10
GS 12 2901 0.227D- 11 0.257D- 10

DMSA 13 6184 0.628D- 11 0.871D- 10

N2 16 0.308D+00 GWSD 622 0.577D-01 0.187D+00
CD 321 0.760D-01 0.246D+00

VANTD 725 0.204D-02 0.215D-01
VANTI 6 4539 0.835D- 12 0.969D- 09

BGSA 5 2662 0.242D- 11 0.866D- 09
BGS 9 2342 0.610D- 12 0.241D-07
GSA 12 5733 0.358D- 11 0.483D- 05
GS 60 13221 0.706D- 11 0.314D+20

DMSA 15 7086 0.421D-11 0.193D-03

"," means that EPS**ITER < 10,,-35.
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TABLE (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

N3 16 0.427D-01 GWSD 622 0.652D-02
CD 321 0.990D-02

VANTD 725 0.298D-04
VANTI 4 3133 0.147D- 12

BGSA 4 2211 0.175D- 12
BGS 8 2127 0.155D- 11
GSA 11 5282 0.957D-11
GS 200 43321 0.836D-06

DMSA 15 7086 0.780D- 11

0.153D+00
0.232D+00
0.164D-01
0.442D-07

0.528D-07
0.140D+00
0.1lID+05

0.273D+ 10

N4 16 0.444D-02 GWSD 622 0.661D-03
CD 321 0.102D-02

VANTD 725 0.312D-06
VANTI 3 2430 0.112D- 13

BGSA 3 1760 0.175D- 12
BGS 7 1912 0.195D- 11
GSA 10 4831 0.935D- 11
GS 200 43321 0.149D-03

DMSA 14 6635 0.264D- 11

0.149D+00
0.230D+00
0.158D-01
0.128D-06

0.200D-05
0.572D+05
0.314D+ 13

0.228D+22

N5 16 0.446D-03 GWSD 622 0.662D-04
CD 321 0.103D-03

VANTD 725 0.313D-08
VANTI 2 1727 0.201D- 12

BGSA 3 1760 0.221D- 13
BGS 6 1697 0.104D- 11
GSA 9 4380 0.562D- 11
GS 200 43321 0.319D-04

DMSA 12 5733 0.665D- 11

0.149D+00
0.230D+00
0.158D-01
0.101D-05

0.250D-03
0.132D+09
0.808D+ 19

V1A 141 0.141D+00 GWSD 22837 0.298D-02
CD 8067 0.496D-01

VANTD 17094 0.201D-02
VANTI 7 86719 0.467D- 11

BGSA 7 62441 0.554D- 11
BGS 31 42545 0.640D- 11
GSA 40 292107 0.952D- 11
GS 200 132267 0.195D-03

DMSA 150 1073217 0.958D-11

0.212D-01
0.352D+00
0.101D+00
0.428D-05

0.507D-05
0.161D+16
0.111D+24

V2A 141 0.230D-01 GWSD 22837 0.425D-02
CD 8067 0.523D-01

VANTD 17094 0.208D-02
VANTI 7 86719 0.6lID-11

BGSA 8 69982 0.652D- 12
BGS 200 221854 0.226D-09
GSA 40 292107 0.981D- 11
GS 200 132267 0.638D-02

DMSA 134 959601 0.931D- 11

0.185D+00
0.228D+01
0.395D+01
0.182D+01

0.843D+01

"*" means that EPS**ITER < 10,,-35.
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TABLE (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

V3A 141 0.973D-02 GWSD 22837 0.187D-02
CD 8067 0.581D-02

VANTD 17094 0.322D-04
VANTI 4 53011 0.977D- 11

BGSA 5 47359 0.405D- 11
BGS 25 36179 0.935D- 11
GSA 26 192693 0.637D- 11
GS 200 132267 0.853D-04

DMSA 81 583248 0.907D- 11

0.192D+00
0.597D+00
0.340D+00
0.109D-02

0.464D-01

V4A 141 0.174D+00 GWSD 22837 0.194D-02
CD 8067 0.164D+ 00

VANTD 17094 0.113D-01
VANTI 9 109191 0.191D- 11

BGSA 9 77523 0.169D- 11
BGS 42 54216 0.869D- 11
GSA 35 256602 0.733D- 11
GS 200 132267 0.344D-04

DMSA 125 895692 0.959D- 11

0.1lID-01
0.942D+00
0.371D+00
0.128D-04

0.113D-04
0.621D+21
0.257D+ 16

V5A 141 0.334D-01 GWSD 22837 0.129D-01
CD 8067 0.180D+00

VANTD 17094 0.122D-01
VANTI 9 109191 0.148D-11

BGSA 10 85064 0.650D- 12
BGS 200 221854 0.902D-08
GSA 35 256602 0.542D- 11
GS 200 132267 0.114D-01

DMSA 109 782076 0.826D- 11

0.386D+01)

0.540D+01
0.109D+02
0.284D+02

0.374D+03

V6A 141 0.172D-01 GWSD 22837 0.198D-02
CD 8067 0.743D-02

VANTD 17094 0.490D- 04
VANTI 5 64247 0.260D- 12

BGSA 5 47359 0.657D- 11
BGS 17 27691 0.968D- 11
GSA 20 150087 0.791D- 11
GS 200 132267 0.987D-06

DMSA 60 434127 0.819D-11

0.115D+00
0.433D+00
0.166D+00
0.175D-03

0.441D-02
0.995D+ 19

V4B 141 0.494D+00 GWSD 22837 0.524D-01
CD 8067 0.140D+00

VANTD 17094 0.108D-01
VANTI 11 131663 0.379D- 111

BGSA 12 100146 0.147D- 11
BGS 25 36179 0.974D- 11
GSA 37 270804 0.974D- 11
GS 200 132267 0.151D-08

DMSA 200 1428267 0.425D- 10

0.106D+00
0.284D+00
0.441D-01
0.878D-08

0.689D-08
0.432D-03
0.202D+01

"*" means that EPS**ITER < 10.*-35.
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TABLE (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

V5B 141 0.108D+00 GWSD 22837 0.140D+00
CD 8067 0.231D+00

VANTD 17094 0.202D-01
VANTI 12 142899 0.139D- 11

BGSA 12 100146 0.454D- 11
BGS 174 194268 0.972D- 11
GSA 38 277905 0.757D- 11
GS 200 132267 0.217D-01

DMSA 135 966702 0.935D-11

0.131D+01
0.215D+01
0.175D+01
0.581D+00

0.190D+01

V6B 141 0.441D-01 GWSD 22837 0.108D-01
CD 8067 0.182D-01

VANTD 17094 0.933D-03
VANTI 7 86719 0.746D- 11

BGSA 8 69982 0.494D- 11
BGS 46 58460 0.802D- 11
GSA 28 206895 0.629D- 11
GS 200 132267 0.190D-03

DMSA 93 668460 0.958D- 11

0.245D+00
0.412D+00
0.479D+00
0.228D-01

0.343D+00

V7A 141 0.162D+00 GWSD 22837 0.313D-02
CD 8067 0.179D+00

VANTD 17094 0.182D- 01
VANTI 11 131663 0.942D- 12

BGSA 10 85064 0.972D- 11
BGS 69 82863 0.815D- 11
GSA 42 306309 0.978D- 11
GS 200 132267 0.319D-04

DMSA 152 1087419 0.896D- 11

0.193D-01
0.110D+01
0.697D+00
0.474D-03

0.791D-03

0.164D+ 23

V21A 38 0.788D-01 GWSD 2001 0.117D-01
CD 780 0.113D-01

VANTD 1742 0.203D-03
VANTI 6 8574 0.716D- 12

BGSA 6 5762 0.314D- 11
BGS 28 6646 0.541D- 11
GSA 14 11280 0.458D- 11
GS 200 31380 0.186D-04

DMSA 55 42030 0.860D- 11

0.149D+00
0.143D+00
0.326D-01
0.299D-05

0.131D-04
0.424D+20
0.128D+05

V22A 38 0.178D-01 GWSD 2001 0.103D-01
CD 780 0.931D-02

VANTD 1742 0.140D-03
VANTI 5 7275 0.444D- 11
BGSA 6 5762 0.372D- 11
BGS 59 12939 0.988D- 11
GSA 14 11280 0.271D-11
GS 200 31380 0.112D-02

DMSA 50 38280 0.712D- 11

0.580D+00
0.523D+00
0.444D + 00
0.249D-02
0.117D+00

0.848D+ 13

"*" means that EPS**ITER < 10,,-35.
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TABLE (Continued)

177

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

V24A 38 0.107D-01 GWSD 2001 0.668D-04 0.624D-02
CD 780 0.289D-03 0.270D-01

VANTD 1742 0.748D-07 0.652D-03
VANTI 3 4677 0.326D- 14 0.266D-08

BGSA 3 3362 0.350D- 12 0.285D-06
BGS 5 1977 0.704D- 12 0.501D-02
GSA 6 5280 0.397D- 11 0.263D+01
GS 200 31380 0.334D-07

DMSA 20 15780 0.626D- 11

V25A 38 0.106D-01 GWSD 2001 0.667D-05 0.627D-03
CD 780 0.291D-04 0.274D-02

VANTD 1742 0.764D-09 0.674D-05
VANTI 2 3378 0.173D- 13 0.153D-09

BGSA 2 2562 0.149D- 11 0.132D-07
BGS 3 1571 0.176D- 12 0.146D-06
GSA 3 3030 0.600D- 12 0.498D-06
GS 200 31380 0.316D-09

DMSA 12 9780 0.719D- 11 0.341D + 13

V8A 141 0.378D-01 GWSD 22837 0.499D-01 0.132D+01
CD 8067 0.555D-01 0.147D+01

VANTD 17094 0.406D-02 0.285D+01
VANTI 9 109191 0.150D- 11 0.954D+01

BGSA 10 85064 0.130D- 11 0.220D+03
BGS 162 181536 0.878D- 11 *
GSA 38 277905 0.689D- 11
GS 200 132267 0.897D-02

DMSA 122 874389 0.954D- 11

V9A 141 0.237D-01 GWSD 22837 0.187D-02 0.790D-01
CD 8067 0.690D-02 0.291D+00

VANTD 17094 0.441D-04 0.784D-01
VANTI 5 64247 0.122D- 12 0.162D-04

BGSA 5 47359 0.298D- 11 0.396D- 03
BGS 13 23447 0.713D- 11 0.940D + 10
GSA 19 142986 0.826D- 11 0.610D + 20
GS 200 132267 0.882D-07 *

DMSA 57 412824 0.920D- 11

K1 81 0.217D+00 CD 2763 0.435D+00 0.201D+01
VANTD 6304 0.123D+00 0.261D+01
VANTI 20 122163 0.577D- 11 0.1lID+03

BGSA 19 35074 0.737D- 11 0.307D+02
BGS 15 17628 0.300D- 11 0.276D-01
GSA 54 64485 0.747D- 11
GS 92 40023 0.794D- 11 *

DMSA 200 231363 0.255D-06

"*" means that EPS**ITER < 10.*-35.
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TABLE 1 (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

K1NOC 81 0.283D+00 GWSD 18010 0.100D+00 0.354D+00
CD 6288 0.397D +.00 0.140D+ 10

VANTD 13027 0.744D-01 0.927D+00
VANTI 9 76650 0.131D- 11 0.112D-06

BGSA 9 62349 0.315D- 11 0.268D-06
BGS 15 15078 0.777D- 12 0.128D-03
GSA 19 120630 0.351D- 11 0.896D-01
GS 90 42738 0.860D- 11

DMSA 82 499764 0.769D- 11

K2 81 0.503D-01 CD 2763 0.421D+00 0.836D+01
VANTD 6304 0.999D-01 0.395D+02
VANTI 20 122163 0.504D- 11 0.472D + 15

BGSA 20 36668 0.207D- 11 0.194D + 15
BGS 17 19340 0.394D- 11 0.469D + 11
GSA 200 231363 0.676D-09
GS 200 83763 0.312D-05

DMSA 200 231363 0.125D-01

K2NOC 81 0.646D-01 GWSD 18010 0.356D-01 0.552D+00
CD 6288 0.953D-01 0.148D+01

VANTD 13027 0.521D-02 0.125D+01
VANTI 6 53196 0.185D- 11 0.255D-04

BGSA 6 43887 0.354D- 11 0.488D- 04
BGS 16 15619 0.914D- 11 0.100D+09
GSA 20 126648 0.482D- 11 0.304D+ 13
GS 200 87288 0.672D-06 *

DMSA 78 475692 0.856D- 11 *

K3 16 0.167D-01 CD 162 0.357D+00 0.214D+02
VANTD 407 0.374D-01 0.135D+03
VANTI 13 5167 0.580D- 11 0.758D+ 12

BGSA 9 1688 0.548D- 11 0.552D+05
BGS 9 995 0.683D- 11 0.688D + 05
GSA 200 26762 0.195D-05 *
GS 200 11362 0.316D-03

DMSA 200 26762 0.228D-01 *

K3NOC 16 0.190D-01 GWSD 877 0.284D-02 0.149D+00
CD 332 0.219D-03 0.115D-01

VANTD 719 0.159D-05 0.438D-02
VANTI 3 1760 0.183D-11 0.265D-06

BGSA 4 1802 0.286D- 13 0.217D-06
BGS 7 786 0.811D- 12 0.892D+00
GSA 4 1752 0.595D- 12 0.452D- 05
GS 200 11532 0.109D-06

DMSA 200 71332 0.184D-08 *

"*" means that EPS**ITER < 10.*-35.



ITERATION AND AGGREGATION FOR NCD MATRICES 179

TABLE 1 (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

K4 16 0.700D-02 CD 162 0.324D+00 0.463D+02
VANTD 407 0.427D-01 0.871D+03
VANTI 13 5167 0.837D- 11 0.864D + 17

BGSA 9 1688 0.878D-11 0.218D+09
BGS 10 1078 0.613D- 12 0.217D + 10
GSA 200 26762 0.521D-04
GS 200 11362 0.144D-01

DMSA 200 26762 0.893D-01

K4NOC 16 0.800D-02 GWSD 877 0.123D-02 0.154D+00
CD 332 0.469D-03 0.586D-01

VANTD 719 0.175D-05 0.274D-01
VANTI 3 1760 0.482D- 12 0.941D-06

BGSA 4 1802 0.931D- 14 0.227D-05
BGS 7 786 0.340D- 11 0.162D+04
GSA 4 1752 0.722D- 13 0.176D-04
GS 200 11532 0.198D-04

DMSA 71 25537 0.933D- 11

K5 100 0.600D+00 CD 3521 0.5lID/00 0.851D+00
VANTD 7996 0.129D+00 0.357D+00
VANTI 17 129661 0.615D- 11 0.363D-07

BGSA 14 35829 0.203D- 11 0.259D- 08
BGS 19 26050 0.352D- 11 0.578D-07
GSA 21 36617 0.554D- 11 0.253D-06
GS 38 22521 0.598D- 11 0.161D-02

DMSA 109 175305 0.839D- 11 0.127D+ 14

K5NOC 100 0.700D+00 GWSD 49252 0.194D+00 0.277D+00
CD 16757 0.290D+00 0.414D+00

VANTD 34026 0.620D-01 0.127D+00
VANTI 10 201497 0.275D- 11 0.975D- 10

BGSA 11 201075 0.498D- 11 0.252D-09
BGS 15 27063 0.995D- 11 0.210D-08
GSA 18 314693 0.952D- 11 0.585D-08
GS 35 34257 0.603D- 11 0.159D-05

DMSA 87 1456781 0.769D- 11 0.230D+03

K6 100 0.167D+00 CD 3521 0.337D+00 0.202D+01
VANTD 7996 0.902D-01 0.325D+01
VANTI 16 122241 0.421D-11 0.119D+02

BGSA 14 35829 4.470D- 11 0.368D+00
BGS 18 24993 0.553D-11 0.561D+03
GSA 83 134329 0.865D- 11
GS 129 68021 0.842D- 11 *

DMSA 200 318721 0.180D-04

"*" means that EPS**ITER < 10.*-35.
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TABLE 1 (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

K6NOC 100 0.175D+00 GWSD 49252 0.758D-01 0.433D+00
CD 16757 0.174D+00 0.995D+00

VANTD 34026 0.251D-01 0.819D+00
VANTI 8 164549 0.363D-11 0.412D-05

BGSA 8 150999 0.166D- 11 0.189D-05
BGS 18 28983 0.154D-11 0.650D+02
GSA 20 347797 0.450D- 11 0.620D + 04
GS 119 76257 0.856D-11

DMSA 81 1357469 0.779D- 11

K7 100 0.346D-01 CD 3521 0.361D+00 0.104D+02
VANTD 7996 0.958D-01 0.799D+02
VANTI 16 122241 0.317D- 11 0.739D + 12

BGSA 15 37962 0.314D- 11 0.254D + 11
BGS 19 26050 0.230D- 11 0.129D + 17
GSA 200 318721 0.118D-05
GS 200 103521 1.109D-03

DMSA 200 318721 0.3lID-01

K7NOC 100 0.350D-01 GWSD 49252 0.170D-01 0.487D+00
CD 16757 0.489D-01 0.140D+01

VANTD 34026 0.180D-02 0.147D+01
VANTI 6 127601 0.124D- 12 0.675D- 04

BGSA 6 117615 0.626D- 13 0.340D- 04
BGS 18 28983 0.258D- 11 0.416D+ 15
GSA 20 347797 0.331D- 11 0.435D+ 18
GS 200 116757 0.543D-05

DMSA 76 1274709 0.803D- 11

K8 100 0.174D-01 CD 3521 0.365D+00 0.210D+02
VANTD 7996 0.974D-01 0.322D+03
VANTI 16 122241 0.331D- 11 0.466D + 17

BGSA 15 37962 0.358D- 11 0.877D+ 15
BGS 19 26050 0.260D- 11 0.694D + 22
GSA 200 318721 0.320D-03
GS 200 103521 0.685D-02

DMSA 200 318721 0.882D-01

K8NOC 100 0.175D-01 GWSD 49252 0.863D-02 0.493D+00
CD 16757 0.257D-01 0.147D+01

VANTD 34026 0.488D-03 0.160D+01
VANTI 5 109127 0.300D- 12 0.183D-03

BGSA 5 100923 0.288D- 11 0.175D-02
BGS 17 28343 0.946D- 11 0.699D + 19
GSA 19 331245 0.590D- 11 0.142D+23
GS 200 116757 0.382D-03

DMSA 73 1225053 0.961D- 11

"," means that EPS**ITER < 10,*-35.
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TABLE (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

K13 16 0.498D-02 CD 162 0.663D+00 0.133D+03
VANTD 407 0.105D+00 0.423D+04
VANTI 15 5937 0.555D- 11 0.196D+ 24

BGSA 12 2168 0.151D- 11 0.655D + 16
BGS 12 1244 0.219D- 11 0.954D + 16
GSA 200 26762 0.605D-04
GS 200 11362 0.207D-01 *

DMSA 200 26762 0.285D+00 *

K13NOC 16 0.500D-02 GWSD 877 0.232D-02 0.464D+00
CD 332 0.180D-02 0.360D+00

VANTD 719 0.414D-05 0.166D+00
VANTI 3 1760 0.357D- 11 0.285D- 04

BGSA 4 1802 0.124D- 12 0.198D-03
BGS 9 906 0.646D- 11 0.331D+ 10
GSA 4 1752 0.359D- 13 0.574D- 04
GS 200 11532 0.469D-04 *

DMSA 41 14887 0.941D- 11

K14 100 0.560D-02 CD 3521 0.104D+01 0.185D+03
VANTD 7996 0.235D+00 0.748D+04
VANTI 17 129661 0.727D- 11 *

BGSA 16 40095 0.400D- 11 *
BGS 20 27107 0.399D- 11 *
GSA 200 318721 0.314D-01
GS 200 103521 0.939D-01 *

DMSA 200 318721 0.693D+00

K15

K16

81 0.424D-02 CD 2763 0.362D+00 0.853D+02
VANTD 6304 0.121D+00 0.672D+04
VANTI 21 128133 0.382D- 11 *

BGSA 19 35074 0.677D- 11 *
BGS 18 20196 0.278D- 11
GSA 200 231363 0.520D-01 *
GS 200 83763 0.875D-01 *

DMSA 200 231363 0.259D + 00 *

16 0.572D-02 CD 162 0.829D+00 0.145D+03
VANTD 407 0.811D-01 0.248D+04
VANTI 15 5937 0.291D- 11 0.126D+23

BGSA 11 2008 0.888D- 11 0.413D + 14
BGS 12 1244 0.242D- 11 0.197D+ 16
GSA 200 26762 0.291D-04 *
GS 200 11362 0.276D-01 *

DMSA 200 26762 0.289D+00 *

"*" means that EPS**ITER < 10,,-35.
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TABLE (Continued)

Matrix n EPS ALG ITER EOC ERR ERR/EPS**ITER

K16NOC 16 0.597D-02 GWSD 877 0.323D’02 0.541D+00
CD 332 0.242D-04 0.406D-02

VANTD 719 0.224D-07 0.629D-03
VANTI 3 1760 0.285D- 13 0.134D-06

BGSA 3 1443 0.915D- 12 0.430D- 05
BGS 7 786 0.251D- 11 0.930D+04
GSA 3 1397 0.140D- 12 0.657D-06
GS 200 11532 0.301D-06

DMSA 200 71332 0.137D-05

COURTOIS 8 0.100D-02 GWSD 129 0.170D-03 0.170D+00
CD 71 0.726D-03 0.726D+00

VANTD 173 0.104D-06 0.104D+00
VANTI 2 399 0.615D- 11 0.615D-05

BGSA 3 367 0.594D- 14 0.594D-05
BGS 5 301 0.793D-11 0.793D+04
GSA 12 1163 0.997D- 11
GS 200 8271 0.188D-03

DMSA 62 5713 0.977D- 11

"," means that EPS**ITER < 10,*-35.

TABLE 2
Matrices run using difference between successive iterations as stopping criterion.

Matrix n EPS ALG ITER EOC ERR

K30 400 0.153D-01 VANTI 29 2159781
BGS 34 289813

BGSA 28 569299

0.980D- 11
0.891D-11
0.774D- 11

K30NOC 400 0.179D-01 VANTI 6 2474500
BGS 30 460944

BGSA 7 2725975

0.132D-11
0.576D- 11
0.262D- 13

K31 1156 0.179D-01 VANTI 46 21826305
BGS 49 1834670

BGSA 44 4476077

0.962D- 11
0.946D- 11
0.811D-11

V30 1701 0.252D-01 VANTI 10 8206058
BGS 200 8221355

BGSA 10 3695875

0.199D-11
0.279D-05
0.623D- 11

V31 1701 0.172D-01 VANTI 10 8206058
BGS 200 8221355

BGSA 11 3992747

0.206D- 11
0.124D-03
0.349D- 12

V32 1701 0.408D-01 VANTI 10 8206058
BGS 200 8221355

BGSA 10 3695875

0.215D-11
0.340D- 11
0.340D- 11
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concatenated. K##NOC indicates Kaufman matrices with nonconcatenated diagonal
blocks (i.e., the natural partitioning was used). The order of the matrix is denoted by
n. The maximum degree of coupling is denoted in the column labeled EPS. The number
of iterations required for the relative error to be less than 10-11 is given in the column
labeled ITER. Computations were halted at 200 iterations if convergence had not
been reached. The column labeled EOC denotes the total estimated number of floating
point operations required. Details can be found in [Koury83]. The last column labeled
ERR/EPS**ITER is the relative error divided by e k where k is the number of
iterations.

Direct methods. In Table 1, when applying CD, the off-diagonal block probability
mass was added to the diagonal element in the same row to approximate Q/*. As is
clear from the universal results VANTD is superior in accuracy and comparable in
total work and hence is the direct method of choice.

Iterative methods. For the smaller matrices (i.e., dimension < 150), convergence
was assumed when IIx< )-xll /llxll < 10-11 where x is the true probability vector
computed using the OR algorithm. Some larger matrices of order approximately 2000
were also tested. For these matrices, convergence was assumed when
IIx< /l>ll < 10 When the relative difference between successive iterations was used
as the convergence criterion, an L was appended to the algorithm acronym
(e.g., BGSA BGSAL).

Vantilborgh shows that on the kth iteration, we have an approximation of O(ek)
using an absolute convergence criterion. However, we cannot be assured that the
approximation has accuracy O(ek) if we use a relative error convergence criterion. In
addition, if the state space has size 106, then knowing that I1 -xlloo is of order e 10-3

is meaningless when the largest element of the stationary distribution may be of order
10-4.

In general, BGSA and BGS were found to produce ten digits of accuracy with
fewer operations than the other algorithms. VANTI was a close second. However, we
note that BGS and BGSA require more storage than VANTI since LU decompositions
of the diagonal blocks must be stored. We note that the diagonal blocks are column
diagonally dominant M-matrices [Berm79], so that the LU decomposition of the
diagonal blocks is guaranteed to be stable with no pivoting.

Since the aggregation step can be expensive when the number of blocks is large,
we tried to mitigate this problem by concatenating smaller blocks to form larger
diagonal blocks. However, this concatenation procedure, in some cases, degraded the
performance of some of the algorithms and resulted in reducible blocks. For CD, we
must have irreducible diagonal blocks in order to determine the x*, 1 <-I <= N. This
problem can be overcome by distributing the off-diagonal block mass into the reverse
diagonal. Since this distribution is arbitrary, one would not expect CD to produce a
good approximation. Indeed, for the K matrices, the results for CD and VANTD are
poor.

For the iterative methods, no distribution of off-diagonal row mass into the
diagonal blocks is necessary. We note that block concatenation does however increase
the storage requirements of BGS and BGSA. In our tests, there were some cases
where block concatenation reduced the number of operations needed in BGSA sig-
nificantly, but no a priori criterion could be established to predict this. The balance
between decreasing operations as one increases storage with block concatenation may
be crucial on some systems when using large matrices.

Matrices V21A through V25A were produced by fixing the number of thinking
users to 10, the multiprogramming level to 3, d to .95, p to 0.03, and then varying ,X
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from 0.1 for V21A to 0.00001 in V25A in multiples of 10. For V22A, aggregation
is seen to accelerate convergence of BGS dramatically. For matrix V5A, e =.0334.
In this case BGS performs poorly, and BGSA performs very well.

BGS converged rapidly for all of the K matrices. However, using an aggregation
step sometimes accelerated convergence, especially when the natural partitioning of
the matrix was observed. For example, for matrix K5NOC, BGS converged in 15
iterations, and BGSA converged in 11 iterations in spite of the fact that e .7. For
matrix K3NOC, BGS converged in 7 iterations and BGSA converged in 4 iterations,
with e 0.019.

The only time aggregation degraded the convergence rate of the iterative schemes
was when the natural partitioning of the system was violated. And in these cases, the
degradation of the convergence rates was not severe.

Our tests indicate that one would not want to use GS on NCD systems. GSA
performed better than GS in every case. If the storage required for BGS or BGSA is
prohibitively expensive, VANTI may be the algorithm of choice since its complexity
was close to that of BGS and BGSA in most cases.

DMSA is only of theoretical interest. The convergence rate is seen to be asymptotic
to the N+ 1 eigenvalue of the matrix [Dodd81].

Our test results show that aggregation can be a powerful tool for accelerating the
convergence of iterative methods used in determining the stationary probability vector
of queueing networks.

It is likely that performing an aggregation step on every iteration is unnecessary.
An investigation showing just how often aggregation should be performed would be
helpful.

Miranker and Pan [Mir80] have suggested an aggregative procedure for accelerat-
ing the convergence of iterative solutions of general linear systems. In this procedure
they pick two arbitrary different partitionings of the coefficient matrix. Information
gathered from both of these partitionings is used for an aggregative acceleration process.
In our algorithms we tried to reduce the cost of aggregation by concatenating diagonal
blocks. In some cases, this procedure did not work well. However, it may be that using
two different partitions with concatenated blocks of the state space may be a tenable
procedure for aggregation.
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THE GENERALIZED TODA FLOW, THE QR ALGORITHM AND THE
CENTER MANIFOLD THEORY*

MOODY T. CHUf

Abstract. A continuous version of the classical QR algorithm, known as the Toda flow, is generalized
to complex-valued, full and nonsymmetric matrices. It is shown that this generalized Toda flow, when
sampled at integer times, gives the same sequence of matrices as the QR algorithm applied to the matrix
exp (G(Xo)). When G(X) X, global convergence is deduced for the case of distinct real eigenvalues. This
convergence property can also be understood locally by the center manifold theory. It is shown that the
manifold of upper triangular matrices with decreasing main diagonal entries is the stable center manifold
for the Toda flow. One interesting example is given to demonstrate geometrically the dynamical behavior
of this flow.

Key words, generalized Toda flow, QR-algorithm, upper Hessenberg matrix, QR-decomposition,
isospectral family, center manifold theorem

1. Introduction. For over ten years, the QR algorithm has been recognized as
the most efficient way of finding eigenvalues for small matrices. The process usually
involves repeated applications of a rather complicated similarity transformation to the
underlying matrix. To be more precise, we recall the following facts about this algorithm
[63, [83.

LEMMA 1.1. For any matrix X (in Cnn), there exists unitary matrix Q such that
X QR where R is an upper triangular matrix with real nonnegative diagonal entries.
Moreover, Q is unique if X is nonsingular.

Let X0 be the given matrix whose eigenvalues are to be found; then, the QR
algorithm generates a sequence of matrices {Xk} by

(1.1)
Xk QkRk, Xk+l RkQk, k-l,2,....

Observe that

(1.2) Xk+l RkQk O*kXkOk (O0" Ok)*Xo(Qo" Qk),

and that the matrix Qo" Qk is still unitary; so, this sequence of matrices is isospectral.
Indeed, we know [6], [8]

LEMMA 1.2. If Xo is nonsingular and its eigenvalues have distinct moduli, then
the sequence {Xk} in (1.1) converges essentially in the sense that the entries below the
principal diagonal tend to zero, the moduli of those above the diagonal tend to fixed
values and the entries on the principal diagonal tend to the eigenvalues of Xo.

Motivated by the discrete case (1.2), one might want to construct a one-parameter
family of unitary matrix Q(t) with Q(0)= I so that the isospectral family of matrices,

(1.3) X( t) Q*(t)XoQ( t),

would also have some asymptotic behavior as becomes large. Toward this end, we

* Received by the editors September 21, 1982, and in revised form April 22, 1983. This research was
supported in part by a grant from the Faculty Research and Professional Development Fund at North
Carolina State University.

? Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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first realize that the flow X(t) defined by (1.3) will satisfy the differential equation

(t) (*(t)XoO(t)+ Q*(t)Xo((t)

(1.4) -O*( t) O( t) O*( t) QoX( t) + O*( t)XoO( t)

-O*(t)O(t)X(t) + X(t) O*(t) O(t).
If we call

(1.5) B(t) O*(t) (>(t),

then X(t) is the solution to the differential system

(1.6) [X, B] - XB BX, X(O) Xo.
Since Q(t) is a unitary matrix, it is easy to see that B(t) has to be skew-hermitian,
i.e., B*( t) -B( t) for every t. But, we also realize that the above argument can be
reversed. Namely, if B(t) is a family of skew-hermitian matrices, let Q(t) be the
solution to the system

(1.7) O(t) O(t)B(t), O(0) I,

then Q(t) is unitary for all and the solution X(t) to (1.6) can be expressed as in
(1.3). Thus, the problem whether X(t) has nice and useful asymptotic behavior really
depends on the choice of B(t). The obvious choice of B, a constant skew-hermitian
matrix, gives a family of isospectra] matrices

(1.8) X(t) e-mXo eTM,

which apparently leads us to nothing.
Recently the study of a special nonlinear wave equation, known as the Toda

lattice, has suggested a feasible choice of this B(t) for real Jacobi matrix Xo (see, e.g.,
[4], [5], [10]). The asymptotics of the resulting differential system (1.6) have been
extensively studiedmthe solution flow converges to a diagonal matrix. Furthermore,
the standard QR algorithm can be recovered as the evaluation at integer times of this
flow under the exponential transformation.

In the first part of this paper, we generalize this classical Toda flow to complex-
valued, full and nonsymmetric matrices. In addition, we allow a much larger flexibility
in selecting this skew-hermitian matrix B(t). As a result, the standard QR algorithm
still can be interpreted as this flow sampled at integer times. Global convergence for
the case of real eigenvalues can be deduced easily when B(t) is chosen properly. In
fact, in the second part of this paper, it is shown that the manifold of upper triangular
matrices with decreasing main diagonal entries is the stable center manifold for this
generalized Toda flow.

In [7] a variety of isospectral flows on band matrices are considered. The
asymptotics for hermitian matrices are also detailed there. These results can be viewed
as special cases of ours in this paper and in [2], [3].

This paper is organized as follows. In 2, we discuss the generalized Toda flow,
its relevance to the QR algorithm and its global convergence property. In 3, we cite
without proof the center manifold theorems and then demonstrate its application to
the Toda flow by one simple example. Section 4 contains the general treatment of this
application in higher dimensional space. Finally, we study the dynamical behavior of
the simplest Toda flow both qualitatively and quantitatively. This reveals very interest-
ing geometrical insights to the general convergence theorem of the QR algorithm.
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2. Preliminary results. The following lemma is the cornerstone of our develop-
ment while its proof is almost trivial.

LEMMA 2.1. The general space Cnn is the direct sum of the space U(n) of all
upper triangular matrices with real diagonal elements and the space O(n) of all skew-
hermitian matrices. To be more specific, given any X C, let

(2.1) X=X++X+X-,
where X- and X+ are the strictly lower and upper triangular matrices of X, respectively,
and

X=Re (X) + Im (X)

is the diagonal matrix of X with Re (X) and Im (X) denoting the real and the
imaginary parts ofX, respectively. Define

(2.2)
IIu(X) X++X-* + Re (X),

IIo(X) X--X-* + Im (X);

then X=IIu(X)+IIo(X) with II,(X) e U(n) and IIo(X) e O(n).
Given a matrix Xo e Cn" and fixed, let G(z) be an analytic function defined on

a domain fl containing all eigenvalues of Xo. We shall consider the following initial
value problem

2=[X, no(G(X))]=X. (no(G(X))) (no(a(X))) X,
(2.3)

x(0) =Xo,

where "= d/dt and . This differential equation is known as the generalized Toda
flow. Here, we have used the notation that G(X) means the matrix-valued contour
integral

(2.4) G(X) - G(A)(AI-X)-1 dh,

where F is any contour that surrounds the spectrum of X in ft. It is well-known [9]
that this integral exists and is independent of the choice of F, provided only that F
surrounds the spectrum in .

LEMMA 2.2. Let Q( t) be the solution to the problem

(2.5) O O" (Ho(G(X))), O(0) I,

then O( t) is a unitary matrix.

Proof. Observe that

(OO*) "= 00* + O0*= O(Ho(G(X)))O* + O(Ho(G(X)))*O* O.

Since

Q(O)Q*(O)=I,

it follows that, for every e N, we have

Q(t)Q*(t)=I.

LEMMA 2.3. The flow X(t) of Problem (2.3) satisfies
(2.6) X(t) Q*(t)XoQ(t).
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Then

Proof. Let

Z( t) Q(t)X( t) Q*( t).

, (XO* + Off(Q* + QXO*

o(Io(O(x)))xo* + o[x(rI0(O(x))) -(rI0(O(x)))x]o*

OX(IIo(G(X)))O* O.

This shows that

Z(t) Z(O) X(O) Xo.
Of course, the expression (2.6) does not solve the Problem (2.3) at all because

the matrices O(t) are defined implicitly in (2.5). However, two important consequences
follow from this lemma.

COROLLARY 2.1. The maximal interval of existence for Problem (2.3) is (-o, o).
COROLLARY 2.2. For any , X(t) is always unitarily similar to Xo. In particular,

the flow X( t) is isospectral.
We can even identify the matrix Q(t) in (2.5) through the following lemma.
LEMMA 2.4. If the matrix exo) has the QR-decomposition

(2.7) etG(X)’- Q(t)R(t)

as defined in Lemma 2.1, then Q(t) solves Problem (2.5).
Proof. Taking derivatives on both sides of (2.7), we have

(QR) "= OR + QI (erxo)) "= G(Xo)QR.
It follows that

(2.8)

Define

Q*( -F -R-1 Q*O(Xo)Q G(Q*XoQ).

ff t) Q*(t)XoQ( t).

Observe that in (2.8), Q*O O(n) and/R-1 U(n); thus, we conclude from Lemma
2.1 that

(2.9) O*O=no(G(2)).
But, on the other hand, we have

; O*XoO + O*XoO O*02+20*0 [2, no(G(2))]
and

This implies that

.(o) Xo.

X(t)=X(t).

By (2.9), the assertion is proved.
Lemma 2.4 is the key connection between the differential equation (2.3) and the

QR algorithm because now we can prove the following theorem [4], [10].
THEOREM 2.1. Suppose X(t) solves Problem (2.3). For k O, + 1, +2,. , suppose

(2.10) eG(X(k))-" QkRk.
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Then,

(2.11)

and

eG(X(k+l)) RkQk"

Proof. It is known, from Lemma 2.3 and Lemma 2.4, that

X( t) Q*(t)XoQ( t)

e’(x) O(t)R (t).

R(t)O(t) Q*(t) et(Xo)Q(t)= et(*(t)x(t))= et(x(t)).

For k 0, choose 1; then,

implies

e(x())= Q(1)R(1)

e(x(1)) R(1)Q(1).

Since the Toda equation is autonomous, the assertion follows.
In other words, the above theorem asserts that the isospectral matrices produced

by the QR-algorithm (2.1) are related to those isospectral matrices produced by
evaluations of the Toda flow (2.3) at integer times. In particular, setting G(z)= In z
and supposing that Xo satisfies the conditions in Lemma 1.2, we then recover the
QR-algorithm from the Toda flow. The constantly shifted QR-algorithm is equivalent
to the choice G(z)= In (z-c). For the purpose of convenient computation we shall,
henceforth, be interested only in the choice G(z)= z.

The classical QR-algorithm takes great advantage of the fact that one cycle of
the simple QR process applied to a Hessenberg matrix results in a Hessenberg matrix.
We now show that the same fact is preserved along the entire Toda flow (for the case
G(z)=z).

LEMMA 2.5. If X is an upper Hessenberg matrix, so is J [X, IIoX].
Proof. As an upper Hessenberg matrix, it must be that xij 0, whenever 1 -< ]

n-2 and ]+ 2-<iN n. With and ] in this range and fixed, it is also true that xij 0
implies Xik 0 for k =< ] and Xk 0 for =< k. Let bq denote the (i, ])-component of the
matrix II0(X). Then, from (2.3), we know

"ij’-- Xikbk]-- bikXk]-- xi,]+lbj+l,]-- bi,i-lXi-l,],
k=l k=l

since bk 0 unless k ]- 1, ] or ] / 1 and bik 0 unless k i- 1, or / 1. Note that
b+l,j X+l, and bi,i-1 xi,i-1. If i= j+ 2, then 2i =0. If i> j+ 2, then xi,+l xi-,j =0
and still 2q 0.

Observe that, from Lemma 2.3, the trajectory X(t) is bounded. Indeed IIX(t)ll2
IIX(0)II2. It follows that its to-limit set is nonempty, compact and connected. We are
interested in finding this set. A special case is well known [4], [5], [10].

LEMMA 2.6. If Xo is a Jacobi matrix with positive off-diagonal elements, then Xo
has simple spectrum {A1 > 12>" > An} and X(t) diag {A,. , An} exponentially as

Indeed we may have more general results.
THEOREM 2.2. If the matrix Xo Nnn has distinct real eigenvalues {A1 >" >

then the Toda flow X(t) of (2.3) with G(z) z converges to an upper triangular matrix
with the eigenvalues appearing on the diagonal in decreasing order.
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Remark. We do not assume any symmetric property on Xo. In fact, we may even
weaken the hypothesis by assuming Xo has real eigenvalues only.

Proof. The matrix eo has positive eigenvalues {exl >... > eXn}. So, by Lemma
2.2 and Theorem 2.1, the sequence ex(k) converges to an upper triangular matrix with
diagonal elements {eXl, ea-}. But the continuity of the logarithm from (2.4) and
the isospectral property from Lemma 2.3 imply that X(k) must converge to an upper
triangular matrix. Being an autonomous system with upper triangular matrices as
critical points, the flow X(t) to Problem (2.3) must converge as --> oo by the continuous
dependence property.

We shall investigate this property further in the next two sections.

3. Center manifold theory and the Toda flow in [22o First of all, we cite four
results concerning the center manifold [1]. Given a system

(3.1) := Ax +f(x, y), = By+ g(x, y),

where x En, y R" and A, B are constant matrices such that all eigenvalues of A
have zero real parts while all those of B have negative real parts, the functions f and
g are C2 with

(3.2)
f(0, 0) =0, D/(0, 0) 0,

g(0, 0) =0, Dg(0, 0) 0.

An invariant manifold for (3.1) with the property

(3.3) y h(x), h(O) O, Dh(O) O,

is called a center manifold.
LEMMA 3.1. There exists a center manifold for (3.1) with h C2.
LEMMA 3.2. The flow on this center manifold is governed by

(3.4) =Au+f(u,h(u)).

LEMMA 3.3. The stability of the zero solution of (3.4) is equivalent to the stability
of the zero solution of (3.1). In particular, suppose that the zero solution of (3.4) is
stable and that (x(t), y(t)) is a solution of (3.1) with (x(0), y(0)) sufficiently small.
Then there exists a solution u(t) of (3.4) such that as

x(t) u( t) + O( e-"’),
(3.5)

y(t) h(u(t))+ O(e-"t),
where I > 0 is a constant.

LEMMA 3.4. Let ck be a C mapping of a neighborhood of the origin in " into
with ok(O)= 0 and Dck(O)= O. Consider the operator M on

(3.6) Mdp(x)=Dck(x) (Ax+f(x, k(x)))-Bcb(x)-g(x, dp(x)).

Suppose that as x--> 0, there exists q > 1 such that

Mck(x) O(Ixl);

then, as x--> 0, we have an approximation

Ih(x)- (x)l O(Ixl).

We now consider an example. Denote a matrix X e 22 as

X=[Xll’ x12].
lX21, x22_1
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Then the Toda equation (2.3), with G(X)= X, is given by

(3.7) R X21 (X12 + X21)’ X21(X22 xll)
X21(X22-- Xll), --X21(X12 + X21

Identifying [22 as R4, we may rewrite the above equation as

(3.8)

Let

Xll 0 X21

X21/_" --X21 0

/12/ --X21 0

X22.. 0 --X21

X21 0 FXll
-x 0 l_x_l

T I tll t12]
0 /22-1

be an arbitrary upper triangular matrix in 22 with t22 < tll. Note that T is an
equilibrium point of (3.7). We shall use, without causing any confusion, the same
notation to represent both a matrix in R22 and a vector in 4 henceforth. Set

then

(3.9)

Y=X-T;

0 t12 0 0 FYll 7 Y21(Y21 q-yl2)1
t22--11 0 21(22-- 11)/
-t 0 t_Y_l -Y(Y + Y)_]

Notice that this matrix 0[X, IIoX]/,gXlx= 7- has eigenvalues 0, 0, 0 and/22- tl 1. Indeed,
if we let

1 0 0 0 1 0 0 a

0 0
E=

0 1
1 0 0 0

where a t12/(t22-t11) and define Z= E-1pTy, then

and

(3.10)

z=l= Yl=-Y=, Iz==I Y==+aY-I
Z21_J Y21 _]

=,2 =0ff,z|+ z
Z22 LZz2_J L-Zzl(Z12 "- 2z21) + Ozzl(Zz2- Zll- 2ctz2)

21--(t22- t11)Z21 + Z21(Z22-- Zll 2Z21).

By Lemma 3.1, there exists a three-dimensional center manifold 2’21 h(z, 2’12 Z22).
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To find an approximation to h, set

Mf])(Z11, Z12, Z22)= Dt)(Zll, Z12, Z22)I (D(z12+ 2tD)-O(Z22-Z11-201t)) ](3.11) I-(z2 -I- 2) -"O(Z22 Zll- 20)

-(t22- t,1)- 6(z22- z11-2a) 0,

according to (3.6). Obviously, 4 =0 is a trivial solution to (3.11). By Lemma 3.2, the
flow on this center manifold is governed by

(3.12) ti =0.

Since with any initial value the solution to (3.12) is a constant, by Lemma 3.3, we
know with any matrix sufficiently near 0 as the initial value for (3.10), the corresponding
solution Z(t) converges to a constant upper triangular matrix exponentially as t-o.
Equivalently, with any matrix sufficiently close to T as the initial value for (3.7), the
corresponding flow X(t) then converges to a constant upper triangular matrix exponen-
tially.

We shall illustrate the above results numerically in 5.

4. General treatment in "". In this section, we generalize the result in 3 to
the general case nn. Essentially, all these proofs can even be extended to the complex
case Cnn.

Let T be a fixed real upper triangular matrix with diagonal elements tn, <... <
t22 < tll. We establish the major result through several lemmas.

LEMMA 4.1. If the matrix X is identified as the vector in 2, then the Toda
flow (2.3) can always be written as

(4.1) =f(X)=C(X).X,

where C(X) R2 is linear in X. More precisely, if C(X) is written in block form as
an n x n array of n x n blocks, then its (i, i)-block is always the matrix -IIoX, its
i, j)-block is -xI if > ] and xiI if < j.

LEMMA 4.2. The derivative of f at X acting on B is given by

(4.2) Df(X)B C(B)X + C(X)B.

Proof. This follows from the fact that f(X + B)-f(X) C(B)X+
C(B)B + C(X)B and the fact that C(B)B o(llBII).

LEMMA 4.3. The Jacobian Dr(x) evaluated at the upper triangular matrix TaIways
has n n + 1)/ 2 zero eigenvalues and n n 1)/ 2 eigenvalues of the form tii tii with ] > i.
Furthermore, this matrix is always diagonalizable.

Proof. We first construct this ne ne Jacobian matrix Dr(T) explicitly. Let e be
the standard elementary matrix whose only nonzero component 1 is at the (i,])-
position. From the definition of the function C, it is obvious that C(T) 0 and C(e) 0
whenever -< ]. By (4.2), the matrix Dr(T), therefore, has at least n(n + 1)/2 columns
identically zero. Its other columns can be constructed by the recipe described below
which can be verified by direct observations. For i> ], the (n. (]-1)+ i)th column of
Dr(T), given by

Df( T)(ei) C(ei) T,

is the sum of two matrices A=(a) and B=(b) (identified as column vectors)
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where, for a,/3 1,. , n,

aj0 ti0, aio -tjo,

b,,j t,,i, bi t,

ao b,b 0, otherwise.

It is clear that Dr(T) always has n(n + 1)/2 zero eigenvalues. To calculate the remaining
() eigenvalues, it is sufficient to consider the ()x () submatrix obtained by deleting
all elements on the (n. (j-1)+ i)th column and row of Dr(T) for iN j. For example,
when n 4, the nontrivial columns of Dr(T) form the following 16 x 6 matrix according
to the above recipe.

t. t3 t14

t22 tl I23 t24 0 0

0 t33 tl t34

0 0 t44 t

t22--/11 0 0 t13 t14

--t12 0 0 t23 t24
0

0 --t12 0 t32-- t22 t34

0 0 --tiE 0 t44-- t

t23 t33-- tll 0 --tiE 0 /14

tl 3 0 0 t33 t22 0 /24

0 --t13 0 --t23 0 t34

0 0 --t13 0 --t23 t44-- t33

t24 t34 t44-- tll 0 --tiE --/13

tl4 0 0 t34 t44 t t23

0 -t14 0 -t24 0 t44- t33

0 0 -t14 0 -t24 -/34

By deleting the corresponding rows, we obtain the 6 x 6 matrix

t22 tl t23 t24

0 t33 tl t34 0 0

0 0 t44-- t

0 --/12 0 t33-- t22 /34 0

0 0 --t12 0 t44--/22
L

0 0 --t13 0 --t23 t44-- t33

In fact, it can be shown by induction that, in general, the ()x () submatrix is always
in block form with all blocks above the diagonal block identically zero and all diagonal
blocks are upper triangular matrices of which the diagonal entries are of the form
ti-t,, j > i. The assertion of this lemma thus follows.
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LEMMA 4.4. The problem of (2.3), with G(X)= X, can be written as

(4.3) =Df(T). Y+C(Y). Y,

ifY=x-r.
Proof. It follows from (4.2) that

Dr(T). Y C( Y) T.

This implies that

f(Y+ T)=C(Y+D) (Y+ T)=C(Y) (Y+ T)

=f(Y)+Df(T). Y.

We are now ready to prove the major result.
THEOREM 4.1. If Xo is sufficiently close to the matrix T, then the flow X(t) of the

Problem (2.3), with G(X) X, converges to a constant upper triangular matrix exponen-
tially as o.

Proof. Let pr be the permutation matrix which, when acting on Y, shifts all
elements strictly under the diagonal to the bottom components when regarded as a
vector in R"2. Let

,.__pTy,
so that we can represent this matrix I as

Y=

where a//is just the upper triangular part of Y and is the strictly lower triangular
part of Y. The equation (4.3) now becomes

(4.4) Y= O’

There exists a nonsingular matrix E whose columns consist of eigenvectors of the
matrix in (4.4). This matrix E may be written in the form

It is easy to see that

Define

and denote Z as

Then

(4.5)

IME= Ol N

Z=E-I=E-pTy,
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Furthermore, we have the following canonical differential equation

(4.6) 0 F( 0, ), B+ G(, ),
where B is the diagonal matrix with elements djj-dii, > and

[F(’)]=E-PT"C(PEZ)PEZ.(4.7) G(0,
With the condition of T, by Lemma 3.1, there exists a center manifold L h() for
(4.6). This manifold satisfies the operator equation

(4.8) Mb() Dqb()F(, b())-Bb()-a(, b()).
Observe that F(, 0)=0 and G(, 0)=0 according to (4.7). So h() =0 is a trivial
solution to (4.8). Since the flow on this center manifold remains constant according
to Lemma 3.2, we know that, by Lemma 3.3, if Xo is close enough to T, then the flow
X(t) converges to a constant upper triangular matrix exponentially.

Remark. The hypothesis that tnn <’’" < t22 < tll (or that they have distinct real
parts) is essential in the sense that having two equal diagonal elements is not generic,
i.e. a small perturbation might result in bifurcation. For a geometric interpretation,
the reader may look into 5.

Remark. Although what we get from the center manifold theory is only a much
weaker "local" convergence theorem for the unshifted QR algorithm, the reader
should remember that we have shown an "almost" global convergence theorem in 2.
For more detailed asymptotic analysis, see, e.g., [2] and [3].

Remark. Theorem 4.1 does not mention the condition on the moduli of eigen-
values. However, by the words "sufficiently close to the matrix T," it does imply
necessarily that eigenvalues of X0 have distinct moduli. See, e.g., the diagram in the
next section.

5. Analysis of the simplest Toda flow. In this section we shall analyze qualitatively
the dynamics of the Toda flow in R22. For a general treatment of Jacobi matrices in
R33, refer to [4].

The flow is governed by the equation

(5.1) f=[x21(x12+x21), x21(x22-x11) 1
L X21 X22 Xl 1), --X21 (X12 + X21) J"

Notice that x21(t) can never change sign by the uniqueness theorem. Since 212 221
and 222 =-211, we know that, for all 1,

(5.2) X12 X21 + C, /22 =--Xll + d,

for some constants c and d which are fixed by the initial data. It is sufficient to study
the flow of xzl(t) and x11(t). Let us rename

(5.3) x(t) x21(t), y(t) Xll(t),

then we have

(5.4) 2 -2xy + dx, ) 2X2 + CX.

Define

d
(5.5) z y --
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then the equation becomes

(5.6) =-2xz, ,=2x2+cx.

Obviously, x(t)= 0 and z(t)= constant is a trivial solution to (5.6). Without loss, we
shall assume

(5.7) c<0.

Figure 1 is a computer-plotted vector field of (5.6).

FIG.

It is clear that if x(0) < 0, then x(t) converges to 0 and z(t) converges to a nonnegative
constant as t--> oo. Note that A (-c/2, 0) is another critical point. We claim that near
A there are periodic solutions. Indeed, we have the following lemma.

LEMMA 5.1. With (x(0), z(0)) lying in the interior of the disc

((5.8) ze+ x+ -4’
the solution to (5.6) is a circle in the xz-plane.

Proof. With the following proof, we know even more about the trajectory. Let

W= X-t---
2’
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then (5.6) becomes

(5.9) z(c-2w), w(2w-c).

Changing into polar coordinates, i.e.,

(5.10) w r cos 0, z r sin 0,

makes it easy to see that

(5.11) :=0, =2r cos O-c.

Obviously, all solutions of (5.6) are circular sections.
Remark. This critical circle (5.8) can easily be checked to be the criterion for X0

to have real eigenvalues, i.e. with c and d fixed; then the matrix X0, with components
outside the circle (5.8) and satisfying (5.2), has real eigenvalues and vice versa.
Evidently, the upper half z-axis represents the stable center manifold which we have
discussed in 3. So we have

LEMMA 5.2. If the matrix Xo has real eigenvalues (not necessarily distinct), then
the flow X(t) converges to an upper triangular matrix with diagonal elements listed in
descending order.

We give some numerical examples below.
Example 1.

3, 2"

10

FIG. 2
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Example 2.

10

FIG. 3

Remark. All the numerical experiments are carried out with the standard IVP
solver--DE and STEP. The special structure of the Toda lattice and numerical experien-
ces indicate that a more efficient method can be designed. In particular, the error
control is much easier to handle. We are still studying this implementation problem,
see, e.g., [12].

Remark. If the matrix X0 is symmetric, then c 0. From the diagram, it is obvious
why the flow always converges to a diagonal matrix.

Remark. Observe that the critical circle (5.8) corresponds to the case where the
matrix X0 has real multiple roots. The limit point (0, 0) is unstable in the sense that
small perturbations may result in nonconvergent periodic solutions.

Remark. The equation (5.11) can be used to calculate the time needed so that x
is sufficiently close to 0. For example, if 0(0)=0, then the time T(e) needed in order
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that the flow reaches the vertical line x e is given by

1 /4r2-c2/2-r-(C+2e)+(c+2e)
+(2r-c)

T(e)=44r2-c21n
2 /2r-(c+2e)/4r2-c "/;+(c+2e) (2r-c)

Apparently, T(e) - oo as e 0. The case c 0 has been discussed in [4].
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LAYOUTS FOR THE SHUFFLE-EXCHANGE GRAPH
BASED ON THE COMPLEX PLANE DIAGRAM*
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Abstract. The shuffle-exchange graph is one of the best structures known for parallel computation.
Among the things, a shuffle-exchange computer can be used to compute discrete Fourier transforms, multiply
matrices, evaluate polynomials, perform permutations and sort lists. The algorithms needed for these
operations are quite simple and many require no more than logarithmic time and space per processor. In
this paper, we analyze the algebraic structure of the shuffle-exchange graph in order to find area-efficient
embeddings of the graph in a two-dimensional grid. The results are applicable to the design of Very Large
Scale Integration (VLSI) circuit layouts for a shuffle-exchange computer.

Key words, area-efficient chip layouts, complex plane diagram, graph embedding, necklace, shuffle-
exchange graph, Thompson grid model, Very Large Scale Integration (VLSI)

1. Introduction. The shuffle-exchange graph has long been recognized as one of
the best structures known for parallel computation. Among its many applications, a
shuffle-exchange computer can be used to compute discrete Fourier transforms,
multiply matrices, evaluate polynomials, perform permutations and sort lists [$71],
[P80], [$80]. The algorithms needed for these operations are quite simple and many
require no more than logarithmic time and space per processor.

Recent developments in Very Large Scale Integration (VLSI) circuit technology
have made it possible to fabricate large numbers of very simple processors on a single
chip. As most of the processors contained in a shuffle-exchange computer are very
simple, the shuffle-exchange graph serves as an excellent basis upon which to design
and build chip-sized microcomputers. One of the main difficulties with such an
architecture, however, is the problem of routing the wires which link the processors
together in a shuffle-exchange network. Current fabrication technology limits the
designer to two or three layers of insulated wiring on a chip and demands that he
make the chip as small in area as possible.

Abstracted, the designer’s problem becomes the mathematical question of how
to embed the shuffle-exchange graph in the smallest possible two-dimensional grid.
Thompson was the first to formalize the question mathematically. In his thesis IT80],
he showed that any layout (i.e., embedding in a two-dimensional grid) of the N-node
shuffle-exchange graph requires at least l(N2/log2 N) area. In addition, he described
a layout requiring only O (NE/log1/2 N) area. Shortly thereafter, Hoey and Leiserson
[HL80] described an embedding for the shuffle-exchange graph in the complex plane
(which we call the complex plane diagram) and showed how the diagram could be
used to find an O(NE/log N)-area layout for the N-node shuffle-exchange graph.

In this paper, we investigate the algebraic properties of the complex plane diagram
in order to find several O(NE/log3/2 N)-area layouts for the N-node shuffle-exchange
graph. In addition to being asymptotically superior to previously discovered layouts,
the layouts described in this paper are also superior for small values of N. In fact,
one of these layouts serves as the basis for the more recent work of Leighton and

* Received by the editors June 28, 1982, and in revised form March 24, 1983. This research was
supported in part by the National Science Foundation under grant MCS 80-07756, the Defense Advanced
Research Projects Agency under grant N00014-80-C-0622, and the Bantrell Foundation.

" Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts 02139.
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Miller who have described optimal layouts for small shuffle-exchange graphs in
[LM81].

Subsequent to the completion of the research presented in this paper, we learned
that Rodeh and Steinberg independently discovered an O(N2/log3/ N)-area layout
for the N-node shuffle-exchange graph. Their work is also based on the complex plane
diagram and appears in [SR81]. Even more recently, Kleitman, Leighton, Lepley and
Miller [KLLM81] have discovered an entirely new method for laying out shuffle-
exchange graphs which can be used to find asymptotically optimal O(N2/log2 N)-area
layouts. Although their layouts are not entirely practical, they are the only layouts
known to achieve Thompson’s lower bound asymptotically.

The remainder of the paper is divided into six sections. In 2, we define the
shuffle-exchange graph and the grid model of a chip. We also describe Thompson’s
O(N2/log1/2 N)-area layout for the N-node shuffle-exchange graph. In 3, we define
the complex plane diagram for the shuffle-exchange graph and mention several of its
properties. In 4, we describe several layouts for the shuffle-exchange graph which
are based on the complex plane diagram. These include a straightforward
O(N2/logN)-area layout and several new O(N2/log3/2 N)-area layouts. Section 5
contains some remarks and open questions, and 6 and 7 contain the acknowledg-
ments and references.

2. Preliminaries.
2a. The shuffle-exchange graph. The shuffle-exchange graph comes in various

sizes. In particular, there is an N-node shuffle-exchange graph for every N which is
a power of two. Each node of the (N 2k)-node shuffle-exchange graph is associated
with a unique k-bit binary string ak-l"’ao. Two nodes w and w’ are linked via a
shuffle edge if w’ is a left or right cyclic 1-shift of w (i.e., if w =ak-l’’’ao and
w’=ak_2"’" aoak-1 or w’=aoak_l...al, respectively). Two nodes w and w’ are
linked via an exchange edge if w and w’ differ only in the last bit (i.e., if w ak-1 a 10
and w’=ak_l all or vice versa). As an example, we have drawn the 8-node
shuffle-exchange graph in Fig. 1. Note that the shuffle edges are drawn with solid
lines while the exchange edges are drawn with dashed lines. We shall follow this
convention throughout the paper.

i00 i01

000 001 ii0 iii

010 011

FIG. 1. The 8-node shuffle-exchange graph.

By replacing the nodes and edges of the shuffle-exchange graph by processors
and wires (respectively), the shuffle-exchange graph can be transformed into a very
powerful parallel computer (which we call the shuffle-exchange computer). The compu-
tational power of the shuffle-exchange computer is partly derived from the fact that
every pair of nodes in an N-node shuffle-exchange graph is linked by a path containing
at most 2 log Nedges and thus the communication time between any pair of processors
is short.
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More importantly, however, the shuffle-exchange computer is capable of perform-
ing a perfect shuffle on a set of data in a single parallel operation. For example,
consider a deck of 8 cards distributed among the 8 processors of the 8-node shuffle-
exchange graph so that processor 000 initially has card 0, processor 001 initially has
card 1, processor 010 initially has card 2, and so forth. Next, consider a (parallel)
operation of the shuffle-exchange computer in which each processor a2a a0 sends its
card across a shuffle edge to the neighboring processor alaoa2. It is easily verified
that, after completion of the operation, processor 000 contains card 0 (the top card
in the shuffled deck), processor 001 contains card 4 (the second card in the shuffled
deck), and so forth.

The power of card shuffling and its mathematical abstractions is well known to
magicians and mathematicians [DGK81] as well as to computer scientists [$71, $80].
For a good survey of the computational power of the shuffle-exchange graph, we
recommend Schwartz’ paper on ultracomputers [$80]. In addition, Stone’s paper [$71
contains a nice description of some important parallel algorithms based on the
shuffle-exchange graph.

2b. The grid model. Among the many mathematical models that have been
proposed for VLSI computation, the most widely accepted is due to Thompson and
is known as the Thompson grid model [T79], IT80]. The grid model of a VLSI chip
is quite simple. The chip is presumed to consist of a grid of vertical and horizontal
tracks which are spaced apart by unit intervals. Processors are viewed as points and
are located only at the intersection of grid tracks. Wires are routed through the tracks
in order to connect pairs of processors. Although a wire in a horizontal track is allowed
to cross a wire in a vertical track (without making an electrical connection), pairs of
wires are not allowed to overlap for any distance or to overlap at corners (i.e., they
cannot overlap in the same track). Further, wires are not allowed to overlap processors
to which they are not linked. (The routing of wires in this fashion is also known as
layer per direction routing and Manhattan routing.)

As an example, we have included a grid layout for the 8-node shuffle-exchange
graph in Fig. 2. As before, the shuffle edges are drawn with solid lines while the
exchange edges are drawn with dashed lines. Notice that we have omitted the self-loops
in Fig. 2 since they are electrically redundant. In general, the processors need not all
be placed on a single horizontal line (as they are in this example).

000 001 i00 010 011 i01 ii0 Iii

FIG. 2. A grid model layout of the 8-node shuffle-exchange graph.

Practical considerations dictate that the area of a VLSI layout be as small as
possible. The area of a layout in the grid model is defined to be the product of the
number of horizontal tracks and the number of vertical tracks which contain a
processor or wire segment of the layout. For example, the layout in Fig. 2 has area
48. As can be easily observed, this is far from optimal.
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2c. Thompson’s layout. Given any k-bit string w, define the (Hamming) weight
of w to be the number of 1-bits it contains. For example, the weight of 10110 is 3.
Thompson’s idea was to lay out the N 2k nodes of the shuffle-exchange graph on a
straight line in order of nondecreasing weight. It is easily seen that shuffle edges link
nodes which have the same weight and that exchange edges link nodes which have
weights differing by one. Thus the edges of such a layout are relatively short. In fact,
nodes connected by shuffle edges can be placed in a group, so that only 2 horizontal
tracks are used for all the shuffle connections. The remaining horizontal tracks are
occupied by exchange edges.

The exchange eges are inserted from left to right so that each exchange edge
occupies two vertical tracks and a portion of the lowest horizontal track which is
empty at the time of its insertion. (For example, Fig. 2 displays a layout for the 8-node
shuffle-exchange graph designed in this way.) This well-known strategy for inserting
exchange edges guarantees that the number of horizontal tracks used will be minimal,
and equal to the maximum number of edges which must (at some fixed point) overlap
one another. Since exchange edges link nodes which differ in weight by one, it is easily
seen that the maximum overlap is at most O(max0=<s__<k Bs) where B is the number
of nodes of weight s.

It is easy to show that B C(k, s) for each s, where

C(k, s)= k! (k -s)!]

is the well-known function for binomial coefficients. It is also well known that C(k, s)
achieves its maximum value at s k/2 for any k. Using standard asymptotic analysis,
it is easily shown that C(k, k/2)---(2/r)1/2(2k/kl/2) for large k. (For a good review
of such techniques, see Bender and Orszag’s book [BO78].) Thus Thompson’s layout
requires only O(N/log1/ N) horizontal tracks. Since only 1 or 2 vertical tracks are
needed to embed the vertical portions of the edges incident to any given node, we
can conclude that Thompson’s layout has area O(N2/log1/2 N).

3. The complex plane diagram. In [HL80], Hoey and Leiserson observed that
there is a very natural embedding of the shuffle-exchange graph in the complex plane.
In what follows, we describe this embedding (which we call the complex plane diagram
and point out some of its more important properties.

3a. Definition. Let 8k e 2ri/k denote the kth primitive root of unity. Given any
k-bit binary string w=a-i ao, let p(w) be the map which sends w to the point

8kk-p(w) =ak-1 +" "+a18k +ao

in the complex plane. As each node of the (N 2k)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the
shuffle-exchange graph in the complex plane. For example, we have done this for the
32-node shuffle-exchange graph (whence k =5) in Fig. 3. For simplicity, each node is
labeled with its value instead of its 5-bit binary string. (By the value of a node, we
mean the numerical value of the associated k-bit binary string.)

3b. Properties. Examination of Fig. 3 indicates that the complex plane diagram
has some very interesting properties. First, it is apparent that the shuffle edges occur
in cycles (which we call necklaces) which are symmetrically placed about the origin.
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+ii

Oi

-2 -I 0 +I +2

FIG. 3. The complex plane diagram for the 32-node shuffle-exchange graph (taken from [HL80]).

This phenomenon is easily explained by the following identity:

8kp(ak-l ao) ak-,8 + ak-2-1 +" q- a1 q- aoSk

ak-et-1 +" + aOtk + ak-1

p(ak-2 aoak-1).

Thus traversal of a shuffle edge corresponds to a 27r/k rotation in the complex plane.
Except for degenerate cases, the preceding identity also indicates that each

necklace is composed of k nodes, each a cyclic shift of the other. (Two nodes which
are cyclic shifts of each other are also known as conjugates.) Such necklaces are called
full necklaces. Degenerate necklaces contain fewer than k nodes and, because they
must have some symmetry, are mapped entirely to the origin of the complex plane
diagram. For example, {00000} and {0101, 1010} are degenerate necklaces while both
{101,011,110} and {11100,11001,10011,00111,01110} are full. As we note in
the following proposition, the number of degenerate necklaces is quite small compared
to the number of full necklaces.

PROPOSITION 1. There are O(N1/2) degenerate necklaces and N/logN-
O(N1/2/log N) full necklaces in the N-node shuffle-exchange graph.

Proof. A node w is in a denerate necklace if its binary representation has a
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a
string of bits must consist of a block of kip bits which is repeated p times where p
is some prime divisor of k. As there are 2kip binary strings of length k/p, this means
that the number of nodes in degenerate necklaces is at most

plk

2kip <= 0(Nll2).
p2

The remaining N O(N1/2) nodes are in full necklaces. As each full necklace contains
logN nodes, there are N/logN-O(N1/2/log N) full necklaces.

It will often be convenient to refer to a necklace by one of its nodes. In particular,
we will use the notation (w) to indicate the necklace generated by w. This is simply
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the collection of cyclic shifts of w. For example, the necklace generated by 101 is
(101) {101,011,110}.

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as a horizontal line segment
of unit length. This phenomenon is explained by the identity

p(ak-l al0)+l=ak-lB-l+’’’+al5‘+l=p(at,-1 "’’all).

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called levels. For example, there are 9 levels in the
diagram of the 32-node shuffle-exchange graph shown in Fig. 3. We will use the
properties of levels to find O(N2/log3/2 N)-area layouts for the N-node shuffle-
exchange graph.

4. Layouts based on the complex plane diagram. In this section, we present
several layouts of the shuffle-exchange graph which are based on the complex plane
diagram. We commence with a straightforward O(N2/logN)-area layout of the
N-node shuffle-exchange graph. This layout has been discovered by many researchers
(including Hoey and Leierson). Later, we show how the layout can be modified so as
to require only O(N2/log3/2 N) area.

4a. A straightforward O(N2/log N)-area layout. In what follows, we describe a
straightforward layout of the shuffle-exchange graph which requires only O(N/log N)
area. The layout is formed from a grid of levels and necklaces which we call the
level-necklace grid. Each row of the grid corresponds to a level of the complex plane
diagram. The columns of the grid are divided into consecutive column pairs, each pair
corresponding to a necklace. The leftmost column of each column pair corresponds
to that part of the necklace which is contained in the left half of the complex plane.
Similarly, the rightmost column of each pair corresponds to the part of the necklace
contained in the right half of the complex plane.

The rows of the level-necklace grid must have the same top-to-bottom order as
do the corresponding levels in the complex plane diagram. The columns, however,
may be arranged arbitrarily (provided that columns corresponding to the same necklace
are adjacent in the grid).

Each node of the shuffle-exchange graph is placed at the intersection of the row
and column of the grid that corresponds to the level and part of the necklace (left
half or right half) to which it belongs in the complex plane diagram. For example, we
have done this for a random ordering of the necklaces of the 32-node shuffle-exchange
graph in Fig. 4. (Notice that we have used just one column each for the degenerate
necklaces (0) and (31) since they each contain just one node. In general two columns
will be required for necklaces which are mapped to the origin of the complex plane
diagram, but the nodes of each such necklace should still be lumped together at a
single point of the level-necklace grid.)

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to
produce a layout for the graph. The main step is to partition the exchange edges in
each row of the grid into nonoverlapping subsets. Each subset can then be assigned
to a horizontal track of the layout. Except for the row corresponding to the real line
in the complex plane diagram, the assignment of subsets to horizontal tracks within
a row is arbitrary. (The assignment of horizontal tracks containing nodes on the real
line must preserve the cyclic orientation of the nodes which are in necklaces that are
mapped to the origin.)
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levels

necklaces

<3> <7> <11> <1> <5> <0> <15> <31>

"3 14 2 15
3

4
"11 :10

5

26 8 9 27

17 28 "16 29

FIG. 4. A level-necklace grid for the 32-node shuffle-exchange graph.

Once this is done, the exchange edges can be inserted in the horizontal tracks
and the shuffle edges can be inserted in the vertical tracks. (To be precise, some of
the shuffle edges also occupy part of a horizontal track at the top or bottom of the
layout.) By Proposition 1, the number of vertical tracks occupied by the necklaces is
at most 2N/logN +0(N1/2). Since there are precisely N/2 exchange edges, at most
N/2 + 2 horizontal tracks are contained in the layout. Thus the total area of the layout
of the N-node shuitte-exchange graph is at most N/log N+ 0(N3/2). As an example,
we have displayed in Fig. 5 a layout of the 32-node shuffle-exchange graph produced
from the level-necklace grid in Fig. 4.

4b. An improved O(N2]log3/2 N)-area layout. It is possible to improve the layout
described in 4a by reducing the number of horizontal tracks needed to embed the

necklaces

levels

<3> <7> <11>

24 25

<1>

4

11

<5> <0> <15> <31)

FIG 5. Layout of the 32-node shuffle-exchange graph produced from the level-necklace grid shown in
Fig. 4.
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exchange edges. This can be done by reordering the necklaces from left to right so
as to increase the average number of exchange edges which can be inserted on each
horizontal track. For example, the ordering of the necklaces shown in Fig. 6 results
in far fewer horizontal tracks being used than did the ordering of necklaces shown in
Fig. 5.

necklaces

<0> <1> <3> <5> <7> <11> <15> <31>

levels

2

3

4

6

7

9 24

17

7

19

21

FIG. 6. An improved layout for the 32-node shuffle-exchange graph.

Although we do not know how to best order the necklaces in general, we have
found several orderings which yield O(N/log3/2 N)-area layouts for the N-node
shuffle-exchange graph. For instance, we will show in what follows that such a layout
can be constructed by arranging the necklaces from left to right in order of non-
decreasing weight. (The weight of a necklace is simply defined to be the weight of
any of its nodes.) As an example, the layout displayed in Fig. 6 is of this form. (This
observation has also been made by Steinberg and Rodeh in [SR81].)

In order to bound the number of horizontal tracks needed to insert the exchange
edges, we will show that the maximum overlap of exchange edges on each level is at
most the number of nodes of size h [(k- 1)/21 on that level. Since the maximum
overlap of exchange edges on each level is an upper bound on the number of horizontal
tracks needed to insert the exchange edges on that level, we can thus conclude that
the total number of horizontal tracks needed to insert all of the exchange edges is at
most

Bh <=BI/2 (2/Tr)l/2N/log1/2 N + O(N/log3/9 N) where N 2k.

Thus the resulting layout will have area at most

2(2/Tr)I/2N2/log3/2 N + O(N2/log5/2 N).

Although it is clear the maximum total overlap (over all levels) of exchange edges
is at most Bk/2, this is not sufficient to prove the result since any layout must also
preserve the top-to-bottom partial order induced by the necklace structure on the
exchange edges. It is only within individual levels that the top-to-bottom ordering of
exchange edges is arbitrary. (As we noted earlier, some minor precautions are necessary
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for the level corresponding to the real line.) It is not immediately clear, however, why
the maximum overlap on each level is at most the number of nodes of size h <-k/2
on that level. In what follows, we establish this result by breaking up each level into
sublevels (for which the analysis is easier) and showing that the maximum overlap on
each sublevel is at most the number of nodes of size h on that sublevel. The analysis
requires some additional notation.

Consider a node of the form ak-l""" a10 for which either ak-i 0 or a 0 or
both for each _-< k. We will refer to such a node as a basis node. A node bk-1 bo
is said to be generated by the basis node ak-1 ao if

1) bk-i ak-i and b a whenever ak-i a for 1 _-< <_- k- 1, and
2) bk-i b whenever ak-i ai 0 for 1 _-< -<_ k- 1.

For example, 10000 generates 10001, 11100 and 11101 but not 11111.
It is not difficult to show that if u generates v, then both u and v are on th.e same

level of the complex plane diagram. For example, let u a_ ao and v bk-i b0
and observe that

p(v)-p(u) (bk_l--ak-1)-1
-b.. + (b-al)8 + (bo-ao)

Ck t kk -1 "nt- t- C (k -+" CO,

where Ck- C for each i, 1 _<-i -<_ k 1. Since tkk-i is the complex conjugate of 8k for
1 <--_i _-<k- 1, we can conclude that p(v)-p(u) is a real number and thus that u and
v are in the same level of the complex plane diagram.

It is also easy to show that each node of the shuffle-exchange graph is generated
by a unique basis node. In particular, the node which generates bk-l’’" bo can be
found by

1) setting bo 0 and (if k is even) setting bk/2 0, and
2) setting b- bk-i 0 for each such that (originally) b- bk-i-- 1.
Since exchange edges link nodes which have the same basis node, we can conclude

from the preceding arguments that it is possible to partition each level of the complex
plane diagram into sublevels so that the nodes in each sublevel are precisely the nodes
generated by some basis node. We will now show that the maximum overlap on each
sublevel is at most the number of nodes of weight h on that sublevel.

Since the necklaces have been arranged from left to right in order of nondecreasing
weight, the overlap of exchange edges between two nodes of weight s in any sublevel
is at most O(maxo__<s__<k B*) where B* is the number of nodes in that sublevel with
weight s. In the following proposition, we compute B* and show that its maximum
for any sublevel occurs at s h.

PROPOSITION 2. Each basis node of weight r generates B* nodes of weight s, where
1) B* C(h -r, i) for s r + 2i and <-h -r, and
2) B* =C(h-r,i)fors=r+2i+l andi<-h-r

when k is odd, and
1) B*=C(h-r+l,i)fors=r+2iandi<h-r+ls ,and
2) B* 2C(h -r, i) for s r + 2i + 1 and < h -r

when k is even.

Proof. When k is odd, there are precisely h-r pairs a. ak-j 0 in a basis node
of weight r. In order to generate a string of weight s r + 2i when k is odd, we must
set b0=0 and set of the h-r pairs so that bj=bk_i 1. There are C(h-r,i) such
strings. To generate a string of weight s r + 2i + 1 when k is odd, we must set b0 1
and choose of the h-r pairs so that bi =bk-i 1. As before, there are C(h-r, i)
such strings.
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When k is even, there is also the degenerate pair ak/2 0. To generate a string
of weight s r+2i when k is even, we must choose of the h-r/ 1 pairs so that
b] bk-j 1 (this count includes the "pair" bo bk/. 1). There are C(h-r+ 1, i) such
strings. To generate a string of weight s-r/2i/ 1 when k is even, we must set
either b0 1 and bk/2--0 or b0 0 and bk/2 1, and choose of the h-r pairs so that
bi bk-i 1 ( k/2). There are 2C(h -r, i) such strings.

Given Proposition 2, it is easily checked that the maximum value of B* for any
sublevel (independent of the value of r) occurs when s h. Thus the sum (over all
sublevels) of the maximum overlap at each sublevel is at most the number of nodes
of weight h= [(k-1)/2J in the entire graph. This is at most C(k,k/2)--.
(2/Tr)a/(2k/k 1/2). Thus the total area of the layout is no more than

2(2/Tr)1/NZ/log3/2 N + O(N/log5/2 N),

as claimed.

4c. Additional O(N2/iog3/2 N)-area layouts. By varying the order of the neck-
laces in the level-necklace grid, it is possible to produce a variety of layouts for the
shuffle-exchange graph which require at most O(N2/log3/2 N) area. The complex
plane diagram itself suggests one such ordering. For example, consider an arrangement
of the necklaces from left to right in order of nondecreasing radius. (The radius of a
necklace is defined to be the distance of its nodes from the origin in the complex
plane diagram.) Such a layout corresponds to a folding of the complex plane diagram
along its imaginary axis followed by a straightening of the necklaces. In what follows,
we will show that, like a layout by necklace weight, a layout by necklace radius has
area O(N2/log3/2 N).

Because the layout by radius is so closely related to the complex plane diagram,
our analysis will center on the complex plane diagram, itself. As before, we will
partition the levels into sublevels and find an upper bound on the maximum overlap
of exchange edges on each sublevel separately. The number of horizontal tracks
needed to insert the exchange edges will then be at most the sum of these upper
bounds. We will show that this sum is at most O(N/log1/2 N).

Notice that the maximum overlap of exchange edges on a sublevel of the level-
necklace grid is at most twice the maximum overlap on that sublevel in the complex
plane diagram. (The factor of two is introduced by the "folding" of the diagram along
its imaginary axis. Although straightening the necklaces might affect the maximum
total overlap of exchange edges, it does not affect the overlap within a sublevel.)

Within a sublevel, an exchange edge can be identified by the real part of its
midpoint. For example, the real part of the midpoint of exchange edge
(bk-l’’" bl0, b/-i’’" b 1) is

b_x cos [27r(k 1)/k]+... +b cos [27r/k]+1/2.

If a is a basis node of a sublevel, then a generates the other nodes in that sublevel
by substitution of the appropriate pairs of ones. For instance, we may set bi- bk-i 1,
if ai ak-i O. Let

Ta ={l <=j <-h[ai=ak_i=O}

denote those indices 1 -i -< h where a pair of 1-bits may be substituted for a pair of
0-bits. (As before, h [(k- 1)/2J but for convenience, we shall henceforth assume
that k is odd.) Notice that if b is generated by a, then the real part of the midpoint
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of the exchange edge incident to b is

iT iT

Y’. 2bi cos (2rri/k) + Y cos (2rri/k) + 1/2.
l<__i<=h

We now introduce a random variable Z, which has as its image, all of the real
parts of the midpoints of edges in the sublevel generated by a. Since b bk-i can be
either 0 or 1 when T, let B be a random variable representing this choice. In
particular,

B 0 with probability 2x-, and

Bi 1 with probability 1/2.
Then

Z Y’. 2 cos (27ri/k)B, + Y. cos (27ri/k) + 1/2
l<=i<=h

Y’. 2 cos (27ri/k)(Bi-1/2).

Since the exchange edges have unit length in the complex plane diagram, two
edges overlap if and only if their midpoints are within unit distance of each other.
Thus the number of edges which overlap at position x on the sublevel generated by
a node a is given by the formula

21TI Prob [x -1/2 =<Za _-<x +1/2],
where denotes the cardinality of Ta. (We caution the reader that the notation Ix
is also used to denote the absolute value of x.)

Although the distribution function of Za is difficult to analyze directly, it does
behave like a normal distribution. This is becauseZ is the sum of independent random

2variables which have mean 0 and variance tri =cos2 (2rri/k). The Berry-Esseen
theorem states precisely how far Za can vary from a normal distribution. (For a proof
of this theorem see IF71].)

BERR-ESSEEN THEOREM. LetX1, X2, , X, be independent random variables
2 2such that E(Xi)= 0, E(X/2)= o’i, and E(lX3i l)=pifor 1 <-_i <--m. Sets2=o’ +.. "d-trm

and r O +" + p,,. In addition, let F denote the cumulative distribution function of
the sum (X1 +"" +X,,)/s. Then ]’or all x,

IF(x)-(x)l <- 6r/s3
where dp is the standard normal cumulative distribution function.

In the case of a sublevel generated by a node a, we have

Xi 2 cos (2ri/k)(Bi-1/2) for T,
iT

2
S COS2 (2ri/k),

r Y. Icos3 (27ri/k

Applying the Berry-Esseen theorem, we can thus conclude that

Prob Ix 1/2 -< Za X d-] Prob [(x )/sa <-- Za/Sa (X q" )/Sa

-<*[(x +)/s,]-[(x -1/2)/s,] + 12rls3.
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Because the standard normal density function is symmetric and unimodal, we can
conclude that the maximum of Prob Ix- 1/2 <-Za <= x + 1/2] occurs at x 0 and is at most
O(1/Sa + ra/S 3

In the following proposition, we find bounds for the values of ra and s.
PROPOSITION 3. For any basis node a

r [cos3 (27ri/k)l<-_[T[,

s, Y. cos2 (2zri/k)>=f([T[3/k2).

Proof. The bound on r is easy to compute since [cos3 (2zri/k)[ -<_ 1. The calculation
of sa is a bit more tedious. In order to obtain a lower bound, cos2 (27ri/k) must be
made as small as possible. The smallest values occur when T contains indices which
are as close to (k-1)/4 as possible. In this case, we can approximate cos2 (2zri/k)
with the value c(Tr/2-27ri/k)2, for some constant c. Direct computation reveals that
the sum of these squares is at least ([Ta[3/k2).

Since [T[ < k for all a, we can conclude from the preceding that the maximum
overlap of exchange edges on a sublevel generated by a is at most

O(21w-
Noting that there are precisely C(h, f)2h-i sublevels generated by a node for which
ITs[ =/ and summing, we can conclude that the total number of horizontal tracks
needed to insert all of the exchange edges is at most

/=1 k i=1

It is not difficult to check that the dominant terms in the preceding sum occur
when i h/2O(h a/2 log h). In this region, i O(k) and thus the sum is bounded
above by

0 2hk-/ 2 C(h, ]) O(2-/k/) O(N/log/ N),
]=1

thus completing the proof that a layout by necklace radius takes at most
O(N/log/ N) area.

5. Remarks. It is worth remarking that the O(N2/log3/2 N)-area layouts for the
shuffle-exchange graph described in 4 actually require (NE/log3/2 N) area and thus
our analysis of these layouts cannot be improved by more than a constant factor. In
each case, the lower bound on area can be derived from the fact that the maximum
total overlap of exchange edges in the layouts is at least f(N/log1/2 N). (Remember
that although the maximum total overlap of exchange edges is not an upper bound on
the number of horizontal tracks needed to insert the exchange edges, it is a lower
bound.)

The f(N/log1/2 N) lower bound on maximum overlap is easily established for
the layout according to necklace weight since (N/log1/2 N) exchange edges link
nodes of weight k/2 to nodes of weight k/2 + 1. The lower bound on maximum overlap
is somewhat more difficult to prove for the layout according to necklace radius. The
first step in the proof is to show that at least N/2 exchange edges are contained within
a square of side length ckl/2 centered at the origin of the complex plane diagram
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(where c is a constant). (This can be done by using the techniques developed in 4c).
Next consider the sum (over i) of the total overlaps at points corresponding to
radii of i/2 for 1 <= <- ck 1/2. Because the complex plane diagram is radially symmetric,
it is possible to show that at least Iq(N) exchange edges are counted in this sum. Thus
the overlap at one of these points must be at least (N/k1/2) =(N/log1/2 N), as
claimed.

Since Thompson [T80] has shown that any layout for the N-node shuffle-exchange
graph must have area at least f(N2/log9 N), we know that at least f(N/log N)
horizontal tracks are needed to insert the exchange edges for any ordering of necklaces
in the level-necklace grid. However, there is no ordering of the necklaces known for
which the exchange edges can be inserted using less than o(N/log1/2 N) horizontal
tracks. This suggests an interesting open question since it would be nice to find an
O(N2/log N)-area layout based on the complex plane diagram. (Although an
asymptotically optimal O(NE/log2 N)-area layout for the shuffle-exchange graph has
recently been found by Kleitman, Leighton, Lepley and Miller [KLLM81], it is rather
complicated and of limited practical use.)

Although we do not know ot necklace orderings for which the exchange edges can
be inserted using less than o(N/log1/ N) horizontal tracks, we do know of orderings for
which the maximum total overlap of exchange edges is at most O(N log log N/log N).
For example, an ordering of the neckalces by minimum value has a maximum total
overlap of O(N log log N/log N). (The minimum value of a necklace is simply the
minimum of the values of the nodes contained in the necklace.)

Interestingly, an analysis of the minimum (over all orderings) of the maximum
total overlap for small values of N indicates that there may always be an ordering
for which the maximum total overlap is at most O(N/log N), the least possible. In
fact, for 3_-<N_-<7, this minimum maximum overlap is precisely [(2k--2)/kJ. A
summary of the minimum maximum overlap data for small values of N is included
in Table 1.

TABLE
Maximum overlap of best known orderings

maximum overlap of
k N best known ordering optimal?

3 8 2 yes
4 16 3 yes
5 32 6 yes
6 64 10 yes
7 128 18 yes
8 256 33 yes
9 512 62 ?
10 1024 115 ?
11 2048 214 ?
12 4096 388 ?
13 8192 754 ?

In addition to varying the order of the necklaces, improvements in the layout
may also be made by rearranging the level assignments of the exchange edges. For
example, the layout of the 32-node shuffle-exchange graph shown in Fig. 7 was
constructed in this way. (The careful reader will notice that we have also manipulated
the necklaces somewhat in order to produce this layout.) For a more detailed discussion
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of the manner in which exchange edges can be reassigned, we refer the reader to
[LM81 ]. (Such layouts have also been used in conjunction with the Blue Chip Project
at Purdue [$81 ].)

’6"" 13 "31

.LJ’
16 17 24 25 28 29

FIG. 7. An improved layout for the 32-node shuffle-exchange graph.
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INVERTING SIGNED GRAPHS*

HARVEY J. GREENBERG,- J. RICHARD LUNDGREN AND JOHN S. MAYBEE

Abstract. This paper addresses the question of determining the class of rectangular matrices having a

given signed graph as a signed row or column graph. We also determine equivalent conditions on a given
pair of signed graphs in order for them to be the signed row and column graphs of some rectangular matrix.

In connection with these signed graph inversion problems we discuss the concept of minimality and illustrate

how to invert a pair of signed graphs.

1. Introduction. In this paper we continue the systematic investigation of the
structural relationships between rectangular matrices and graphs, digraphs and signed
graphs started in [4], [5], and [6]. To study these relationships we make use of the
following graphs.

Given an m n matrix A, we define two sets of points R {rl,’", r,} and
C {ca," , cn} to represent the rows and columns of A, respectively. The three basic
graphs are:

Fundamental bigraph. BG is a bipartite graph (bigraph) on R and C. The lines
correspond to the nonzeros of A; i.e., [ri, cj] is a line in BG if and only if aij 0.

Row graph. RG has point set R. The line [ri, rk] belongs to RG if there exists

c C such that [ri, c] and Irk, C] are lines of BG.
Column graph. CG has point set C. The line [c, Ck] belongs to CG if there exists

ri R such that [ci, ri] and [Ck, ri] are lines of BG.
This leads naturally to the questions of determining the class of rectangular matrices

having a given graph as a row or column graph and determining equivalent conditions
on a given pair of graphs in order for them to be the row and column graphs of some
rectangular matrix (see [7]). These graph inversion techniques are useful in characteriz-
ing the two-step graphs studied by Exoo and Harary [2] (see [8]) and in characterizing
the competition graphs studied by Roberts [16], [17] (see [14]). In this paper we turn
our attention to these same problems for signed graphs. First, we consider how the
sign information in the matrix can be incorporated into the three graphs.

It is clear that the sign information in the real matrix A can be immediately
incorporated into the bigraph BG. In fact, we label the line [r, cj] positive if a> 0
and negative if ai < 0. The resulting signed graph will be denoted BG/. The signed
structure of A, i.e., the locations of the positive and negative entries of A, is immediately
discernible from the signed bigraph BG/. Thus, given a signed bigraph G+, we can
construct a unique matrix A with entries +1, -1 or 0 such that BG/(A)= G/.

Now it is not always possible to form signed row or column graphs. To form
RG/(A), it is necessary that the scalar product of any two rows be positive, negative
or zero independently of the magnitudes of the elements; i.e., all terms in the scalar
product are weakly of the same sign. We can then form RG/ where the line [r, r] is
positive if the corresponding row vectors have a positive scalar product, and negative
if the scalar product is negative. CG/ is defined in a similar way. In [6] it was shown
that RG/ can be formed if and only if CG/ can be formed, and if so, we say that A
is signed. Applications of these signed graphs and the importance of when they can
be formed are discussed in Greenberg [3], Greenberg, Lundgren and Maybee [6],
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Kydes and Provan [13] and Provan [15]. These include identifying and characterizing
important components of energy economic models such as physical flows matrices and
transportation matrices, and analyzing correlation and determinacy in linear systems
related to networks. In [9] we show how the signed graph inversion method developed
in this paper can be used to teach a computer to build models using partial information
in the form of economic correlation.

In 2 we find the class of matrices A satisfying RG/(A) G/ (and CG/(A) G/)
for a given signed graph G/. We use the methods developed in [7] as well as a theorem
of Harary and Kabell 11 on marked graphs. We also discuss the notion of minimality.
In 3 we find necessary and sufficient conditions for a pair of signed graphs to be
invertible and illustrate how to invert a pair of signed graphs.

2. One-graph inversion. In [7] we characterized the family of regular Boolean
matrices A whose row (column) graph equals a specified graph G. (A Boolean matrix
is regular if each row and column has a nonzero entry.) Here we investigate the same
problem for signed graphs and regular signed Boolean matrices (entries are + 1 or 0,
and each row and column has a nonzero entry). As in [7], observe that if RG/(A) G/,
then CG/(AT) G/. Consequently, we shall consider only matrices A such that
RG+(A)=G+.

Before considering the signed case, we review the situation for graphs. A k-clique,
k => 1, of a graph is a complete subgraph on k points. Given a graph G, a finite set S
of cliques of G will be called a clique cover if every point and line of G belongs to at
least one clique in S. We will use the notation (X) to denote the subgraph of G
generated by the set of points X. The following result is [7, Thm. 1].

THEOREM 2.1. Given the graph G =(V, E) with p-IV[, the regular Boolean
matrix A has the property that RG(A) G if and only ifA has p rows and the columns
of A correspond to a clique cover of G.

To illustrate the difference between the two problems, we consider the following
example. Let G and G/ be as illustrated in Fig. 2.1, where we have followed the
convention of using dashed lines to represent negative lines, as introduced in [12].

G G

2 2

4 3 4 3

FIG. 2.1

Then S {(1, 2, 4), (2, 3, 4)} is a clique cover for G. So by Theorem 2.1,

1 0

A=
0
1

satisfies RG(A)= G. However, even though S is also a clique cover for G/, there is
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no way to sign A so that RG/(A) G/. Now, if we let T {(1, 2, 4)(2, 3)(3, 4)}, then

1 0 0

1 1 0
0 1 1
1 0 1

also satisfies RG(A)= G. Here again, T is a clique cover of G/ also, but if we sign
A to get

A1

1 0 0
1 -1
0 -1

-1 0

then RG/(A1)= G/. The difference in the two clique covers is that each clique in T
is balanced. A signed graph G/ is balanced if and only if the points of G/ can be
partitioned into disjoint subsets $1 and $2 (one of which may be empty) such that
every line joining two points in the same set is positive and every line joining two
points in different sets is negative.

Given a signed graph G/, a finite set S/ of signed cliques of G/ will be called a
balanced clique cover of G/ if every point and line of G/ belongs to at least one clique
in S/, and every clique in S/ is balanced. The next two lemmas show that every signed
graph G/ has a balanced clique cover which can be used to construct a matrix A
satisfying RG/(A) G/.

LEMMA 2.2. Every signed graph G/ has a balanced clique cover.
Proof. Let S/ be the set of all lines in G/ together with the isolated points. Clearly

S/ is a balanced clique cover of G/. [3

LEMMA 2.3. Let G+ V, E) be a signed graph with p wl, n -IEI, and po equal
to the number of isolated points in G/. Then there exists a p (n + Po) regular signed
Boolean matrix A such that RG/(A)= G+.

Proof. Label the points of G/ 1,2,...,p and the lines 1,2,..., n. We then
construct A as follows. For each line of G/ there is a corresponding column of A with
l’s in rows and j if the line [i, j] is positive, and 1 in row and -1 in row j if the
line is negative and i< j. For each isolated point k of G/ there is a corresponding
column of A with a 1 in row k. Clearly A satisfies the conditions of the lemma. [3

The columns of matrix A constructed in Lemma 2.3 corresponded to the cliques
in the balanced clique cover consisting of all the lines and isolated points. However,
for the graph G/ in Fig. 2.1, we found a matrix A satisfying RG/(A) G/ where the
cliques determined by the columns of A were not all lines or points. To construct a
matrix A corresponding to an arbitrary balanced clique cover of G/, we need a method
for determining the signs in each column of A. For this we use the notion of marked
graphs investigated by Bieneke and Harary [1], Harary [10], and Harary and Kabell
[113.

In a marked graph, the points are designated positive or negative. Let M be a
marked graph with underlying graph G G(M) having the same points and lines as
M, but without any signs on its lines or points. The signed graph of the marked graph
M, written S(M), is obtained from G by affixing to each line the product of the signs
of its two points. The following result is [10, Thm 3.8] (also see Harary and Kabell [11]).
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THEOREM 2.4. TO each marked graph M them corresponds a unique balanced
signed graph B+= S(M). To each balanced signed graph B+ there correspond two
marked graphs M and M’, which are sign-reversals, such that S(M) S(M’) B+.

Given a balanced signed graph B+, we construct a marked graph M satisfying
S(M) B+ as follows. Select an arbitrary point and mark it positive (or negative).
Select a point adjacent to this point and label it with the product of the sign of the
marked point and the sign of the line joining the two points. Continue in this way
until the graph is marked.

We can use this procedure to see how the matrix A1 was constructed from the
graph G+ of Fig. 2.1. Since T is a balanced clique cover of G+, we can mark each of
the cliques in T independently as follows:

(i, , ), (2, 3), (, ).
A1 is then formed using the signs for each clique. This procedure can be used for any
balanced clique cover to get the following theorem.

THEOREM 2.5. Given the graph G+=(V, E) with p VI, the regular signed
Boolean matrix A has the property that RG+(A) G+ if and only if A has p rows and
the columns of A correspond to a balanced clique cover of G/.

Proof. Suppose RG/(A)= G/. Then by Theorem 2.1, the columns of A corres-
pond to a clique cover of G/, and by [6, Lemma 3], each of these cliques is balanced.

For the converse, let A be a regular signed Boolean matrix with p rows whose
columns correspond to a balanced clique cover of G/. Observe that we can form
RG+(A), since if ri and rj have nonzeros in columns k and q, then [r, r] is in cliques
Ck and Cq, and so r and ri are marked with either the same signs or opposite signs
in both Ck and Cq. We must show that RG+(A)= G+. Now [r, r] is negative in G+

if and only if [r, r] belongs to a balanced clique, and r and ri are marked with opposite
signs if and only if a column of A contains nonzero entries of opposite signs in rows
r and rj if and only if [r, ri] is negative in RG+(A). Similarly, [ri, ri] is positive in G+

if and only if [r, r] is positive in RG/(A). Hence, RG/(A)= G/, and the proof is
complete.

Given a balanced clique cover S/ of the signed graph G/, we can form a signed
clique cover graph, Q(S/), as follows. Let S/ {C1," , C,} and A be the correspond-
ing matrix. Then Q(S/) is a signed graph on the points 1, 2,..., n, and the line [i,
is positive in Q(S+) if and only if C and C contain at least one point marked with
the same sign, and negative if and only if C and C contain at least one point marked
with opposite signs. Observe that if C and Cj contain more than one common point,
they are either all marked with the same sign or all marked with opposite signs, since
the determination of the signs in Q(S/) corresponds to the determination of the signs
in CG/(A), which can be formed since A is signed. In fact, this construction shows
that CG/(A) Q/(S). Hence, we can reformulate the above theorem as follows.

THEOREM 2.6. Given the graph G+=(V, E) with p= [V[, the regular Boolean
matrix A has the property that RG/(A) G if and only ifA has p rows and there exists
a balanced clique cover S/ of G/ such that CG/(A) is isomorphic to Q(S/).

The above relationship between signed graphs and rectangular matrices leads to
the following graph theoretic result.

THEOREM 2.7. Let G/ be a signed graph and S/ a balanced clique cover of G/.
Then Q(S+) is balanced if and only if G+ is balanced.

Proof. Let A be the matrix constructed as described in the comments following
Theorem 2.4. Then CG/(A) is balanced if and only if RG/(A) is balanced by [6,
Thm. 3]. Hence, the result follows since Q(S/) CG/(A) and RG/(A)= G/. I-1
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Now let R(G/) {A:A is a regular signed Boolean matrix and RG/(A)= G/}.
As in [7], we can consider the notion of minimality for the set R(G/). That is,

given a matrix A R(G/), it is frequently important to find a matrix A’ R(G/) that
has fewer nonzeros than A or fewer columns than A. Basically, the same results hold
as in [7], so we will not develop the theory of minimality here. However, there are
two significant differences that we will describe.

First, for a graph G, the minimum number of columns for a matrix A in R(G)
was determined by k(G), the clique cover number of G. However, as is illustrated by
the graphs in Fig. 2.1, a clique cover of G/ with the smallest number of cliques may
not be a balanced clique cover. To find a matrix A in R(G/) with the minimum
number of columns, we must find a balanced clique cover with the smallest number
of cliques. This number is denoted by k/(G+). Clearly, k(G+)<= k+(G/).

The other difference is the number of matrices A in R(G/) corresponding to a
particular balanced clique cover S/= {C1,..., Cn} Since to each Ci there correspond
two marked graphs Mi and M, the above construction leads to 2 p n matrices A
with RG+(A) G+ and CG+(A) Q(S+).

This situation is illustrated in Fig. 2.3 for the graph G/ and balanced clique cover
S/ in Fig. 2.2. Observe that since CG/(A) CG/(-A), there are at most 2n-1 different
graphs Q(S/) corresponding to the different ways of marking the cliques. Since RG/(A)
is balanced, then CG/(A) must be balanced. Since CG(A) is a 3-clique, there are
only two ways of signing a 3-clique so that it is balanced. Hence, in this case, there
are only two nonisomorphic signed clique cover graphs but four ways of signing the
particular graph so that it is balanced.

G+ S
2

II
5 t i

II
3

FIG. 2.2

< 1,4,5 >

< 1,2,4 >

<2,3,4>

Remark. It appears that what happens in the above example also happens in
general. That is, let G/ be balanced and S/ be a balanced clique cover of G/. Then
all possible ways of signing Q(S/) so that it is balanced can be realized by changing
the marked graphs for the various cliques in S/.

3. Two-graph inversion. In this section we consider the problem of inverting a
pair of signed graphs. That is, given signed graphs G1 and G/+

2, when can a regular
signed Boolean matrix A be constructed having the property that RG/(A)=G and

+ +CG+(A)=G-? If such a matrix A exists, as in [7], we say that G1 and G2 are
invertible. Observe that for a regular matrix A, the signed graphs RG/(A) and CG/(A)
have the same number of components by [5, Cor. 2.3]. It follows that we cannot always
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2

CG+(A) CG+(-A) Q(S+)

2

2

Marked S

(2, 3, )

(1,4, )

<i, ., >

0

0 -1 -1

0 0 -1

-1 0 0

-1 o
0 1 -1

0 0 -1

-1 1

-1 0 0

(i, 4, )
0 -1

(i, , ) o o

(, )
-1 0

(1,4, .)
0

(i, ., 8) o o

(,, , ,) -1

-1 0

0

-1

0

0

FIG. 2.3



222 H. J. GREENBERG, J. R. LUNDGREN AND J. S. MAYBEE

invert the pair G, G. However, we can provide equivalent conditions for existence
analogous to those given for a pair of graphs in [7, Thm. 2].

THEOREM 3 1. Given two signed graphs G/ /and G2, the following are equivalent:
(i) G+ +and G2 are invertible;
(ii) G+ is isomorphic to a signed clique cover graph of G’;

/(iii) G2 is isomorphic to a signed clique cover graph of G.
The proof is essentially the same as the proof of [7, Thm. 2], except that Theorem

2.6 is used instead of the one-graph inversion theorem of [7].
Now we will illustrate how Theorem 3.1 can be used to invert a pair of signed

graphs. Consider the pair of graphs in Fig. 3.1. If we choose the balanced clique cover

FIG. 3.1

and mark each clique in S as shown, then G is isomorphic to Q(S/) as illustrated in
Fig. 2.3. Using the signs for each clique, we can then construct

1
0

A= 0
1

-1

-1 0
1 -1
0 -1.

-1 1
0 0

Clearly, RG/(A) G/ and CG/(A)= G. Observe that not only did we have to find
a balanced clique cover S, but that we also needed an appropriate marking of the
cliques in order to get Q(S/) G.

We close this section by observing that the concept of minimality can be developed
in the same way as in [7].
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A GENERAL PRODUCT CONSTRUCTION FOR
ERROR CORRECTING CODES*

K. T. PHELPSI

Abstract. A product construction for binary error correcting codes is presented. Given perfect binary
single error correcting codes of length n and m, one can construct perfect binary single error correcting
codes of length nm + n + m. Among other things, the construction is used to establish that the number of
nonequivalent (perfect) binary single error correcting codes of length n is at least 22c", for some constant c < 1.

Key words, error correcting code, perfect code

AMS subject classification codes. 94B, 05B

1. Introduction. A code C of length n over an alphabet A can be thought of as
a subset C

_
A A A . A. The (Hamming) distance between two code words

x, y C, denoted by d(x, y), is simply the number of components in which the two
vectors differ. If the alphabet A {0, 1 then C is called a binary code and Vcn) {0, 1 }n
will be used to denote the vector space of dimension n over GF (2). The codes under
consideration in this paper are almost exclusively binary codes; unless otherwise stated,
any code can be assumed to be a binary code.

In this paper, we present a generalized product construction and then use it to
establish lower bounds on the number of nonisomorphic and nonequivalent perfect
single error correcting codes (or briefly perfect 1-codes). A binary code C of length
n minimum distance d having M code words is often called an (n, M, d) code. A

k 2 kperfect 1-code is an (2 1, 2 3) code. Adding an overall parity check bit, gives
2 k 1, 4). The product construc-us an extended perfect 1-code with parameters (2 k, 2 k-

tion is most effective when dealing with (extended) perfect locode: the product of two
extended perfect 1-code of lengths (n + 1) and (m + 1) is a perfect 1-code of length
(n + 1)(m + 1). For this reason, we focus our attention on extended perfect 1-codes
(bounds on these are easily translated into bounds on perfect locodes).

The product construction can be applied to arbitrary codes; however, it appears
to be more effective when the codes are single error correcting. The doubling construc-
tions of Phelps [5] and Sloane and Whitehead [8] can be thought of, in varying degrees,
as special cases of our product construction.

2. Generalized product construction. The construction is presented with regard
to perfect 1-codes. It can be applied to more general classes of codes but with lessened
efficiency. In what follows, let Vn) denote the vector space of dimension n over GF (2).

Let COo, C, C be a partition of the even weight vectors of Vn+l) into
extended perfect 1-codes of length n+ 1 (i.e., n+ 1 2, ICl 2n- and for any
x, y6 C/, d(x,y)=>4 unless x=y). Similarly, let C, CI,..., C be a partition of the
odd weight vectors of V"+) into extended perfect 1-codes. Given a perfect 1-code
of length n one can always find at least one such partition--a code and its translates.

Let R V"+1) be an extended perfect 1-code of length m + 1 2p. For each code
word re R, let qr(a0, al," , a,-l) a,, be a m-ary quasigroup of order n + 1. Alter-
nately, one can think of (ao, a 1," , an) as a distance 2 code of length m + 1 over an
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presented at the SIAM Second Conference on the Applications of Discrete Mathematics, held at
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983.
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alphabet of order n + 1. The generalized direct product of codes C and R, denoted
by C (R)qR is defined as a code of length (n + 1)(m + 1) nm + n + m + 1 with"

X=(X0, Xl, ,Xm)E C@qR iff XiE Cji
where r (r0, rl," rm) E R and

qAjo, j, j,,-1)=j,,.

THEOREM 2.1. The code C (R)qR constructed above is an extended perfect 1-code
of length (n + 1)(m + 1) 2k+’.

Proof. [cyr,’[ 2,- and IR[ 2"-p for each r E R one constructs

IC., m+l( n--k m+l,,[ n+l) =(2 (2)
code words. This gives

2nm-k+n2m-P 2n+n+m-k+P) 22+P-(k+p)-I

code words, which is the correct number of code words. All we need to do is to
establish that for any x, y E C (qR, d(x, y) > 4 unless x y.

Let x (x0, xl," , x,) and y (Yo, Yl," ",Y,) be any two code words in C
Then obviously

d(x, y) _-> E d(xi, Yi),
i=O

where xi, Yi are vectors of length n + 1. If ri denotes the parity of xi and si denotes
that of Yi for 0, 1,. , m then r (ro, rl," rn) and s (s0, Sl," , s,) E R. (Note"
ri--0 or 1 depending on whether xi has even or odd parity--similarly for si.) However,
if d(x, yi)--0 then the parity must be the same and thus ri si. When r # s then
d(xi, yi) -> 1. Since d(r, s) => 4, this means that d(xi, yi) => 1 for at least four values of
and thus

d(xi, yi) => 4,
i=o

unless r S.

If r s, then the parity of xi and yi will be the same and d(x, y) => 2 unless x y.
Assume xiE cjr, for i=O, 1,’", m and yiE C for i=O, 1,..., m. Then d(xi, Yi)--O
implies that ji ki; since (j0, jl,""", j,) and k= (ko, k1,""", k,,) can agree in at
most m- 1 positions then d(xi, yi) _-> 2 for at least two values of and then d(x, y) >_-

4-unless k. However, in this case if xi y then d(x, yi) >- 4, and again d(x, y) _-> 4.
In conclusion, we see that the minimum distance between any two code words is

four and thus C (qR is an extended perfect 1-code of length nm / n / m + 1.
If we assume that the codes C and R each contain the zero vector; that, in the

previous construction, C0- C and q0(0, 0, 0,- , 0) -0, then C (qR will contain a
subcode isomorphic to C. If in addition, q(0, 0,..., 0)-0 for each rE R and C
contains a vector of weight 1 then C (R)qR will contain a subcode isomorphic to R.

Note that if R is a "perfect" 1-code of length 2 (i.e., R consists of a single vector)
then the construction presented in Phelps [5] is a special case of the above construction,
since a 1-ary quasigroup is in effect a permutation.

The main use of this construction is in establishing lower bounds on the number
of nonisomorphic and nonequivalent perfect 1-code. However, the construction can
be usefully applied to other less "perfect" codes. Later sections of this paper will deal
with such applications.
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3. Lower bounds on the number of perfect 1-codes. First, we determine the
number of different codes that can be constructed from given perfect (extended)
1-codes, C, R of length n + 1 and m + 1, respectively. Assuming that C C, then we
choose some fixed partition C, C1, C, C, C,. , C1 of Vn/l) into extended
perfect 1-codes which satisfies conditions for our construction. The remarkable fact is
that from such modest assumptions one can still construct an incredible number of
different extended perfect 1-codes of length (n + 1)(m + 1).

Let Q(m, n + 1) denote the set of all m-ary quasigroups (or m-quasigroups) of
order n + 1. Equivalently O(m, n + 1) can be thought of as the set of distance 2 codes
of length m + 1 over an alphabet of order n + 1 having (n + 1) code words. When
m 2, we have a quasigroup (or equivalently a latin square) of order n + 1; the number
of such quasigroups is asymptotically, (n + 1) (n+l)2 (cf. [3]). The number of quasigroups
having a left identity (e.g., q(0, x) x)mwhich is equivalent to the number of different
row-reduced latin squaresmis greater than (n + 1) +1)2-+1) for n sufficiently large.
This is the basis for the following lemma.

LEMMA 3.1. IO(m, n+ 1)1 => ]Q(m 1, n+ 1)l(n + 1) (n+l)2-(n+l) andthus IQ(m, n+
1)l (g/+ 1) [(n+l)z-(n+l)](m-1) for n sufficiently large.

Proof. The lemma is true for m=2 since IQ(2, n+ 1)1 (n+ 1) "+1)2. For any two
quasigroups q, q. Q(2, n+ 1), qi(x, qi(y, z)) Q(3, n+ 1). Moreover, if q, q have left
identities then if qi(x, q(y, z)) q(x, qs(Y, z)) for all x, y, z, then q qs and thus qi qr.
Hence Q(3, n+l)>=(n"+)-n/))2. More generally, if qQ(m-l,n+l) and q
Q(2, n + 1), then q(x, q(y)) Q(m, n + 1) and if q has a left identity then the choice
of q, q uniquely determines the m-quasigroup. Hence

IQ(m, n + 1)1 >= IQ(m- 1, n)[(n + 1)’+1)-+)

and the above lower bound follows directly.
T.EOWM 3.2. The number of nonisomorphic extended perfect 1-codes of order

(n + 1)(m + 1) 2+p is greater than

2 k 2 (2 )(2 )22p- _( k+p)2k+P.

Proof. Given C, ] 0, 1,..., n and i= 0, 1, and R satisfying the requirements
of the construction presented in 2, we can construct [Q(m, n + 1)[IRI different codes
since for each R one can choose any m-quasigroup q Q(m, n + 1). If the lengths
of R and C are (m+1)=2p and (n+1)=2k, respectively, then the number of
nonisomorphic 1-codes of length 2k+p is at least,

IQ(2p- 1, 2)111/(2+P)! >= (2k)(22-2)(2p-2)22P-p-1/2(k+P)2’+P,
or at least

2 k(22k--2k)(2P--2)22P-P- -( k+p)2k+P

which equals the lower bound of the theorem.
THEOREM 3.3. The number of nonequivalent (extended) perfect 1-codes of length

(n + 1)(m + 1) 2k+p is greater than

2 k2k (2k- 1)(2 1_ 1)22p- l_(k+p)2k+P_2k+P_(k+p+ 1).

Proof. The argument is almost the same as in Theorem 3.2. Since each m-ary
quasigroup constructed in Lemma 3.1 has q(0, 0,..., 0)=0 and C C and R are
both assumed to have the zero vector. We conclude that each code constructed by
our method will contain the zero vector. Any code C, containing the zero vector, is
equivalent to at most (n!)lCI other codes each of which also contain the zero vector.
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Thus, we have that there are at least

10(2p- 1, 2k)llRI/(zk+P)!22k+p-(k+p)-I

nonequivalent codes constructed from fixed codes R, C of length 2p and 2k respectively.
Dividing the lower bound of Theorem 3.2 by 22k+p-(k+p)-I gives the above lower bound
on nonequivalent perfect 1-codes.

The trivial upper bound on the number of 1-codes of length n is 2 2"(1-(1)). Our
lower bound is remarkably close.

COROLLARY 3.4. The number of inequivalent extended perfect 1-codes of length
n + 1 is greater than 22c", for a constant c < 1.

With a little reflection, it should be evident that the number of nonequivalent
(extended) perfect 1-codes will be considerably larger than the lower bound of Theorem
3.3. Not only can one choose different codes C, R but one can choose different
partitions of V(n+l).

Having achieved the primary purpose of this articlethe establishment of a lower
bound on the number of nonequivalent (extended) perfect 1-codeswe now consider
the application of our methods of 2 to the construction of (new) families of error
correcting codes.

4. Single error correcting binary codes. Although our construction was presented
in terms of (extended) perfect 1-codes, it should be clear that this limitation is
unnecessary. What follows is the above construction in its most general form.

Construction 4.0. Let Cj.k,]=0,1,...,p--1, k=0,1,...,m,i=0,1, becodes
of length n and distance dl where the code words of Cj,k are all of even weight and
those of cil, k are of odd weight, where moreover for fixed i, k the codes C,k, j=
0, 1," , p- 1 are mutually disjoint. Let R be a code of length m + 1 and distance d2
and Q, be a code of length m + 1, distance d3 over an alphabet of order p (i.e.,
{0, 1,. , p- 1}) for each r R. Then one forms a code of length n(m + 1)"

C (R)oR U ( U rr,, c 03" " )1o,0 Cj21,1 Cj’,,’:,m
(ro,r ",rm) R (Jo,Jl ,’",Jm) Or

COROLLARY 4.1. In the code C (R)oR of Construction 4.0, the distance between
any two code words is greater than the min {dl, dE, 2d3}. If [C.kl C.k then the number
of code words is"

C]k,k
(ro,rl,...,r)=eR (]od,’",jm)eO =0

Pro@ The argument follows that of Theorem 2.1 almost verbatum.
For single error correcting codes, we can choose each O, so that d3--2 and the

number of code words, IO,I, is p’. For C},k, we have d 4. Needless to say, for fixed
k, we would like the codes C;k to partition V as this would clearly increase the
number of code words in C @oR at no additional cost.

COROLLARY 4.2. If the C}.k are distance 4 codes of length n, R is a distance d 3
or 4, code of length m + 1, then C @oR is a single error correcting code having minimum
distance d2. Moreover if [C’,k e M1 and [el- M2 then [C (R)oRI >- PmM’+IM2 or in
any case [C (R)oR[ >= n"M’+IM2.

Proof. For any (extended) single error correcting code C, we can choose Cj,k,
0, 1,..., p-1 to be translates of C and thus we can assume that p >_-n.
For example, starting with an extended perfect code of length 8 and a perfect

code of length 7 (i.e., an (8,24,4) and a (7,24,3)) we can construct an
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(8" 7, 86. 167. 16, 3) (56, 25, 3) code. Sloane and Whitehead [8] constructed a single
error correcting code with the same parameters and in a broad sense one can consider
our product construction as a generalization of their doubling construction. Certainly,
if the C}, are chosen to be extended perfect 1-codes, we can construct the same family
of 1-codes [4], [8]. Our product construction will produce other families of codes as
well. However, to be truly effective, not only does one need good codes C, R but more
importantly good partitions, C; of V(). Of course, with the exception of perfect
codes, little is known with regard to the existence of such partitions.

5. t-error correcting codes. To apply construction 4.0 to t-error correcting codes,
we need to be able to construct distant d codes over an alphabet of order n. This
actually is relatively easy to do.

An orthogonal array of order n, depth m, and strength (with index unity) is an
n m array with entries from an n-set such that any two row vectors agree in at most
t- 1 positions. Such an array is equivalent to an (m, n t, m- + 1) code over an alphabet
of n symbols where the code words are row vectors. For results on the existence of
orthogonal arrays, see Raghavarao [7], Bush [1], [2], or Phelps [6].

To illustrate the construction, let C be the (extended) perfect binary Golay code
(24, 212, 8) and R an (8, 2, 8) code. The code O is a code of length 8 distance 4 over
an alphabet of order 211. Since 211 is a prime power there exist an orthogonal array
of order 211 depth 8 and strength 5. Hence, we can assume O exists and has (211) 5 255
code words. V24 can be completely partitioned into extended perfect Golay codes.
Thus C(R)oR is an (24.8,255(212)82, 8) (192, 2152, 8) code. Unfortunately this code
is not optimal even though C, Q, R were optimal.

6. Conclusion. The product construction presented in 2 when applied to single
error correcting codes is quite effective. It appears to be less effective when applied
to t-error correcting codes, > 1. There are several directions for further inquiry. The
first would be the construction of good partitions of Vn) into single error correcting
codes (of length n) at least for small n (i.e., n < 15). This would allow for a more
effective utilization of the product construction and thus one probably would be able
to improve on some of the current lower bounds on the size of single error correcting
codes.

The product construction was used primarily to construct nonequivalent extended
perfect 1-codes. However, it should be evident that similar arguments could be used
to establish lower bounds on the number of nonequivalent codes for other families of
codes as well.
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Abstract. Greedoids were introduced by the authors as generalizations of matroids providing a

framework for the greedy algorithm. They can be characterized algorithmically via the optimality of the
greedy algorithm for a class of objective functions, which are in general not linear and do not include all
linear functions. It is therefore natural to ask the following questions: (1) What are those linear objective
functions which can be optimized over any greedoid by the greedy algorithm; (2) what are those greedoids
over which the linear objective function can be optimized by the greedy algorithm. This paper gives an
answer to both questions. Moreover, it gives slimming procedures for obtaining such greedoids from matroids
and it gives briefly some (negative) oracle results about greedoid optimization and greedoid recognition.

1. Introduction. In previous papers (Korte and Lovisz [1981] and [1982a]) we
have introduced greedoids as generalizations of matroids providing a framework for
the greedy algorithm. Matroids can be characterized axiomatically as those subclusive
set-systems for which the greedy solution is optimal for certain optimization problems
(e.g. linear objective functions, bottleneck functions). Greedoids can also be character-
ized algorithmically via the optimality of the greedy algorithm for a class of objective
functions, which are in general not linear and do not include all linear functions (cf.
Korte and Lovisz [1982a]). It is therefore natural to ask the following questions: (1)
What are those linear objective functions which can be optimized over any greedoid
by the greedy algorithm; (2) what are those greedoids over which any linear objective
function can be optimized by the greedy algorithm. This paper gives an answer to both
questions.

The algorithmic principle of greediness, i.e. of a locally myopic strategy, can be
defined in different ways. The most common greedy approach is that of best-in greedy:
starting with the empty set, the greedy solution will be built up recursively by adding
the best possible element to it at each step, while remaining feasible. Another approach
is that of worst-out greedy. Here we start with the complete ground set and eliminate
from it in each step the worst-possible element as long as the remaining set is spanning.
For matroids both approaches are equivalent, since the worst-out greedy is the best-in
greedy for the negative objective function over the dual matroid. In the case of
greedoids, it turns out that for general linear objective functions the worst-out greedy
is optimal for a broader class of greedoids than the best-in-approach.

In 2 we give some definitions and basic facts about greedoids, which will be
needed in the rest of the paper. However, the interested reader is referred to Korte
and Lovisz [1982a] and [1982b] for a more detailed study of structural aspects of
greedoids. Section 3 gives a compatibility characterization of linear objective functions
which is sufficient to optimize these functions over any greedoid by the greedy
algorithm. Section 4 characterizes those greedoids over which any linear objective
function can be optimized by the worst-out greedy algorithm. A proper subclass of
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" Institut fiir konometric und Operations Research, Rheinische Friedrich Wilhelms Universitit, Bonn,
West Germany.

t E6tv6s Lorind University, Department of Analysis I, Budapest, Hungary.
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these greedoids has the property that the best-in greedy is optimal for any linear
objective function. Section 5 gives some construction principles to obtain those
greedoids by slimming a given matroid. Finally, in 6 we state some (negative) oracle
results about greedoids, among which it is noteworthy that the problem of optimizing
an arbitrary linear objective function over a general greedoid given by a feasibility
oracle is NP-hard. There is also no polynomial feasibility oracle algorithm to distinguish
a greedoid from a matroid.

2. Definitions and basic facts about greedoids. We assume that the reader is
familiar with the basic facts of matroid theory (cf. Welsh [1976]) and in general our
notation is in accordance with the standard matroid terminology.

A set-system over a finite ground set E is a pair (E, ) with o% c__ 2. A set-system
is a matroid if the following axioms hold:

(M1) E;
(M2) X Y implies X ;
(M3) if X, Y and IXI > YI, then there exists a x Y-X such that

Yt_J{x} .
A set-system which satisfies only (M1) and (M2) has little structure, but very

different names. It is called independence system, simplicial complex, subclusive or
hereditary set-system. For an arbitrary set-system (E, o%) we define its hereditary closure
Y( as:

Y:={Xc__ Y: Y }.

Another but more structural way to relax matroids is to keep the exchange axiom
(M3) (and the trivial axiom (M1)) but to remove subclusiveness (M2); and this is
exactly one way to define greedoids. There is another equivalent and even more natural
way to define greedoids via extending the matroidal structure to languages, i.e. systems
of ordered sets or strings, but for the purpose of this paper it is sufficient to consider
only the unordered version of greedoid definition. Thus, we call a set-system (E, )
a greedoid if (M1) and (M3) holds. (M1) and (M3) imply a weak subclusiveness, which
we call accessibility:

(M2’) for all X ff there exists x X such that X-{x} o.
Analogously to hereditary set-systems we call a set system which satisfies (M1)

and (M2’) an accessible set-system. We define the accessible kernel Y{ of a set-system
(E, if) as

if/" :-- {X ,.7 X {Xl," xk} and {Xl," Xi} for all 1 -< -< k}.

(M1) and (M3) are equivalent to (M1), (M2’), and
(M3’) if X, Ye o% and Ixl-lY[/ 1, then there exists a x eX-Y such that

YU{x} .
In the case of matroids (M3) and (M3’) are equivalently used, but this is only possible
since (M2) holds. In analogy to matroid theory, we call sets which belong to feasible
or independent. Maximal independent sets are called bases. An element d E is called
dummy, if it does not occur in any feasible set. A greedoid is normal, if it has no
dummy elements; it is called full if .

For a greedoid we can define the (independence) rank of a set X
_
E as:

r(X) := max {IAI: A c_ X, A e }.
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This function has the following properties for X, Y c_ E and x, y E
(R1) r() O;
(R2) r(X) <= Ixl;
(R3) if X_ Y then r(X) <-_ r( Y);
(R4) if r(X) r(X U {x}) r(X U {y}) then r(X) r(X {x} U {y}).
Conversely, a function r:2E->7/ satisfying (R1), (R2). (R3) and (R4) defines

uniquely a greedoid (cf. Korte and Lovfisz [1982a]). These axioms are again direct
relaxations of the rank definition of matroids, which in addition have the unit increase
property:

r(X U {x}) - r(X) + l forXE,xE.

From (R1)-(R4) and the unit increase property one derives in matroid theory that
the rank function is submodular, i.e. r(X f3 Y) + r(X U Y) <- r(X) + r(Y). This fails to
hold for greedoids in general; but the property (R4), which we call local submodularity,
is often a reasonable substitute.

In contrast to matroids, the intersection of a set with a basis of a greedoid may
have larger cardinality than the rank of this set. Therefore we define the basis rank
ofasetXc_E as

fl(X) := max {IX f-1 BI: B e }.

Clearly, fl(X) >= r(X). A set X
_
E is called rank-feasible if fl(X) r(X). We denote

the family of all rank feasible sets by t(E, ). Clearly, c_c_ t and o t for a
full greedoid. In general (E, ) is not a greedoid and is not closed under union.

We recall here some facts about rank-feasibility (cf. Korte and Lovfisz [1982b]):
A greedoid is a matroid iff 2E. For A, B c_c_ E we have

fl(A U B) + r(A CI B) <= fl(A) + fl(B)

and consequently, if A, B e then

r(A U B) + r(A t3) <- r(A) + r(B),

i.e. r is submodular. This can be also derived from the fact that A iff r(A U X) <-

r(A) + IxI for all X
_
E A.

A fundamental concept in matroid theory is the closure operator. Therefore we
define analogously for greedoids the (rank) closure of a set X c_ E as

o’(X) := {x E: r(X k.J {x}) r(X)}.

This operator is not monotone, but it has the following properties:
(C1) X c_ r(X) for all X

_
E;

(C2) if X c_ y c_ r(X) then r(X) r( Y);
(C3) if Xc_E and xeE-X such that for all zeXUx, zr(XUx-z), and

x o’(X U y), then y r(X U x).
It was shown in Korte and Lovfisz [1982a] that a mapping r" 2e - 2 satisfying

(C1), (C2), and (C3) uniquely defines a greedoid.
The closure axioms for greedoids are again relaxations of the closure for matroids.

(C1) is trivial, (C2) follows from monotonicity and idempotence, and (C3) is a
weakening of the Steinitz-McLane axiom for matroids. It can be shown that (C2)
implies idempotence, but of course not monotonicity.
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A set X
_
E is called closed if X r(X). An easy construction leads to a monotone

closure operator, namely

(X) := f’l { Y: X Y and Y closed).

/x does not determine the greedoid uniquely. In fact, for a full greedoid we have/z id.
We call a set closure-feasible if X c__r(A) implies X c__(A), ormwhich is

equivalentmif X c_ tr(A) implies X c_. tr(B) for A_ B c_c_ E. The family of all closure
feasible sets will be denoted by (E, ). The family is closed under union and
we have c__ . Further, with inclusion as a partial order forms a lattice with the
operation A v B := A U B and A ^ B := U {C : C c_ A f’) B}. The rank function r is
submodular on this lattice. (E, ) is not a greedoid in general, but the accessible kernel
Y{ Y’() of c defines trivially a greedoid. The rank function does not have the unit
increase property on % But since Y(c__ is also a lattice, the rank function is also
submodular on

A very substantial subclass of greedoids are interval greedoids. We call a greedoid
(E, ) an interval greedoid if for all A, B, C with A c_c_ B c_ C and x E C such
that A U x and C U x , it follows that B U x . In Korte and Lovisz [1982b]
it was shown that a greedoid is an interval greedoid iff and iff

___
t. Generally,

no inclusion relation holds between and . Furthermore, if (E, if) is an interval
greedoid, then already (E, ) is a greedoid. We call a normal greedoid a shelling
structure if the interval property mentioned above holds without upper bounds, i.e. if
for all A

___
B and x E B such that A U x o it follows B U x o. Shelling structures

are studied in greater detail in Korte and Lovisz [1983a].

3. Special linear objective functions and general greedoids. An optimization
problem over a greedoid (E, o) can be described by introducing a linear objective
function w E R as a weighting of the elements of the ground set. This function can
be extended to a modular function w 2E R by w(X) := xx w(x) for all X c_ E. For
reasons of simplicity we will consider in the following only maximization problems, i.e.

max {w(F): F o}.

We call a basis X of (E, ) an optimal basis for which w(X) is maximal among
all bases.

The principle of the greedy algorithm (or more precisely: the best-in greedy
algorithm) can be briefly described by the greedy bases, which are obtained with this
algorithm. We call a basis {Xl,""" Xrl of a greedoid (E, ) a (best-in) basis for w if
it is obtained by the following recurrence: Xi+l is the element with the largest weight
in E-{Xl,’", xi} such that {xl,""", xi, Xi+l} o.

In the next section we refer to a worst-out greedy algorithm which in contrast
starts with the ground set E and eliminates elements with the smallest possible weight
as long as the remaining set is spanning, i.e. contains a basis. The worst-out greedy
basis for w is then a basis Y E- {x1,"’’, Xk} which is obtained by the recurrence:
x+l is the element with smallest weight in E-{Xl,’’’,xi} such that E-
{Xl,"" ", x, x/} is spanning. It is an easy observation that for matroids the best-in
greedy basis and the worst-out greedy basis are identical.

In general, an arbitrary linear objective function cannot be optimized over a
greedoid with the greedy algorithm. Therefore, we need the following compatibility
definition: Let 5

___
2E, and let w E N. We say that w is 6e-compatible if {x e E: w(x) >-

c}e 5 for all c e N, i.e. all level sets of w are in 5. As usual, we call a function
w: E - {0, 1 } the characteristic function of a set X c_c_ E iff w(x) 1 for all x e X.
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Then the definition of rank-feasibility implies immediately the following:
LEMMA 3.1. If W is the characteristic function of a rank-feasible set, then all greedy

bases are optimal
Our aim is to prove the following theorem:
THEOREM 3.2. Let E, ) be a greedoid and w E - R be an G-compatible weight-

ing. Then all greedy basis for w are optimal.
Proof. We can write w in the form

W 1iWi,
i=1

where Wl--< we--<... =< wt are characteristic functions of rank-feasible sets, and
A1, ",At > 0. In fact, let Cl > c2 >" > ct be the different values assumed by w over
2, and let Xi be the level set Xi {x: w(x)>-ci}. Then we can choose w to be the
characteristic function of X and

Let X be a greedy basis for w. Then X is, clearly, a greedy basis for each w. So
by Lemma 3.1, X is an optimal basis for each w. But then, clearly, X is an optimal
basis for w. [3

Remark. Faigle [1979] considers certain accessible set-systems called generating
systems and proves that the best-in greedy algorithm optimizes certain linear objective
functions over them. While his systems are not necessarily greedoids, those feasible
subsets of his "generating systems" which come up in a greedy basis do form a greedoid.
Based on this, it is easy to derive Faigle’s result from Theorem 3.2. For a more detailed
discussion of the relationship between greedoids and Faigle’s structures, see Korte and
Lovisz 1983b].

4. Special greedoids and general linear objective functions. We now invert the
question of the last section and ask how much we have to restrict greedoids such that
a greedy basis for any arbitrary linear objective function is optimal. The next theorem
gives necessary and sufficient conditions for the worst-out greedy.

THEOREM 4.1. For a greedoid (E, ) the following statements are equivalent:
(1) Let B1, Be be bases of (E, ); for every x

such that B2 (.J x- y e
(2) The hereditary closure of is a matroid (E, ).
(3) fl is submodular.
(4) For every linear objective function w a worst-out greedy basis is optimal.
Proof. (1) <=> (2) is known from matroid theory.
(2)=>(3): It suffices to show that/3 is the rank function of (E, ). Let X

_
E; then

13(X)’-max {lBXl: Be }=max{lUl: ux, U},

since is the hereditary closure.
(2):=>(4): The spanning sets for and are the same, and so the worst-out

greedy basis for ff and A/ are the same. We know from matroid theory that the
worst-out greedy bases are optimal for

(3)=>(2): Trivially,/3 has the unit increase property. Hence/3 is a matroid rank
function. But X e iff fl(X)=IXI. So (E, ) is the matroid determined by/3.

(4)=>(2): Let M*:={X_E: there exists a basis B with Bf)X=}. Then a
worst-out greedy bases for is optimal iff a best-in greedy basis for M* is optimal.
But this is the case itt (E, M*) is a matroid which is equivalent to the fact that (E,
is a matroid.
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Remarks. 1. Condition (1) is not enough to guarantee the optimality of the best-in
greedy: Let E ={a, b, c} and ={, {a}, {b}, {a, b}, {b, c}}. The greedoid (E, ) satis-
fies (1). However, with w(a)= 1, w(b) =0, w(c)=M >> 1, the best-in greedy basis is
{a, b} with weight 1, while the optimal basis is {b, c} with weight M.

2. Let r denote the matroid closure; then we have for greedoids with condition
(1) that tr (A) =/z (A) for A . In fact, y /z (A) iff y A or A

_
B, B implies

y B which is equivalent to y tr (A).
The following theorem gives optimality conditions for the best-in greedy, which

are of the same kind, but more restrictive.
THEOREM 4.2. For a greedoid (E, ) the following statements are equivalent:
(1) Let A , B

_
A, be a basis of (E, ) and let x E B and A tA {x} . Then

there exists a y B A with A tAy such that B x y (strong exchange
property).

(2) The hereditary closure t of is a matroid (E, ) and every set which is closed
in (-closed) is also closed in (t-closed).

(3) For every linear objective function w a (best-in) greedy basis is optimal.
Proof. (1) ::> (3). Let w E --> be any objective function, B an optimum basis,

and a l, a,. ., ar a best-in greedy basis, chosen in this order. Let a1," , ak B, but
ak+l B and choose B so that k is maximal. Let A := {a,. , ak}. By (1), there exists
a yeB-A such that AU ye and BI,.Jak+l--y . By greediness, w(y) < W(ak+l)
and so w(B U ak+l- y) -->-- w(B). Since B is optimal, we have w(B U ak+l- Y) w(B)
and so B U ak+1-y is also optimal, which contradicts the maximality of k.

(3):=>(2). Let X, YeAr, [XI<[Y[. Let 0<t<l and define w(x)=l if xeX,
w(x) if X Y-X, and w(x) 0 otherwise. The set of greedy bases is independent
of the value of t. If 0, then every optimal basis must contain X. Hence every greedy
basis must contain X. But if t> IX- Y[/I Y-XI then there is a basis containing Y,
and hence the maximal objective value is greater or equal to t] Y-X[ +[Y f’l X
So a greedy basis must contain some element y e Y-X (besides X). Then X U y

Thus, we know that (E, At) is a matroid. It remains to show that every o-closed
set is also -closed. Let U be any -closed set, A an -basis of U, and extend A
to an At-basis A’ of U. Let v e E-U. Consider the objective function w(x)= 1 if
x e A’ and w(x)=0 otherwise. Then there exists a basis containing A’, and so every
optimal basis contains A’. Of course, every best-in greedy basis also contains A’. But
there must be also a greedy basis B starting with A t.J v, and so (A U v) U A’ A’ U v

___
B. Thus A’ U v e and so v r(A’), (-closure of A’). This holds for all v e E U,
so tr(A’)c_ U. But A’ is an -basis of U, so tr(A’)- U and so U is -closed.

(2) => (1). Consider try(A), (-closure of A); by hypothesis r(A) is also eg-
closed. B U x has a unique (fundamental) -circuit C. We have x C-r(A), but
since r(A) is -closed, it follows that [C- tr(A)l _-> 2. Let y e C- o-(A)- x. Then
AU ye o and BU x-ye , but BU x-y is a basis of At, and so a basis of

Remark. Condition (1) of Theorem 4.2 was independently observed by Goetschel
[1983].

5. Slimmed matroids. It is a natural question to ask what greedoids satisfy the
conditions of Theorems 4.2 and 4.1. Of course, matroids and trivially also all full
greedoids do so. A nontrivial class are undirected branching greedoids. In Korte and
Lovisz [1982a] we have described a search or directed branching greedoid (E, ) by
a directed graph G and a root r V(G). Let E E(G) and let be the set of arc-sets
of all arborescences in G rooted at r. The bases of (E, ) are maximal branchings in
G. In contrast, the undirected branching greedoid contains as feasible sets all cycle-free
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connected subgraphs of G which contain r. It is easy to see that this greedoid satisfies
condition (2) of Theorem 4.2. (The directed branching greedoid does not.)

On the other hand the conditions of Theorem 4.1 give rise to general constructions
of greedoids from a given matroid, whose set of bases is the same, but the feasible set
is slimmed. In the following we will introduce some construction principles of slimming
a matroid.

Given a matroid (E, At) we call a greedoid (E, ) a slimming of the matroid
(E, At) if ff At and all bases of At remain bases of . The undirected branching
greedoid is a slimming of the graphic matroid, actually an intersection of the graphic
matroid with the line search greedoid, which is a shelling structure defined on the same
graph G where is the collection of all edge-sets which are connected and contain r
(cf. Korte and Lowisz [1982a]).

The next theorem describes the first slimming procedure.
THEOREM 5.1. Let (E, At) be a matroid with rank function rt and r(E)= k. Let

A
_
A2 _" "_ A-I

_
E such that rt(E-A) <- k- i. Define
:= {X At: IX f’) A,I >= for 1 <= <-_ [XI}.

Then E, o%) is a greedoid and a slimming of (E, At).
Proof. We first show that (E, ) is a greedoid. To prove (M3’) we take X, Y 5

with IxI- YI / 1. Then there exists an x X- Y such that Y t.J x At. But Y fq Ail >=
and hence 1( Y t.J x) f’) Ai[->- for 1 <- --<IYI as Y . Further, IX f-) AIYI+I] >--IYI / 1
IXI since X ff and so X c_ AiYl+l, in particular x AiYl+ 1. Hence

I(YU x)f3AIyI+I>= I +IYfqAIyI+I>- I +IYt’qAIyII>= I +IYI
So YUx..

Further, ff is accessible. For, let X , and let be the least index such that
X
_

Ai. Since X , we have _-< IxI. Let x X (A-A-I). Then X- x At and
](X- x) f’) Aj] IX- x] => j if j-> and ](X- z) f3 AI IX A,]->_ [Xi > IX- x[ if j < i.
Hence X- x .

It remains to prove that contains all bases of At. Let B be a basis of At; then
]BfqAI= k-IBfq(E-A)I>=k-r(E-Ai)>=i. [3

Remarks. 1. The rank function r of o% can be obtained by the following formula:

r(X) := max {i: r(XfqAj)>=jfor l<=j<=i}.

2. It can be easily verified that the family

o {X c_. E: IX Ail >= for 1 <- =< IXI}
defines a shelling structure. Hence := At fq o%0 is the intersection of a matroid with
a shelling structure, and therefore an interval greedoid.

Another slimming procedure is given by
THEOREM 5.2. Let (E, At) be a matroid, (E, o) a greedoid and suppose that the

following hold:
(1) For X, YAt such that try(X) try(Y), we have X iff Y .
(2) All (or equivalently at least one) bases of At are in ;.

Then E, At f) ) is a greedoid which is a slimming of At.
Proof. We show (M3). Suppose X, Y At f’l Y, IX[ >IYI. Extend try(Y) (’1X to

an At-basis X1 of try(Y). Then tr(X1) try(Y) andso by (1), X1 e . Since Ix l <lxl,
there exists a xX-X1 such that XIU x ft. But x try(Y)= try(X1) since X
try(Y) c_ X1, but x X1. Hence X1 x At and so X1U x At f-I :. But tr (X1 t3 x)
r(YUx) andso YtAxAtfqby (1). [3
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The next theorem gives a further slimming construction.
THEOREM 5.3. (a) Let (E, ) be a matroid, J an accessible family of flats in ,

closed under union in the geometric lattice of (E, ). Let

0 := {X : (r(X) }

and let be the accessible kernel of o. Then (E, ) is a greedoid.
(b) Moreover, (E, ) is a slimming of (E, ) iff the following holds: for every

F and F1,’", Ft: J such that F1,’",Ft cover F in the lattice, we have that
F1 Ft is nonspanning in E, ll ).

Proof. (a) We show (M3): Let X, Y, IxI>IYI. By accessibility, X=
{Xl,’’’,Xm} such that {Xl,’",xi} for all l<=i<=m. Let be the first index
with xitr(Y). Then YUx. Furthermore
(r(xl, , xi)) J. Hence Y t_J x .

(b) I. By accessibility of , there exists a sequence of flats Bo
such that Bi J and r(B) i. Let b Bi-Bi_I; then {bl," , b,} ft. If F1U. t_J F,
is spanning, we can extend {bl," , bin} to a basis A of (E, ). Let a A-{b1," , b,}
such that {bl,’",bm, a}. Then aFv for some l=<v=<t, and so
(r({b,..., b,,, a}) =Fv. But {bl,""", bm, a} implies (r({bl,""’, bin, a}) J, a
contradiction.

II. Let b be any basis of . Consider a maximal subset A
_
B with A ft. We

claim that A B. Suppose not, and let F cry(A), B-A {bl,""", b,} and let F
(r(A t_) b). Then t_)F is spanning in (E, ), because B t_)F. Thus, there exists an

Fi J. But then A t_) b , contradiction.
Remark. If (E, ) is the free matroid, then the construction of Theorem 5.3 gives

every shelling structure (E, 1) by letting J 1.
6. Oracle results. In this final section we mention briefly some negative results

about greedoid optimization and greedoid recognition obtained by an oracle approach.
We do not go into details of oracle techniques here. The reader is referred to similar
approaches for independence systems and matroids in earlier papers (cf. Hausmann
and Korte [1981] and Jensen and Korte [1982]). As in the case of matroids we assume
that the greedoid (E, ) is given by a feasibility oracle, i.e. a mapping O:2e --) {Yes, No}
which is defined for X E as O(X) Yes if X , O(X) No otherwise.

It is clear that a feasibility oracle uniquely determines the greedoid. Moreover,
several questions concerning greedoids can be decided in polynomial time using the
feasibility oracle: e.g. computing the rank or closure of a set, as well as the problems
discussed in previous chapters. However, some other important questions cannot be
decided by good algorithms. To formulate these negative results, we need the following
definition.

A problem concerning greedoids given by a feasibility oracle is called NP-hard,
if there is a special class of greedoids, with some "name" (encoding) for each member,
such that the oracle can be realized by a polynomial-time algorithm for members of
this class (polynomial in the length of the "name") and the problem is NP-hard already
for members of this class.

THEOREM 6.1. The problem of optimizing a linear objective function over the bases
of an arbitrary greedoid given by a feasibility oracle is NP-hard.

Proof. We consider the k-truncation of the directed or undirected branching
greedoid (E, ), i.e. the greedoid (E, o(k)) with 7(k) :-- {X E: X and [XI-<- k}.
The problem of finding a maximum weighted branching of size less or equal to k
includes the Steiner problem, which is known to be NP-hard.
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Remark. The problem of optimizing an arbitrary linear objective function over
the feasible sets of a greedoid remains NP-hard even for shelling structures. In fact,
this optimization problem for line search greedoids also contains the Steiner problem.

THEOREM 6.2. There is no polynomial-time algorithm to decide whether a greedoid
given by a feasibility oracle is a matroid.

Proof. Consider the uniform matroid (E, M) of rank r=lE]/2 and the greedoid
(E, ) with ;:= M-{X} where IXI r-1. With the usual argument (cf. Hausmann
and Korte [1981]) one can show that any feasibility oracle algorithm can not distinguish
between (E, M) and (E, ) using only polynomially many calls on the feasibility
oracle. [3

COROLLARY 6.3. There is no polynomial algorithm to recognize a closure feasible
set for a greedoid given by a feasibility oracle, i.e. to decide membership in c.

Proof. It is an easy observation that a greedoid (E, ) is a matroid if[ {x} for
all x E. (To prove this one needs that ’ is closed under union.) Then apply Theorem
6.2. [3

THEOREM 6.4. There is no polynomial-time algorithm to decide whether a greedoid
given by a feasibility oracle is normal.

Proof. Let (E, ) be a uniform matroid of rank r IEI/2. Let d E and consider
the greedoid (E (.J {d}, ). Let X

_
E, IXI r- 1 and ’ {X {d}}. Then it is

easy to check that (E t_J {d}, if’) is also a greedoid. By the usual argument again, no
feasibility oracle algorithm can distinguish between (E (.J {d}, ) and (E U {d}, ’) in
polynomial time. [3

COROLLARY 6.5. There is no polynomial-time algorithm to decide whether a given
element is a dummy.

COROLLARY 6.6. There is no polynomial-time algorithm to recognize a rank-
feasible set in a greedoid given by a feasibility oracle.

Proof. Observe that d E is a dummy if[ {d} -.
THEOREM 6.7. It is NP-hard to recognize for a greedoid a rank-feasible (or

closure-feasible) set, i.e. to decide membership in (or in C).
Proof. Let G be a digraph, E E(G), V(G)= {Vl,""", vn}. We call an arc e a

shortcut in G if there exists a dipath in G-e from the tail of the head of e. Let

:= { el," ek: ei is not a shortcut in G {el,. ei-1}}.

Then (E, ) is a shelling structure, which we call the digraph shortcut greedoid. This
greedoid was first observed by A. Bj6rner [1983]. It can be also represented as a
convex shelling structure (cf. Korte and Lovfisz [1983a]) in R" of the following set of
points {0, eij} where 0 is the 0-vector and eij is a 0, +1 incidence vector of the arc
e (vi, v) which has a -1 at the ith component, a + 1 at the jth component and O’s
elsewhere. Then {0} if[ G is acyclic. We take the k-truncation of this greedoid.
Then {0} if[ the feedback number of G is =< k- 1, but this is a well-known NP-hard
problem. [3

This shortcut greedoid is an interval greedoid, and thus c. So the assertion
concerning closure feasibility follows in the same way.

Remark. The test for membership in is of course a special case of optimizing
a linear objective function over (E, ).
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ON SOME PROPERTIES OF THE STRUCTION OF A GRAPH*

DOMINIQUE DE WERRA?

Abstract. The struction is defined as an operation which associates with a graph G with stability number
a(G) another graph G’ with stability number a(G’) a(G)- 1. Properties of the graph G’ are related to
those of G. Namely, one exhibits some classes of graphs which are closed with respect to the struction; i.e.,
if G is in class C, then so is G’.

One shows that for a fixed k, the class of graphs containing no induced Pk (path on k nodes) is closed.
So is the class of graphs containing no induced Pk and no induced Ck (cycle on k nodes). One also shows that
the class of graphs G with a(G) 0(G) is closed. (Here 0(G) is the minimum number of cliques covering
the nodes of G.)

1. Introduction. The stability number of a graph G is the maximum number of
pairwise nonadjacent nodes which can be found in G.

An approach to the problem of determining the stability under a(G) of a graph
G might be suggested by the following: a construction has been given for associating
with any graph G with (unknown) stability number a(G) another graph G’ with
stability number a(G)-I [2]. Such an operation which might be considered as a
STability number RedUCTION has been called a struction ([5], [6]). Our purpose in
this note is to study some properties of the struction; more precisely, we shall try to
relate a few characteristic parameters of a graph G’ obtained by a struction to the
corresponding parameters of the original graph G.

We shall compare the clique numbers of G and G’ (i.e. the smallest number of
cliques covering the nodes) and also the length of the longest induced cycle.

In fact, some classes of graphs which are closed with respect to the struction will
be exhibited: a class F will be closed (with respect to the struction) if G F implies
G’ F where G’ is obtained from G by a struction. For all graph-theoretical terms
not defined here, the reader is referred to [3].

We shall sometimes write [i, j] to indicate that nodes and j are linked in a graph.
N(x) will represent the set of neighbours of node x.

2. The struction. A construction associating with any graph G another graph G’
with a(G’)= a(G)-1 has been given in [2]; it was in fact first derived by using
pseudo-Boolean methods.

Such a construction may be used for determining the stability number of a graph
G; we repeatedly apply the struction, thereby obtaining a sequence G, G’, G", of
graphs; we shall stop as soon as we get a graph G(k), the stability number of which
can be determined easily; then if a(G(k)) =p, we have a(G)= k +p.

We may stop when G(k is a clique, in which case a(G) k + 1, or for instance,
when G(k) is a graph containing no induced P4 (induced path on 4 nodes), since, as
noted in [1], the stability number of Pn-free graphs is particularly easy to obtain. A
drawback of this approach is that the number of nodes in the graphs G, G’, G",.
may increase in the general case, although rather encouraging computational results
for random graphs have been reported in [2].
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For some classes of graphs, one has derived a modified struction which has the
property that the number of nodes in the graphs G, G’, G",. does not increase. In
this case, the struction gives a polynomial algorithm for obtaining a(G). It is the case
for the CN-free graphs, i.e. the graphs containing no induced Claw (unique graph
with degree sequence (3, 1, 1, 1)) and no induced Net (unique claw-free graph with
degree sequence (3, 3, 3, 1, 1, 1)) [6]. A specialized version of the struction has also
been developed for a subclass of CN-free graphs [5]. An entirely different approach
leading to a polynomial algorithm has been suggested for the more general class of
claw-free graphs [7]. We shall now, for the sake of completeness, give the general
formulation of the struction developed in [2].

The struction G G’.
a) Let a0 be an arbitrary node of G and let its neighbourhood be N(ao)=

{a1,""", ap}, while the other nodes of G are ap/l,"’,
b) The node set of G’ will consist of ap+l,’’’, an as well as of a set of "new"

nodes aq with i< j<= p associated to all pairs i, j of nonadjacent nodes ai, aj
in N(a,0). We shall represent this set of new nodes as being partitioned into
layers Li {aql, a2,""", aqk} consisting of all new nodes aq having as first
index.

c) The edge set of G’ will be defined as consisting of
(cl) all the edges of the subgraph of G induced by ap+l,""", an;
(c2) all the edges linking new nodes alj1, a2 with il i2 belonging to two
different layers;
(c3) edges linking two nodes aq, aq2 in the same layer if al and aj: were linked
in G;
(c4) edges linking a new node aq to a node ar (r => p+ 1) if ar was linked to

aiorain G.
We shall say that the struction is centered at node a0; furthermore, we shall

replace nodes a0, a 1," , an by 0, 1, 2,- , n whenever no confusion is possible; the
same will be done for nodes aq which will become (i, j).

3. The clique covering number of G’. We shall now relate some parameters of
a graph G with the corresponding parameters of a graph G’ obtained from G by a
struction.

Let us denote by 0(G) the smallest number of cliques needed to cover the nodes
of a graph G; in general we have O(G)>= a(G). In a perfect graph G, O(G’)= a(G’)
for any subgraph G’ of G [3].

PROPOSITION 3.1. Let G’ be obtainedfrom G by a struction. Then O( G’) <- O( G) 1.

Proof. Let C-(K1,’", Kt) be a covering of the nodes of G by cliques with
t= 0(G); we shall here for reasons of convenience identify a clique with its node set.
We may assume K f’l K if j.

For each K let R Ki f3 R where R X-(N(ao) tA {ao}) is the set of nodes of
G (X, U) which will become old nodes in G’.

We may assume Ri- for i-<_ r and Ri for i> r. Notice that r->_ 1 since in
any covering C of G there is at least one clique K c_ N(ao)t_J {a0} (namely the clique
covering node ao).

For i-2, 3,..., we define the following sets of nodes in G’.

K {(p, j)lp < j, p, j N(ao), j K}

L.I {(j, p)lp > j, p, j N(ao), j K, p K1} U {R}.

CLAIM 1. K’I is a clique of G’.
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Since in G we have [j, r] for all ] Ki f) N(a0) and all r Ri, in G’ every new
node (p, j) (or (j, p)) is linked to every r in Ri.

Also two new nodes (p, r), (q, s) are linked if p q from the construction of G’.
Now if we have two nodes of the form (p, ]), (p, k) with p Kl for some i, then
we must have ], k Ki; hence (p, j) and (p, k) are linked in G’. If we have two nodes
of the form (], k), (j, m) with j Ki, then by construction of K, k and m are in K1,
hence (], k), (j, m) are linked in G’.

CLAIM 2. Every node of G’ is covered by some K.
Since all old nodes are included in some K (with -> r/ 1), we only have to

examine the case of new nodes.
Consider a new node (i, ]) in G’; let K, (resp. Kv) be the clique of C containing

(resp. j). If v > 1, then by the above construction, (i, j) K’; if v 1, then u > 1 (we
cannot have u v since and ] are not linked in G) and by the construction (i, j) K’.

This ends the proof of Claim 2.
We now have constructed a covering of the nodes of G’ by cliquesK K, K’

By keeping only the nonempty cliques K we obtain a covering C’ of the nodes of G’
by cliques with C’l--< t- 1 cI- 1. Since c was chosen to be a minimal covering, we
obtain

We shall say that a class F of graphs is closed (for the struction) if G F implies
that any G’ obtained from G by a struction is also in F.

PROPOSITION 3.2. The class C=o of graphs G with a(G)= O( G) is closed for the
struction.

Proof. Let G be a graph satisfying a(G) 0(G); if G’ is obtained by a struction,
we have a(G) 1 a(G’) _-< 0(G’) <_- 0(G) 1 a(G) 1. Hence a(G’) 0(G’) and
G’ is in C,=o. 13

Remark 3.1. We may have O(G’)<-_ 0(G)-2; consider for instance for G a
pentagon; we obtain a triangle for G’ and hence 0(G) 3 and 0(G’) 1. Furthermore,
one should observe that the class of perfect graphs is in Ca=o; however, if one takes
an arbitrary node a0 as the centre of a struction, one may obtain a graph G’ which is
not perfect.

Remark 3.2. Let x(G) be the chromatic number of G (i.e. the smallest number
of colours needed to colour the nodes of G so that adjacent nodes have different
colours); then x(G)= O(G) where G is the complement of G.

So if we apply the struction to the complement G of graph G, we obtain a graph
t’, the complement of which, G*, satisfies

x(G*) 0((t)’) _-< 0(() 1 x(G) 1.

This means that we may with the struction reduce the chromatic number of a
graph G satisfying x(G)= to(G) where to(G)= a(G) is the maximum cardinality of
a clique.

According to Proposition 3.2, the new graph G* will still satisfy x(G*)- to(G*).

4. Some other closed classes. We shall now examine several classes of graphs
which are closed with respect to the struction. These classes will be characterized by
forbidden subgraphs H. Given two graphs H VH, EH) and G V, E), we shall say
that G contains an induced H if there is in G an induced subgraph isomorphic to H.

In the proofs we shall need the following.
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LEMMA 4.1. Let H be a connected graph, let G be a graph and let G’ be obtained

from G by a struction. Assume G’ contains an induced H on node set V and let N be
the set of new nodes in V. If the following conditions hold

(1) for every v in V-N there is an a in N with v, a];
(2) all new nodes in N are in the same layer;

then G contains an induced H.
Proof. If INI 1, then from (1) we see that no node in V-N can be linked to

N; this means that the connected subgraph H’ isomorphic to H is induced by V-N
and hence it is also an induced subgraph of G.

We may now assume IN[_>-2 and let N-’{al,’" ",at} with a=(1, i+l) for
1,. , r. From (1) we have for each v in V-N an ao (1, i + 1) in N with v,

this means that v, 1] and v, i + 1] in G. Hence for every v V-N and every a N
we have [v, a] in H’ iff [v, i+ 1] in G. Similarly [a, a] in H’ iff [i+ 1, j + 1] in G for
a, ai N. Furthermore since [u, v] holds in H’ for u, v V-N iff it holds in G, the
subgraph of G induced by (V-N)U {2, 3,..-, r + 1} is isomorphic to H.

If Pk denotes an elementary chain on k nodes, we call a graph Pk-free if it does
not contain an induced chain on k nodes.

P3-free graphs are unions of node disjoint cliques and their stability number is
trivially obtained. P-free graphs have been extensively studied (see for instance, [1]
where these graphs are called cographs). Such graphs are perfect; there is also a simple
way of determining their stability number when their cotree has been constructed (see
1]). We shall in fact be interested in graphs which are Pk-free for k >_- 5. The following
result is however valid for any fixed k >-4.

PROPOSITION. 4.1. Let k >-_ 4 be a given integer. The class ofPk-free graphs is closed
with respect to the struction.

Proof of Proposition 4.1. Let us assume that G’ contains an induced Pk on nodes
d, d2,’", dk; let N be the set of new nodes in V={d,..., dk}. IN[->- 1; otherwise
the induced Pk is in G.

Conditions (1) and (2) of Lemma 4.1 are satisfied when N_{d, d+} for r->3.
So we are left with the following cases.

Case 1. N {d} with d- (1, j).
Then in G we have [1, di-] and/or [j, di-] as well as [1, di+l] and/or [j, di+l].

If we have [di-1, r] and [di+l, r] for some re {1, j}, we replace d by r in the P and
we get an induced Pk in G. Otherwise, we replace d by 1, 0, j and we get an induced

Pk+2 in G.
If 1, we replace d by r in both cases.
Case 2. N= {di, di+l} with d (1, j), di+l (2, m) and j m, j 2.
We have [di-1, r] for some re {1, j} and [di+2, r] for r= 1, ] and [di+2, s] for some

s {2, m} and Ida-l, s] for s 2, m. If It, s], then we replace d, d+l by r, s and we get
an induced Pk in G. If [r, s] for any r, s with [di-1, r] and [di+2, s], then we replace
di, di+l by r, 0, s and we get an induced Pk/l in G. The case where i- 1 is dealt with
similarly by replacing dl, d2 by 0, s in both cases.

Case 3. N- {d, d+l} with d (1, j), di+l (2, j).
We have [di-1, 1], [di-1, s] for s= 2, ] and [di+2, 2], [di+2, r] for r= 1, ]. So we

replace di, d+l by 1, 0, 2 if [1, 2] or by 1, 2 otherwise. The case 1 is dealt with in
a similar way as in the previous cases.

Case 4. N -{di, di+} and d {1, 2}, d+l {2, ]}.
Since we have [di-1, 1], [di-1, .i], [di+2, 1], [di+2, j], we replace di, di+l by 1, 0, j if

[],j] and we get an induced Pk+I in G. If [1, j] we replace d, di+ by 1, ] and we get
an induced Pk. The case i- 1 is similar.

Case 5. {di, d+l, d+2} _N_{d, d+2} with di (1,j), di+2-(1, m).
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Now we have [di-1, j], [di-1, m], [di+3,j], [di+3, m] and [j, m]; so by replacing
di, di/l, di/2 by j, 0, m we get an induced Pk in G.

The case 1 is quite similar.
We have now examined all cases (the other cases can be obtained by reversing

the ordering of nodes d in the induced Pk). Hence in all cases G contains an induced
Pk, SO all cases are impossible and G’ does not contain any induced Pk.

A subclass of Pk-free graphs will now be shown to be closed with respect to the
struction.

Let Ck denote a (chordless) cycle with k nodes; a graph G will be Ck-free if it
does not contain any induced Ck. Observe that if k < l, then G Pk-free implies G
Pl-free, but G Ck-free does not imply G C/-free.

The class of Ca-free Pa-free graphs has been studied by Golumbic [4]; it is the
class of so called trivially perfect graphs. For these the stability number of any subgraph
G’ is equal to the number of maximal cliques in G’.

PROPOSITION 4.2. For any k >= 5, the class of Ck-free and Pk-free graphs is closed
under the struction.

Proof. We only have to show that any G’ obtained from a Pk-free and Ck-free
graph G by a struction is Ck-free.

The proof is essentially the same as the one of Proposition 4.1 (the limit cases
d dl do not occur); the Pk are replaced by Ck and one should recall that if one
concludes that G contains a Ck/l or a Ck/2, then G also contains a Pk.

Let us denote by (G) the maximum length of a (chordless) cycle in G. Then we
have

PROPOSITION 4.3. Let p be a positive number; then the class C,p of graphs G
defined by ,( G)<= p is closed for the struction.

Proof. We assume G’ contains an induced Ck. By examining exactly the same
cases as in the proof of Proposition 4.1, we arrive in all cases to the following conclusion:
if G’ contains an induced Ck, then G contains an induced C for some satisfying
k =< =< k + 2. So (G) => (G’) and hence (G) =< p implies (G’) =< p.

As a consequence of Proposition 4.3, the class of triangulated graphs is closed
under the struction.

Remark 4.1. The girth g(G) is usually defined as the minimum length of a
(chordless) cycle in G. Since our graphs here have no loops and no multiple edges,
we have g(G)_>-3 (we set g(G)= o if G has no cycles). Then it is generally not true
that g(G’) <= g(G); we may in fact have g(G’) > g(G), as can be seen easily.

Acknowledgments. The author would like to express his gratitude to P. L.
Hammer and N. V. R. Mahadev for the stimulating discussions and suggestions about
the struction.
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Abstract. This paper introduces a new triangulation of R and two families of related triangulations.
Our interest is primarily in the use of such triangulations in piecewise-linear homotopy algorithms for solving
systems of nonlinear equations, and we provide both theoretical and computational evidence of the efficiency
of the new triangulations for this purpose. However, the triangulations we propose may also be of independent
interest.
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1. Introduction. This paper introduces a new triangulation of R and two families
of related triangulations. Our interest is primarily in the use of such triangulations in
piecewise-linear homotopy algorithms for solving systems of nonlinear equationsmsee,
e.g., Allgower and Georg [1], Eaves [5], and Todd [15], [18]. However, the triangula-
tions we propose may be of independent interest.

In three dimensions the new triangulation J’ is similar to the A’K1 triangulation
of van der Laan and Talman [8] and identical to a triangulation proposed by Buneman
in a different context [4]. For dimensions greater than three it is very similar to the
triangulation J1. We will assume that the reader is familiar with Tucker’s triangulation
J1 and Freudenthal’s triangulation Klsee, e.g., [15]. In 2 we define J’ and prove
it a triangulation of R, i.e., a locally finite collection of n-simplices covering R such
that any two intersect in a common face (perhaps empty). To do this we show that it
can also be viewed as a polyhedral subdivision of R generated by a family of
hyperplanes.

Let W be a family of hyperplanes that is the union of a finite number of families
of evenly-spaced parallel hyperplanes. Then divides R into polyhedral sets, and
it is easy to see that the result is a polyhedral subdivision of R ", i.e., a locally finite
collection of n-polyhedra such that any two intersect in a common face. We say the
polyhedral subdivision is generated by the family of hyperplanes.

This technique also provides an easy proof that J1 and K1 are triangulations.
In 3 we consider the special case when n 3. Section 4 calculates various measures

of the triangulation J’. While it does not subdivide a cube (or parallelopiped) into a
small number of simplices, it appears superior to K1 and dominates J1 according to
average directional (or surface) density.

Section 5 demonstrates how two families of triangulations, J’k(n) and J’(n), of
R are "induced" by J’. Various members of these families are suited to various
piecewise-linear homotopy methods. Finally, in 6 we give some computational
experience with the new triangulation J’+l(n + 1) in a restart algorithm. A consistent
improvement is observed.

Our notation is as follows. Subscripts of vectors denote coordinates while super-
scripts are used for sequences. The jth unit vector is denoted e and e is the vector of
ones. We use [a, b,. ., z] to denote the convex hull of the vectors a, b,..., z.
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work was presented at the SIAM Second Conference on the Applications of Discrete Mathematics, held
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School of Operations Research and Industrial Engineering, College of Engineering, Cornell University,
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2. The triangulation I’. In this section we define the new triangulation J’, giving
descriptions of each simplex both by its vertices and by its facets. We also prove that
J’ is indeed a triangulation and state its pivot rules.

First we define J’ and its simplices via their vertices.
DEFINITION 2.1. The set of vertices of J’ is the set of vectors v R with each

component an integer, such that there is not precisely one even component nor precisely
one odd component. Each simplex tr of J’ is of the form r=j’(v, 7r, s)=Iv, ", vn],
where v is a vector each of whose components is an even integer, rr (Tr(1),. , 7r(n))
is a permutation of (1,. , n) and s is a sign vector (each sj +1) with S=l) s=n) 1.
To define the vertices of r, it is convenient to let yi denote s=i)e=i, where e is the
jth unit vector. Thus yl,..., y, are possibly permuted and reversed unit vectors. For
n >-4, we have

(2.1)

t)0 /.), V t)
j-1 "+" J, 3 --< j -< n 2,

vl V0 .+. 21, /.)n-1 /)n-2 ._ n--1 -e,
/.)2 vl__ 1 + 2 V V

"-a + 2Y’.

For n 3, the formulae for j 2 and j n 1 are combined to give/)2 v 1 + 2__ 3.
Note that the restrictions S=(m)= s=(,)= 1 are only present to give a one-to-one

correspondence between simplices and their descriptions ]’(v, rr, s). Without this
restriction v v could be replaced by v= v with s,(1)=-1, and s,()= 1 could be
replaced by s,(,)=-1. There are other ways to resolve the nonuniqueness--we could
insist that v,(1) be a multiple of 4 and that v(m be one more than a multiple of 4,
for instance, but our choice is simpler if less symmetrical than other possibilities.

We remark that we could also insist that each component of v be odd rather than
even. The same simplex r is of the form j’(v’, 7r’,-s+2 +2Y") where v’ =/)n-1 and
r’= (Tr(n),..., r(1)). Thus J’ is invariant under permutations of coordinates, under
reflections in coordinate hyperplanes and under translations by vectors with each
component even or each component odd.

Note that each simplex of J’ is the union of four simplices of J. Indeed, tr

]’(v, Tr, s)J’ is the union of jl(v, rr, s), ji(v, rr, s-2Y"), ji(v+2.l, rr, s-2. 1) and
jl( V +2, 7r, s 2 2n).

Our first task is to obtain a facetal description of J’. To this end, let tr j’( v, 7r, s)
v, , v]. Let V be the matrix with ith column (1,) for 0 _-< _-< n, and let Vo be the
matrix whose every column is (o). Let S be the diagonal matrix with diagonal entries

01, Sl,""", sn, P the permutation matrix (0 ), where the ith column of P is e’), and

(2.2) Y

1 1

2 1
1

0 1
-1

It is easy to see that

(2.3) V Vo + SPY.

1

1
1

1
1

Since each of S, P and Y is clearly nonsingular, this implies that V is also, since V- V0
results from subtracting multiples of its zeroth row from each other row. Thus tr is
indeed a simplex, i.e., its vertices are affinely independent.
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To express an arbitrary vector x e R as an affine combination of v ,...,v ,we
need to solve Va =(); since era 1 implies Voa (o), writing z (x2O), we find
(V-Vo)a z or, using (2.3)

(2.4) a Y-1PrSz.
It is easy to check that

(2.5)

1 2 --
-1

-1

Hence we obtain
PROPOSITION 2.2. Given o=j’(v, 7r, s) and xeR, let wi s=(i)(x,()-v,()), 1 <-

inn. Then x e o" iff
(2.6) 2- w2 w w2. -- Wn_ W Wn_l.

Proof. Note that PrSz (lw) and that x etr itt a in (2.4) is nonnegative.
We call (2.6) a facetal description of
THEOREM 2.3. J’ is a triangulation of R . In fact, J’ is also the subdivision of R

generated by all hyperplanes of the form xi + xj 27/.

Proof. It is clear that J’ is locally finite, i.e., that each point of R has a neighbor-
hood meeting only finitely many simplices of R". We complete the proof by showing
that J’ is indeed the simplicial subdivision claimed. First note that, by Proposition 2.2,
each simplex of J’ is bounded by hyperplanes of the form xi + xj 27/. Next we show
that each simplex is a single piece of the subdivision. If not, there is some hyperplane
that cuts a simplex of J’, and hence, that has two vertices of the simplex strictly on
opposite sides. Without loss of generality, we can assume that the hyperplane is Xl x2
and the simplex tr=j’(v, 7r, s), where i= ,n--l(1) < -a’-1(2) j. By considering the cases
i=l,j=2, i=1, 2<j<n, i=l,j=n, 2<i<j<n, 2<i<n-l,j=n and i=n-1,
] n, we can easily show that all vertices of tr lie on the same side of the hyperplane.

Finally we must show that there are no other pieces of the subdivision. Thus we
show that each x e R lies in some cr J’. For each let v be a closest even integer
to x and choose a permutation r and a sign vector s so that

1>__ w>__...>__ w>__0
where w s((x(- v(). Since we <-- 1, we have 2- we_-> 1 ->_ w and since W-m >- 0,
we have wn -> 0 => w,_l. Thus (2.6) holds. However we may have s( or s( equal
to -1. In the latter case, we may simply reset s,(n to +1 so that w switches sign but
Wn--m >= Wn > Wn--1 still holds. If s,(m) 1, then reset s,(l to + 1 and decrease V(m)
by 2. Then Wl becomes 2- w so that the inequalities 2- w2 >- Wl ->- we are still satisfied.
After these changes (2.6) holds with s,( s( 1, so that x belongs to j’(v, 7r, s) as
desired.

To conclude this section we give the pivot rules of J’. Suppose t j’(g, "?r, g)
contains all vertices of o-= j’(v, r, s) except v, with # tr. Then we can obtain
g and the index ] of the new vertex of from the table below. As in Definition 2.1,
Y denotes s,(e".
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TABLE 2.4

i=0
S.tr(2 +1 V+2 (zr(2), r(1),.’’, r(n)) s-2

s=(2) -1 v+2Y +2 (zr(2), ,r(1), , ,r(n)) s- 2Yl-2 0

i=1
s<2> +1 v (,r(2), ,r(1), , ,r(n))

Sr(2) =--1 V+2 (,r(2), r(1),’’’, ,r(n)) s-2Y 0

l<i<n-1 v (r(1),...,zr(i+l),zr(i),...,r(n)) s

i=n-1
s(n_l) +1 v (zr(1), , ,r(n-2), ,r(n), r(n- 1)) s n-1

s=(,_a) =-1 v (zr(1),..., zr(n-2), zr(n), zr(n- 1)) s-2n-1 n

i=n
Sr(n_l) +1 V

Sr(n_l) --1 V

((1),..., ,r(n-2), zr(n), zr(n-1)) s-2Y" n-1

(,r(1),..., ,r(n-2), ,r(n), ,r(n-1)) s-2y"-a-2u n

3. The 3-dimensional case. When n 3, each simplex of J’ is of the form cr

j’(v, r, s)=Iv, v 1, v2, v 3] where
/)2 /)1 er(1) 4- $7r(2) e(2) e,(3),

/)1 /)0 4- 2 e or(l), /)3 /)2 4- 2 e (3).

In this section, we show that J’ is similar to A*,K1, where A,* is the matrix
n + 1 4- x/n 4-1)I ee, the "optimal" linear transformation of the Freudenthal triangu-

lation K1; see van der Laan and Talman [8], Eaves [6], and [20]. Here similar means
"obtainable by an orthogonal matrix and a scaling."

First note that, for any n, A*:K1 are similar. Indeed, A*
((n+ 1-x/n+ 1)/(n + 1 +x/n+ 1)) (I--2eeV/n)A*+, and I--2eeT/n is easily seen to be
orthogonal.

Thus it suffices to show that A’K1 and J’ are similar when n 3. In fact, we will
show them to be identical. For n 3,

A* -1 1

1 -1

We will denote the columns of A* a a and a 3 Note first that the set of vertices of

A’K1 is {/)e ;3. all components of /) are even or all are odd} {/)e 7/3"/) does not
have exactly 1 nor exactly n-1 2 odd components}. Thus the two triangulations
have the same vertices.

Let o-=[v, /)1, /)2, /)3] A*--K1, so that v has all components odd or all even,

/)1 /)04- a i, /)2 =/)l + aj, /)3 /)24- a
,

for some permutation (i, j, k) of (1, 2, 3). Then either /)3 or /)2 has all components
even. In the first case,

/)1 /)34- 2e i, /)2 /)1_ e + e.i_ e k, /)o =/)24- 2e k,

SO O" ._[/)3, /)1 /)2, /)0] jt In the second case

/)0 /)24- 2e k, v3 vo_ e k e e i, /)1 /)3 4- 2e i,



248 MICHAEL J. TODD

SO o’=[V2,v, v3, vl]J’.
Conversely, let r Iv, v 1, v2, v 3] J’, so that v has all components even,

vl=v+2ei, v2=v-ei+sjej-e k, v3=v2+2ek

for some permutation (i, j, k) of (1, 2, 3) and some s {+1,-1}. Then if s +1,

1)1 1)
3 _t_ a /)2__ 1) _t_ a 1)0._ 1)

2 q.. a k

so or=Iv3, v 1, va, v] A*-K1. On the other hand, if r =-1, we have

1)3 i)1 ..]_ a k, 1)o V3+ a, 1)2 1)0 W a i,

so r=[v1, v 3, v, v:Z] A*K. This completes the proof that J’ is identical to A*__K1,
and thus is similar to A*+K1.

4. Measures for 1’. In this section we compute several measures to evaluate the
new triangulation J’.

The first crude measure is the number of simplices used to triangulate the unit
cube [0, 1]n. This is n! for J and K, but there are triangulations with far fewer
simplices in the unit cubemsee Lee [10] and Sallee [13]. Unfortunately, the unit cube
is not triangulated by J’, whose generating hyperplanes are of the form xi+ xj 2’;
nor is any cube for odd n. However, we can find parallelopipeds that are triangulated
by J’ for each n. One such is

C {x R"" 0 <= x2i_ X2i 2, 0 -< x2i_ + X2i 2,

i= 1,2,’" ,[n/2J, andO<=Xn_l+xn<=2if n is odd}.

Let An be the n n matrix given by

1 0
-1

1 1

1 -1

0 1
1

A2k+

1 1
1 -1

0

1 1
1 -1

0
1 1
1 -1

1 1

then ,n {x R n" 0 -< y Anx <= 2e}. Since An has determinant 2 tn/eJ and {y R n" 0 =<
y =< 2e} has volume 2", ,n has volume 2 r/21. Since each simplex of J’, as the union
of four simplices of J1, has volume 4/n! (this can easily be seen directly from (2.2),
(2.3)), we obtain
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THEOREM 4.1. There are parallelopipeds in R that are triangulated by J’ into n!
2 rn/21/4 simplices.

For n->_4, this measure is worse than J1 and K1. To me, this indicates the
inadequacies of the measure" the problem is not the simplices in J’ but the lack of
small parallelopipeds. Notice also that, for n _-> 4, the triangulation of ’" has vertices
that are not vertices of .

While the simplices of J’ have volume four times those of J1 or K1, they share
the small mesh size of these triangulations of the unit cube. The mesh size of a
triangulation is the supremum of the diameters of its simplices, or the supremum of
the lengths of its 1-simplices. In fact, we have

PROPOSITION 4.2. The mesh size of J’ is max {2, x/}.
Next we compute the average directional density of J’ [16]. This is, roughly, the

rate at which a random straight line meets facets of J’ per unit length. Alternatively,
Eaves and Yorke [7] have shown that it is the surface density, i.e. the surface area of
simplices per unit volume, up to a scale factor. Since x lies in a facet of a simplex of
J’ iff xi +/- xj is an even integer for some i, j, we obtain by the arguments of [16]:

THEOREM 4.3. The directional density of J’ in direction d is N(J’,d)-
E<1/2{ld,+dl+ld-dl} and its average directional density is ()x/2g, where g=
2F(n/2)/(n- 1)4F((n- 1)/2).

In a companion paper [20], we show that, of all triangulations AJ’, with A a
nonsingular linear transformation such that AJ’ has the same mesh size as J’, J’ itself
has the smallest average directional density.

5. Triangulations induced by I’. Note that J’ refines the cubical subdivision of
R n, that is, the polyhedral subdivision generated by all hyperplanes of the form
xi +/- xj 0 (whose pieces are cones with faces of a cube centered at the origin as cross
sections). This follows directly from Theorem 2.3. An immediate implication is that
J’ can be used in the octahedral piecewise-linear homotopy algorithm of Wright [21].

However, J’ does not refine the octahedral (or orthant) subdivision of R , since

x- 0 is not among its generating hyperplanes. Thus it cannot be used in the cubical
(or 2n-) algorithm of van der Laan and Talman [9] and Reiser [12]. Even more
apparently limiting is the fact that its (n + 1)-dimensional version does not also triangu-
late R [0, 1], and thus it cannot directly be used in a restart method such as Merrill’s
[11].

In this section we show that a wealth of other triangulations are induced by J’,
so that these objections lose their force. Indeed, it follows from, e.g., [19, Thms. 3.1,
7.1] that, if S is a triangulation of R generated by a family of hyperplanes, and if H
is one of these hyperplanes, then T= {z: z an (n-1)-face of some o- S, z_ H}
triangulates H. We say T is induced by S. If a is an affine isomorphism between H
and R "-1, then aT is a triangulation of R "-1, and we also say aT is induced by S.
We use these ideas to construct from J’ two families of triangulations. In order to
specify the dimension, we write J’(n) for the triangulation J’ of R n.

DEFINrrION 5.1. For 1 _<--k_-< n+ 1, let J’k(n) denote the polyhedral subdivision
of R generated by the hyperplanes x +/- xi 2;7, 1 -<_ < j-<_ n and x 7/, k <_- -<_ n, and
let JT,(n) denote that generated by the hyperplanes xi + x 27/, 1 <-i< j-<_ n, xi 27/,
1 <_- < k, and x 7/, k <_- _-< n. We write J"(n) for J’,’+l(n) (note that J’(n) J’,+l(n)).
Also note that J(n) J(n) Jl(n).

In this section, we shall prove
THEOREM 5.2. J’k(n) is a triangulation of R for n 1, 2 and 1 <- k <-_ n and for

n >- 3 and 1 <- k <= n + 1. JT,(n) is a triangulation of R" for n >- 1 and 1 <-_ k <-_ n + 1.
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and note that

Let Bkn, for n _--> 2 and 2 -< k <_- n, denote the n x n matrix

0 1

1 1
-1 1

1

Thus if T(n) is a subdivision of R generated by hyperplanes containing Xk_ -’t- Xk E 2Z,
then the nonsingular transformation x- y= Bk,,X takes T(n) into a subdivision
Bk,T(n), also generated by hyperplanes, and Yk-1EZ, Yk 3’ are among these.

Next let S(n) be a hyperplane-generated subdivision of R" with Xk =0 one of its
generating hyperplanes, 1_-< k<=n. Then S(n) induces a subdivision S’ of H=
{xeR": Xk-’O}. Let a be the affine isomorphism of H and R n-1 defined by.
a(Xl, , Xk-1, O, Xk/l, ", Xn) (Xl," ", Xk-1, Xk/l, ", X,,). Then we denote the
subdivision aS’ of R n-1 by PkS(n). Finally, let QkT(n)= PkBk,,T(n).

Note that, from the remarks above Definition 5.1, if T(n), S(n) are triangulations,
then so are QkT(n) and PkS(n).

LEMMA 5.3.
(a) Qk-J’k(n) J’k-2(n-- 1) (3 <_-- k <-_ n + 1).
(b) P,,J’(n) J’[,(n- 1) (1 -< k <= n).
(c) O,,J(n)=J’(n-1) (l<-k<n).
(d) OkJ’(n) J-a(n- 1) (2-< k <- n).
(e) Ok-,J’(n) J-2(n- 1) (3 <-_ k _<- n + 1).
(f) P,J’(n) J’[,(n- 1) (1 -< k _-< n).
(g) Q,J’(n)= J’(n- 1) (1 _-< k < n).
(h) QkJ’(n)=J’_(n-1) (2-<k_-<n).
(i) Pk-,J’[,(n) J"mink,,(n-- 1) (2 <__-- k <_- n + 1).
Proof. In each case we merely need to check the generating hyperplanes. We will

show (a) and (b); the reader will have no difficulty in verifying (c)-(i).
(a) Consider y Bk,X, x B-1, y. Then the hyperplanes xi + xj e 27/, for {i,

{ k 2, k 1 } become Yi + Yj e 27/. The hyperplanes Xk-24- Xk-1 e 27/ become Yk-2
7/, Yk-1 7/. The hyperplanes xi 4- Xk-2 e 27/and xi +/- Xk-1 e 27/, {k- 2, k- 1}, become
Y + Yk-2 + Yk-1 27/. Finally, the hyperplanes xi e 7/, _-> k, become yi e 7/, >_- k. Now
intersecting these hyperplanes with Yk-1----0 and projecting down to R "-1 gives the
hyperplanes x 4- x e 27/, all i, ] and x e 7/, >_- k 2, as desired.



A NEW TRIANGULATION OF R" 251

(b) Consider the effect of intersecting hyperplanes with xn 0 and then projecting
down to R n-1. The hyperplanes xi +/- xj 2Z, < j < n, remain the same, as do xi ’,
k =< < n. The hyperplanes xi +/- xn 27/, < n, become x 27/, < n. Thus we have the
generating family of J(n-1).

Proof of Theorem 5.2. Applying (a) inductively implies that each J’(n) is a
triangulation. Indeed, if we have established that all J’(n) where n => m and n-k =<
are triangulations, then (a) shows that all J’(n) for n => m- 1 and n- k <- l+ 1 are
triangulations. The case n k 1 is trivial. Similarly, (b) now shows that all J’[,(n) are
triangulations.

Note that parts (f) and (g) of the lemma show that J1 induces only copies of itself.
A similar analysis demonstrates that K1 also induces only copies of itself.

Let us tabulate the symmetry properties of these triangulations. By invariance
under permutations, we mean under permutations of { 1,. , n} that leave { 1,. , k-
1} and {k,..., n} invariant, and by invariance under reflection, we mean under
transformations xi--xi for any i. Even translations are translations by vectors with
all components even integers. Table 5.4 also notes which triangulations refine the
cubical and octahedral (orthant) subdivisions of R and which also triangulate R n-1

[0, 1].

TABLE 5.4

Invariant under
Even Translations Refines Triangulates

Permutations Reflections translations by Cubical Octahedral R x{0,

J’ n ,/ ,/ 4 ,/ ,/

J,(n) 4 4 4 ,/ 4 x 4
l<kNn

J"( n 4 4 4 x ,/ ,/ x

J’;,( n) 4 4 4 x 4 4 4
l<k<-n

& n 4 ,/ ,/ 4 ,/ ,/ ,/

Among the new triangulations we have introduced, J’(n) seems most suitable for
the octahedral algorithm and J"(n) for the cubical algorithm. We also recommend the
restriction of J’,/l(n + 1) to R [0, 1 for use in a restart algorithm. There is, however,
another candidate; we may use O,+l,n/lJ’(n+ 1). This triangulation is generated by
hyperplanes x +/- xj 272, < j < n; x +/- x. + x.+l 2Z, < n; and x,, e 3’, Xn+ 7. It
appears at first sight (and based on its directional density) to be inferior to J’+l (n + 1).
However, On+l,n+lJ’ (n + 1) has vertices with x.+l For example, consider its simplex
[0, 2e 81 +1/2e4 +1/285, 81 + e5, 81 + 85- 82- e3, e + 85- e2 -t- e3] when n 4. In a restart
algorithm we may choose the image of such a vertex arbitrarily. By making this choice
appropriately, we may identify two vertices of several simplices, thus obtaining a new
and simplified triangulation. For example, if we round Xn/l to the nearest odd integer
and x, to the nearest even integer when either (and hence both) is an odd multiple
of , then the sample simplex above disappears. The details of this approach have not
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yet been worked out, but there remains the possibility that some such modification of
Q,/a,n/lJ’(n + 1) will be a reasonable choice for a restart method.

So far the various induced triangulations have been defined only by their generating
hyperplanes. We now describe them by their individual simplices. We consider J’k(n)
or J,(n). Each simplex takes the following form. As in 2, we let v be a vector of
R with each component an even integer, zr be a permutation of {1,..., n} and s a
sign vector. We require Sr(1 to be 1 if or(l)< k, and s,(,) to be 1 if 7r(n)< k and we
are considering J’k(n). We let i i)

s=(i)e
( Also, set (a,/3) to (2,-1) if r(1) < k and

to (1, 0) otherwise, and set (y, 6) to (-1, 2) if zr(n) < k and we are considering J’k(n)
and to (0, 1) otherwise. Then the vertices of the corresponding simplex are

v v, v vj- + , 3 -<- ] <= n 2,

V V
0 + 01, Vn--1 Vn--2 ..[.. n--1 ..[_ Trt,

V
2

V _[_1 _[_ 2, V vn--1 ..[_ 6n.

We leave the reader the verification of this description and the derivation of appropriate
pivot rules for a particular J’(n) or J,(n).

The following results are easy to derive.
PROPOSITION 5.5. For k > 1, the mesh sizes of J’k(n) and J,(n) are max {2, x/},

while for k 1 the figure is x/-.
THEOREM 5.6. The directional density of J’k(n) in direction d is

ik i<j

while for J(n) it is

N(J’(n), d) E 1/21d, + E Id,] + E 1/2{Id, + d[ + Id,- 41}.
i<k i>--_k i<]

The average directional densities are

N(J’k( n)) (( n + 1 k)4-(’)x/-)g,,
N(J’[,( n)) (( n +1/2- k/ 2) + (’).,/-)g,,

and

where g, is as in Theorem 4.3.

6. Computational experience. In this section we give the results of some numerical
experimentation with the use of J’,+l(n + 1) in a restart algorithm. Note that Broadie
[3] has compared J’ to J1 and K in the octahedral algorithm; his tests indicate that
J’ almost always requires fewer function evaluations.

In all our runs we use the homotopy h(x,t)=tf(x)+(1-t)r(x) where r is the
identity. Thus we employed the large pieces induced by the linearity of r as described
in [17]. The code PLALGO [18] was used and required very little change from its
program for the large pieces for J1. We compared Merrill’s restart algorithm with
large pieces based on J’+l(n + 1) and Jl(n + 1) and van der Laan and Talman’s cubical
(or 2n-) algorithm with the triangulation K’(n). We distinguish these cases below by
writing J’, J1 or K’ respectively.

For the economic equilibrium problems we chose an initial grid size of 1/(n + 1)
for problems in dimension n. The equilibrium problems were converted to zero-finding
problems as in [2]. We solved the pure trade examples of dimension 4, 7 and 9 (El-E3)
and the examples with production of dimension 5 and 13 (EP1 and EP2) in Scarf with
Hansen [14]; note that in all cases the number of prices (commodities) is one larger
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than the dimension. For these problems, we report the results of a run as pq r, where
p linear programming pivots, q function evaluations, and r demand evaluations were
required.

For El-E3, a refinement factor between restarts of .37 was used while the
convergence test was IIf(x)ll-<_ 10-12. For EP1 and EP2 and the other runs below,
the default refinement factor of .5 was used. In EP1 and EP2, the convergence tolerance
was relaxed to 10-1. The remaining parameters in PLALGO had their default values;
thus quasi-Newton acceleration was employed.

Our next test problem is Brown’s almost linear function, defined by

fl(x) fi x- 1,
]=1

(x)= xi+xj-n-1, j> 2.
i=1

We solved this for n 10, 15 and 20, with starting point the origin and initial grid
size/ .5. The convergence tolerance was 10-1 for n 10 and n 15, and 10-8 for
n 20. We report the results as p!q, with p and q as above.

Finally we considered Watson’s test function, defined by

f(x) xj-exp (cos (J i xi)).
We solved this for n 1, 2,. , 10, with starting point the origin, initial grid size 6 .5
and convergence tolerance 10-8 The results are reported similarly.

The results demonstrate a consistent advantage of J’,/l(n + 1) over Jl(n + 1) in
Merrill’s algorithm, and (usually) a considerable advantage over the cubical algorithm
with K’(n). Other experimentation has shown that the first statement holds true over
a variety of test problems, while the comparative advantages of Merrill’s algorithm
and the cubical algorithm can depend considerably on the problem type.

TABLE 6.1

ji

Ji
K’

Economic equilibrium problems

E1 E2 E3 EP1 EP2

56/65/65 82/91/91 60/73/73 119/126/56 726/689/70
60/68/68 104/112/112 70/84/84 124/132/53 842/802/96
53/67/67 88/101/101 62/77/77 124/133/57 839/817/91

j

Jl
K’

Brown’s almost-linear function

10 15 20

93/92 290/278 933/893
117/116 335/323 1032/992
146/153 505/511 784/786

j

J1
K’

2

6/9 5/10
6/9 7/11
5/9 11/18

Watson’s test function
3 4 5 6 7 8 9 10

48/48 160/147 239/217 352/322 958/844 1775/1588 3043/2701 6759/6060
55/57 184/167 451/370 575/513 1582/1405 3732/3402 7080/5945 19520/17020
46/56 170/182 476/482 806/813 2625/2556 4916/4823 12505/12188 21108/20732
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BOOLEAN METHODS OF OPTIMIZATION OVER INDEPENDENCE
SYSTEMS*

BERNIE L. HULMEf

Abstract. This paper presents both a direct and an iterative method of solving the combinatorial
optimization problem associated with any independence system. The methods use Boolean algebraic compu-
tations to produce solutions. In addition, the iterative method employs a version of the greedy algorithm
both to compute upper bounds on the optimum value and to produce the additional circuits needed at every
stage. The methods are extensions of those used to solve a problem of fire protection at nuclear reactor

power plants.
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1. Independence systems. An independence system S (E, ) is a finite set E
and a nonempty collection of subsets of E such that (I1) and (12) are satisfied.

(I1) .
(I2) IfX and Y_X, then Y.
The subsets of E in 5 are called independent sets, and those not in 5 are called

dependent sets. A maximal independent set is a base of S. The collection of bases is. A minimal dependent set is a circuit of S, and the collection of circuits is . Several
properties follow immediately from these definitions.

THEOREM 1. A subset X ofE is independent if and only ifX is a subset of a base.
THEOREM 2. A subsetX ofE is dependent if and only ifX is a superset of a circuit.
Restating Theorem 2 in a negative way yields
COROLLAR’ 1. A subset X of E is independent if and only if X does not contain

a circuit.
From Theorems 1 and 2 it is clear that either the bases or the circuits uniquely

determine an independence system on E. Given E and , consists of all the subsets
of the members of , and the minimal subsets of E not in form c. Given E and, the dependent sets are the supersets of the members of , and the maximal subsets
of E not among the dependent sets form .

Notice that (I1) prevents from being empty, and hence Y3 cannot be empty.
However, is empty whenever E and E is the only base. The following theorems
characterize and qg.

THEOREM 3. A nonempty collection of subsets of E is the set of bases of an
independence system on E if and only if (B1) is satisfied.

(B1) If B1 and B2 are distinct members of Y3, then B1 - B2.
Proof. If (B1) holds, then no member of 3 contains another member. In , the

collection of all subsets of the members of , the maximal elements are precisely the
members of . Conversely, if is a set of bases, then no member of Y3 can contain
another, for otherwise some base would not be maximal. [

THEOREM 4. A collection of subsets ofE is the set of circuits of an independence
system on E if and only if (C1) is satisfied.

(C1) If CI and C2 are distinct members of , then C1 C2.

* Received by the editors July 6, 1983. This work was performed at Sandia National Laboratories
supported by the U.S. Department of Energy under contract DE-AC04-76DP00789. This work was

presented at the SIAM Second Conference on the Applications of Discrete Mathematics, held at

Massachusetts Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983.
t Sandia National Laboratories, Albuquerque, New Mexico 87185.
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Proof. If (C1) holds, then no member of contains another member. Among
the supersets of all the members of , the minimal ones are precisely the members of
c. Thus, c is the set of circuits of an independence system whose dependent sets are
the supersets of the members of . Conversely, if is a set of circuits, then no member
of can contain another member, because otherwise some circuit would not be
minimal, l-1

2. Duality. For any independence system S (E, ), there is a dual independence
system S*= (E, *) whose bases are the complements (relative to E) of the bases of
S. A base of S* is called a cobase of S. A circuit of S* is called a cocircuit of S, but
a cocircuit is not necessarily the complement of a circuit. An independence system S
and its dual S* are linked by the following theorems.

THEOREM 5. A subset X of E is a cobase of an independence system S (E, )
if and only if X has a nonnull intersection with every circuit of S and is minimal with
respect to this property.

Proof. Let B* be a cobase of S. Suppose there exists a circuit C of S such that
B* f’l C . Then the base B E\B* contains C, and therefore B is dependent in S,
a contradiction. Hence,/3* has nonnull intersection with every circuit of S. Now let
X = B* have nonnull intersection with every circuit of S. Then E\X contains no circuit
of S and, by Corollary 1, is independent in S. But E\X E\B*, a base of S, which is
a contradiction. Thus, a cobase B* is a minimal subset having nonnull intersection
with every circuit of S.

Conversely, if X has a nonnull intersection with every circuit of S, then E\X
contains no circuit of S and is independent in S. If X is also minimal, then E\X is a
maximal independent set in S. Thus, X is a cobase of S.

In a similar way one can prove
THEOREM 6. A subset Y of E is a circuit of an independence system S if and only

if Y has nonnull intersection with every cobase of S and is minimal with respect to this
property.

Also, by duality one can prove two other theorems which relate the bases and
cocircuits of S.

3. Combinatorial optimization. The combinatorial optimization problem for an
independence system S (E, ) is as follows. Given a weight function w(e) >= O, for all
e E, find an independent set having the maximum total weight.

One might as well restrict attention to the bases of S. This is because a maximum
weight independent set is either maximal or else differs from a maximal independent
set only by elements of zero weight. Also, a base is a maximum weight base if and
only if its complement is a minimum weight cobase. Therefore, we may think of
optimization over independence systems as finding either a maximum weight base or
a minimum weight cobase.

The greedy algorithm is a heuristic solution process which considers the elements
e of E in order of decreasing weight. As long as I + e is independent, e is added to
I; but if I + e is dependent, e is added to O. When all of the elements of E have been
considered, I is a base and O E\I is a cobase.

THE GREEDY ALGORITHM.
1. Set I =, Q=.
2. While E do

a. let e be an element of E having largest weight;
b. set E=E-e;
c. if I / e 5, then set I I + e

else set Q Q + e.
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This algorithm does not always solve the combinatorial optimization problem for an
independence system S. However, the greedy algorithm does produce correct solutions
for any nonnegative weight function if and only if S is a special case called a matroid
(Theorem 9).

4. Boolean methods.
4.1. A direct method. The following Boolean procedure will solve the com-

binatorial optimization problem for any independence system S (E, .,). It constructs
a minimum weight cobase of S from the circuits qg using Theorem 5.

THE DIRECq: BOOLEAN ALGORITHM (given the circuits
1. Create the Boolean conjunctive normal form

F=A V e.
C qg C

2. Expand F by the distributive laws, (a v b)(a v c) a v bc and a(b v c) ab v ac,
and simplify the result by idempotence, aa a and a v a a, and absorption,
avab=a.

3. For each term in the resulting disjunctive normal form of F, compute the weight
sum, and save one minimum weight term, R.

THV.OREM 7. The direct Boolean algorithm produces a minimum weight cobase R
of the independence system S with circuits .

Proof. By construction, the terms of the disjunctive normal form of F are all of
the minimal subsets having nonnull intersection with every circuit in . Theorem 5
guarantees that these terms are precisely the cobases of S, so that R is a minimum
weight cobase of S.

The direct algorithm has a run time which grows exponentially with This is
to be expected, of course, because the problem (minimum weight hitting set) is NP-hard
[1],[4].

4.:. An iterative method. In an effort to economize on run time, we propose an
iterative method which constructs an independence system Si on E with circuits
such that the minimum weight cobases of S include at least one minimum weight
cobase of S. Although the iterative process still has a run time which grows exponentially
with I%1, a savings occurs when I%1< I1.

The iterative method relies upon a version of the greedy algorithm to provide at
each stage not only a certain cobase O but also a collection 2 of circuits having a
one-to-one correspondence with the elements of O.

THE GREEDY ALGORITHM WITH CIRCUIT FINDING IN S-" (E, 5).
1. Set I=, Q=, =.
2. While E do

a. let e be an element of E having largest weight;
b. set E=E-e;
c. if I + e 5, then set I I + e

else find a circuit C c_ I + e (e C);
set Q=Q+e;
set =+C.

The iterative process applies the direct Boolean algorithm to a sequence of
independence systems S on E having circuit sets % which form an increasing sequence
of subsets of %
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The direct algorithm produces a minimum weight cobase Ri of Si (Theorem 7). To
see if R is also a cobase of S, the iterative process applies the greedy algorithm with
circuit finding to the independence system S\R, whose ground set is E\R and whose
circuits are those circuits in that are disjoint from R. The results are Qi, a cobase
of S\Ri, and "i, a collection of certain circuits of S\Ri. Clearly, Qi is a minimal subset
of E\R having nonnull intersection with every circuit in qg that Ri does not intersect.
Thus, Ri [.J Qi intersects every circuit in q. If Qi , then Ri is not a cobase of S
because it does not intersect every circuit in . In this case, is united with qg to
form a larger set of circuits %+1, and the process is repeated for i= i+ 1. If Qi =,
then R intersects every circuit in . Moreover, R is minimal with respect to this
property because, if X c R intersects every circuit in % then X intersects every circuit
in %

_
% contradicting the fact that Ri is a minimal subset intersecting every circuit

in qgi. Thus, when Qi f, Ri is a cobase of S. In addition, Ri is a minimum weight
cobase of S because, if R were a cobase of S with w(R)< w(Ri), then R would
intersect every circuit in %, contradicting the fact that Ri is a minimum weight subset
intersecting every circuit in %. This proves the correctness of the following procedure.

THE ITERATIVE BOOLEAN ALGORITHM.
1. Set i-0, c0=, R0=.
2. Apply the greedy algorithm with circuit finding to S\R, the independence

system on E\R whose circuits are the circuits in c that are disjoint from R,
obtaining a cobase Qi and certain circuits of S\R.

3. If Q QS, then stop, having found a minimum weight cobase R of S.
4. Set i= i+ 1, cCi %_tA o@i_ 1.

5. Apply the direct Boolean algorithm to the independence system Si on E with
circuits , obtaining R, a minimum weight cobase of S.

6. Go to 2.

THEOREM 8. The iterative Boolean algorithm produces a minimum weight cobase
Ri of S.

Besides the possibility of running faster, the iterative method is to be preferred
over the direct method whenever the circuits in ’ are not known explicitly. In order
to use the direct method, one must first construct all of the circuits, while the iterative
method constructs only enough circuits to solve the problem.

5. Modifications of the iterative Boolean algorithm. At step 3 of the direct
Boolean algorithm (step 5 of the iteration) one need not produce the entire disjunctive
normal form of Fi and compute all the weight sums. Instead during the expansion,
one should initially discard any terms having a weight sum greater than

U min w(Rj tA Qj).
<=j_<__i-1

Such terms cannot be minimum weight cobases of S because the Ri tA Q are supersets
of cobases of S, and Ui is, thus, an upper bound on the minimum weight we seek.
Furthermore, one should save only terms of F having the currently minimum weight
sum, and these should be discarded whenever a term of smaller weight arises. Thus,
during the expansion, a truncation value should be initialized to U/ and then be
continually updated to the currently minimum weight sum. Its final value is w(R), a
lower bound.

One could either save exactly one term at any time during the expansion or else
save all of the terms of currently minimum weight. In the latter case, one of the final
terms would have to be chosen as R. This might be one that intersects the most circuits
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in % However, in the presence of a large number of choices for Ri, an arbitrary choice
seems to be warranted.

Similarly, one can alter the algorithm to find all of the minimum weight cobases
of S, provided that the circuits have only positively weighted elements. The direct
algorithm needs to save all of the currently minimum weight terms during expansion
of Fi, and step 5 of the iteration needs to choose a final one to be R. When R is
known to be a minimum weight cobase of S, all of the other minimum weight cobases
of S are among the minimum weight terms of F. These terms only need to be chosen
successively as R and to be tested by steps 2 and 3 of the iteration. This can be seen
as follows. If the circuits have only positively weighted elements, then the same is true
of the cobases. Let R be any other minimum weight cobase of S. Then R intersects
every circuit in %, just as Ri does, and w(R)= w(R). Suppose X c R also intersects
every circuit in %. Then w(X)< w(R), contradicting the fact that Ri is a minimum
weight subset intersecting every circuit in %. Hence, R is a cobase of S having minimum
weight and must appear among the minimum weight terms of F.

6. Matroids. The following theorem serves as three different, but equivalent,
definitions of a matroid. For a proof see [4], [5], [8].

THEOREM 9. Let S (E, ) be an independence system. Then the following state-
ments are equivalent.

1. S is a matroid.
2. If U, V and UI VI + 1, then there exists e U\ V such that V + e .
3. IfA E, then all maximal independent subsets ofA have the same cardinality.
4. The greedy algorithm correctly solves the combinatorial optimization problem for

S with any nonnegative weight function.
Letting A E in Theorem 9, we obtain
COROLLARY 2o All bases of a matroid have the same cardinality.
Therefore, when an independence system S is known to be a matroid, the greedy

algorithm should be used to optimize over S. Otherwise, the iterative Boolean algorithm
may be used.

7. An example. The Boolean formula in Table 1 is constructed by the direct
Boolean algorithm to optimize over S (E, 5), where E {X1, X2,. , X40}, the
circuits are given by the 50 factors in the formula, and the weights are shown on
the right. In this computer printed equation, and + are used instead of ^ and v.

The direct Boolean algorithm, modified to truncate initially on a given value and
then to steadily reduce the truncation value until all of the minimum weight cobases
are found, was implemented in a SETS user program [6], [7]. When the SETS program
was applied directly to F with an initial truncation value of 1368, it got the answer
in 348 seconds of run time on the CDC 7600. However, the same SETS program used
at step 5 of the iterative algorithm solved the problem in a total of 42 seconds. In six
iterations the SETS program expanded products of 8, 13, 16, 18, 20, and 21 factors,
truncating them initially on respective upper bound values of 1632, 1604, 1604, 1484,
1460, and 1441. The final product of only 21 out of 50 factors is shown in Table 2.

The only minimum weight term in the disjunctive normal form of F6 is

R6- X1 * X4 * X6 * X10 * Xll * X16

with w(R6)--1368. Since R6 intersects all 50 circuits, it is the unique solution. The
greedy algorithm (a FORTRAN subroutine) consumed a total run time of 0.01 seconds.
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It produced the initial upper bound w(Qo)= 1632 for a cobase Qo of S. Since the
minimum weight for a cobase of S is 1368, S is not a matroid.

8. Application to fire protection. Let r(V, A) be a network modeling the
possibilities of fire spread in a complex facility such as a nuclear reactor power plant.
The vertices V represent areas, and the directed arcs A represent fire barriers between

TABLE

F=(X8+X9+XlO+X14+X18+X19+X21+X29+X35+X38)
(X6+X8+X9+X14+X23+X30+ X31 +X32 +X33+ X40)
,(X4+X9+XlO+Xll +X12+X14+X18+X24+X33+X35)
(X3+X10+X12 + X13+X20+X29+X34+X35 +X37+ X38)
,(X10+Xll+X14+X15+X20+X21+X22+X29+X35+X36)
(X4 +X5 +X11 +X17 +X18 + X26+X33 +X34+X36+ X40)
(X4 +X5 +X9+X15 +X16+X23 +X30+X36+X38 + X39)
,(X3+X4+X6+X7+Xll +X13+X16+X30+X32+X37)
(X2 + X6+X10+X13+X14+X19+X24+X27 +X33+ X36)
,(Xl+X4+X5+X9+X10+X12+X18+X19+X36+X37)
(X4+X8 +X10+ X13 +X14+X17 + X19+X25 +X30+X37)
(X3 +X4+X6+X17+ X21 + X28 +X29+X30+X37+ X39)
,(Xl+X6+X7+X18+X19+X21+X23+X24+X32+X35)
(X16+ X17 +X18 + X19+X21 +X24+X27 +X30+X31 + X32)
,(Xl+X3+X12+X13+X15+X19+X23+X24+X28+X36)
(X14 + X15 + X16+ X18 +X20+X21 +X22 +X23 +X24 + X28)
,(X8+Xll+X14+X20+X22+X23+X29+X38+X39+X40)
,(X4
,(X5
,(X1
,(X3
,(X1
,(X3
,(X7
,(X2
,(X4
,(X3
,(X2
,(X5
,(X2
,(X1
,(X3
,(X5
,(X6
,(X2
,(X1
,(X3
,(X2
,(X3
,(X3
,(X7
,(X6
,(X2
,(X2
,(X6
,(X1
,(X3
,(X9
,(X1
,(X3

+X5+X10+X17 +X18 +X20+X22+X28 +X33+ X36)
+X6+X16+X19+X25+X26+X28+X31+X34+X40)
+X4+X8+X12+X14+X16+X17+X29+X31+X40)
+XlO+X13+X16+X17+X24+X27+X30+X31+X35)
+X3 +X4+ X8 +X9 +X14+X19 +X23 +X25 + X33)
+X4+XIO+Xll +X12+X14+X22+X23+X35+X37)
+X14+X16+ X17+X26+X27 +X32+X33 +X34 + X37)
+X6+X20+X21 +X23+X25+X30+X31+X36+X39)
+X7+X9+X15 + X17+X19+ X20+X23 +X24+ X35)
+X4+X6+X8+Xll +X18+X21+X28+X33+X39)
+X8+X9+XlO+X12+X19+X20+X21+X22+X25)
+X6+X22+X25 +X27 +X30+X33 +X38 +X39+X40)
+X5+X6+Xll +X15+X17+X18+X21+X24+X29)
+X3+X7+X10+Xll+X18+X23+X34+X36+X37)
+X13 +X16+ X17 + X19+X27 +X29+X30+X34+ X39)
+X6+X10+X12+X14 +X22 +X26+ X27 +X33+X37)
+X14+X16+X17+X18+X20+X21+X26+X29+X32)
+X13+X14 +X16+X19+X24+X27 +X34 +X36+ X37)
+X3+X8+X17+X18+X21+X33+X36+X38+X39)
+X5 +X10+ X11 +X12+X17 + X21 + X22 +X24+ X29)
+X4+X7+ X22 +X23+X27 +X33+X36+X37+X39)
+Xll+X13+X15+X17+X32+X34+X35+X36+X39)
+X4+ X7+ X10+X11 + X12 + X21 +X28 +X29+ X37)
+X8+X15+X16+X17+X21+X29+X34+X38+X39)
+X7+X12+X13+X17+X21+X22+X27+X29+X38)
+X5 +X14+X16+X17+ X20+ X25 + X31 +X36+ X38)
+X3+X4+X6+X12+X23+X28+X34 +X38 + X39)
+ X9+X10+X17+X20+X26+X30+X31 + X35 + X36)
+X5 +X7+ X9+X17+X30+X32+X33 +X34 + X39)
+X6+XlO+X12+X13+X19+X21+X27+X35+X39)
+Xll+X15+X21+X24+X28+X32+X35+X36+X40)
+Xll+X12+X13+X15+X17+X20+X22+X24+X28)
+X6+ X14 +X18 +X22 + X23 +X24 +X30+X34+ X38)

XI w(XI)

X1
X2 73
X3 82
X4 113
X5 184
X6 203
X7 205
X8 212
X9 252
X10 262
Xll 282
X12 401
X13 409
X14 460
X15 480
X16 507
X17 522
X18 526
X19 547
X20 581
X21 585
X22 606
X23 623
X24 672
X25 675
X26 695
X27 704
X28 704
X29 739
X30 745
X31 768
X32 799
X33 837
X34 870
X35 887
X36 893
X37 909
X38 938
X39 939
X40 995
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TABLE 2

F6=(XlO+X11+X14+X15+X20+X21+X22+X29+X35+X36)
(X 4+X 5+Xll+X17+X18+X26+X33+X34+X36+X40)
(X16+X17+X18-i-X19+X21 +X24+X27+X30+X31 +X32)
(X 8+Xll+X14+X20+X22+X23+X29+X38+X39+X40)
(X 3+Xll+X13+X15+X17+X32+X34+X35+X36+X39)
(X 6+X 7+X12+X13+X17+X21+X22+X27+X29+X38)
(X 9+Xll+X15+X21+X24+X28+X32+X35+X36+X40)
(X 3+XlO+X12+X13+X20+X29+X34+X35+X37+X38)
(X I+X 6+X 7+X18+X19+X21+X23+X24+X32+X35)
,(X14+X15+X16+X18+X20+X21+X22+X23+X24+X28)
(X 5+X 6+X16+X19+X25+X26+X28+X31+X34+X40)
(X 2+X 4+X 7+X22+X23+X27+X33+X36+X37+X39)
(X 8+X 9+XlO+X14+X18+X19+X21+X29+X35+X38)
(X 4+X 5+XlO+X17+X18+X20+X22+X28+X33+X36)
(X 6+X 9+XlO+X17+X20+X26+X30+X31+X35+X36)
(X 4+X 8+XlO+X13+X14+X17+X19+X25+X30+X37)
(X 7+X14+X16+X17+X26+X27+X32+X33+X34+X37)
(X 6+X 8+X 9+X14+X23+X30+X31+X32+X33+X40)
(X I+X 3+X 8+X17+X18+X21+X33+X36+X38+X39)
(X 4+X 7+X 9+X15+X17+X19+X20+X23+X24+X35)
(X l+Xll+X12+X13+X15+X17+X20+X22+X24+X28)

the areas. An arc joins one vertex of V to another but is disjoint from the vertices.
Both the arcs and vertices are weighted with fire protection costs w( e) >= O, e E V t.J A.
For example, a vertex weight could be the cost of an adequate sprinkler system for
the area, and an arc weight could be the cost of increasing the fire rating of the barrier
so as to prevent fire spread along the arc. Since fire cannot spread through a zero
weighted arc or vertex, such arcs and vertices could be deleted from the model. When
a vertex is deleted, all its incident arcs are deleted also. Vital components of safety
systems are located at certain vertices called target vertices, and a minimal set of target
vertices whose destruction could have unacceptable consequences is called a target set.
Let -= { T, T2, Tk} be the collection of target sets to be protected.

Single-source fires are the most likely accidental fires. Such a fire could start at
any vertex and spread along positively weighted arcs and vertices. Let an s-t net for
(, -) be defined as a minimal, positively weighted, subnetwork V’ in consisting
of a source vertex s, a target set T -, and other vertices and arcs such that, for every

T, there is a path in V’ from s to t. An s-t net, then, is a particular way that a
single-source fire could start, spread to, and destroy all the vertices in a target set. To
prevent this, we seek a fire protection set R E whose deletion (protection) yields a
subnetwork A;\R not containing any s-t nets. The cost of a fire protection set is the
sum of the weights of its elements, and the minimum cost fire protection problem is to
find all of the minimum cost fire protection sets for (, -).

This problem can be viewed as one of optimization over an independence system
$ (E, ), where E V kl A and the circuits are the s-t nets. From Corollary 1
the independent subsets of E are the subnetworks not containing an s-t net. The
cobases of S are the minimal fire protection sets. The iterative Boolean algorithm,
modified to find all the solutions, needs a greedy algorithm which produces s-t nets
by a polynomial-run-time pathfinding method. Then, the iterative procedure will
produce all of the minimum weight cobases R, which are the minimum cost fire
protection sets. This application is presented in greater detail in [2], [3] where computa-
tional results are given for a very similar iterative procedure which uses a maxflow-
mincut calculation in place of the greedy algorithm.
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DISCRETE MATHEMATICS IN VOTING AND GROUP CHOICE
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Abstract. The diversity of mathematics used in research on voting procedures and group decision
processes is illustrated through discussions of representative systems, cyclic majorities, ranking paradoxes,
impossibility theorems, approval voting, and proportional representation.
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1. Paradoxes and profiles. The aim of this paper is to illustrate through selected
topics the diversity of mathematics that has been brought to bear on the analysis and
design of voting procedures and group decision processes. In the course of our discussion
we shall encounter discrete ranking structures, nested hierarchies of sign functions,
finite topologies, combinatorial impossibility theorems, integer optimization problems,
linear separation lemmas, and matters of probability, all of which are motivated by
fundamental concerns of group decision making. We shall also meet paradoxes inherent
in the subject and mention a few challenging open problems. I shall say more about
the topics of ensuing sections after a brief historical note.

Our story begins with the Enlightenment figures Jean-Charles de Borda and the
Marquis de Condorcet. Borda [3] proposed a now familiar method of electing one
candidate from three or more nominees based on ranked voting. Condorcet [7]
counterproposed that a candidate who can defeat each of the others in pairwise majority
comparisons should be elected.

To be precise, suppose each of n voters, indexed by from 1 to n, has a best-to-worst
order >i on the rn->_ 3 candidates in the nominee set X. The list of these orders
(> 1, > 2," , > n) is a voter preference profile. For now, assume that each >i is a total
order, with no ties or individual indifference. Borda proposed that the elected candidate
should be an x X that maximizes

E I{y: x>iy}[,
i=l

which equals the total points awarded to x when m 1, m 2, , 0 points are awarded
respectively to each voter’s first choice, second choice,..., last choice. On the other
hand, Condorcet argued that x ought to be elected if

I{i" x>iY}l>[{i" y>ix}l for each y xinX,

i.e., if x is a majority candidate.
Condorcet was quick to point out that some profiles have no majority candidate.

Thus, with n m 3, if the voters’ orders on X {a, b, c} are abc, cab, and bca, then
every candidate loses to one of the other two under majority comparison. This is the
preeminent paradox of voting: it is known also as Condorcet’s phenomenon and as the
phenomenon of cyclic majorities. Extensions of Condorcet’s majority method to profiles
that have no majority candidate are reviewed and compared in Fishburn [15]: see also
Young and Levenglick [48].

* Received by the editors July 6, 1983. This work was presented at the SIAM Secorid Conference on

the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

" Bell Laboratories, Murray Hill, New Jersey 07974.
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Condorcet also noted a second paradox that established a fundamental incompati-
bility between his majority principle and Borda’s positional-scoring procedure. Namely,
there are profiles with a majority candidate x who will not be elected by any Borda-type
point-count method that awards more points to a first choice than a second choice,
more points to a second choice than a third choice, and so forth. Suppose n 7,
X {a, b, x}, and

3 voters have xab,
2 voters have abx,
1 voter has axb,
1 voter has bxa.

Then x has a 4-to-3 majority over each of a and b. However, when wl > w2> w3
points are awarded for first, second, and third choices, a always gets more points
(3W+3W2+W3) than x (3w1+2w2+2w3).

Many other voting paradoxes [11], [19], [21], [36] have been uncovered in recent
years, but the original phenomenon of cyclic majorities has remained as the principal
impetus behind research in the theory of voting. One branch of this research, which
addresses the likelihood of cyclic majorities and gets deeply involved in combinatorial
probability, is discussed in 3. Another branch, discussed in 4, stems from Arrow’s
impossibility theorem for transitive social rankings based on transitive individual
preference orders 1 ]. The latter section also considers questions motivated by Borda’s
scoring procedure.

Section 5 examines a simplified voting method, called approval voting [4], ]5],
that only asks voters to vote for the candidates they find acceptable, without ranking
these choices. This method has been proposed as a practicable alternative to procedures
in popular use such as the plurality ("vote for one") procedure. Despite its simplicity,
approval voting involves interesting mathematical as well as practical issues.

The three sections of the paper just mentioned focus on the choice fromor the
ranking ofa set X of three or more candidates. These sections are bracketed by two
others that are more concerned with institutional configurations. The first of these,

2, discusses hierarchical structures for voting in which the outcomes of votes in lower
councils act like votes in higher councils. The point of this section is that even the
most elementary matter of group decision, say to enact or defeat a legislative proposal,
can give rise to interesting mathematics. The second institutional section, 6, considers
the problem of proportional representation in a legislature based primarily on elections
in single-member districts. It proposes a variable-sized-legislature model in which seats
are added to those won in the districts in an attempt to get closer to proportional
representation for the parties in the legislature.

2. Nested hierarchies and linear separation. We shall suppose throughout this
section that a vote is to be taken on a single issue and let vi equal 1 if voter votes

for the issue, 0 if abstains, and -1 if votes against the issue. Each v (va, v2," , vn)
in V { 1, 0,-1 }n is a ballot response profile, and a function

f: v-{,0,-}

is a group decision (social choice) function. We interpret f(v)= 1 as passage of the
issue, f(v)=-1 as defeat, and f(v)=0 as a tie vote that requires further action.

Two facts about f make it especially attractive from a mathematical viewpoint.
First, its codomain is the same set {1, 0,-1} used for each dimension in the domain
V, and each of its three elements has a similar interpretation in the two places. Second,
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V is a set of integral lattice points embedded in Rn. Imagine a hyperplane through Rn
that separates f*(1)={v: f(v)= 1} from f*(-1), and perhaps contains f*(0). I shall
return to this shortly.

What conditions might we impose on f so that it is responsive to individuals’ votes
and fair to the issue at hand? Here are a few that have been suggested:

unanimity: f(1,..., 1)= 1, f(-1,...,-1)=-1;
duality" f(-v) -f(v);
anonymity" f(Vl,. l)n) f(vtr(1), Utr(n)) if tr is a permutation on {1,. , n};
monotonicity: v >= v’ (componentwise) =>f(v) -> f(v’);
strong monotonicity" monotonicity, plus: v > v’(vi > v[ for at least one in addition

to v _-> v’) and f(v’) O=>f(v) 1.

You should have no trouble interpreting these. For example, duality says that if
all votes are reversed (abstentions remaining unchanged) then the group decision is
reversed; the second part of strong monotonicity says that a tie can be broken in favor
of the issue if some voter votes more in favor of the issue.

Many specific and generic group decision functions can be characterized by such
conditions and efficiently expressed with the use of sign functions 12]. For every real
vector (al,- , as:) let

s(al,. ", as: sign (Z ak),

and let (al,""", as:)" (bl, , bs:)= akbk. The simple majority function is defined by

f(v)=s(v) forallveV,

and characterized [32] as the unique function that is dual, anonymous and strongly
monotonic.

We define f as a weighted majority function if there is a p > 0n (whose components,
without loss of generality, can be presumed to be integers) such that

f(v) s(p" v) for all v e V.

Here pi is the "weight" of the ith voter or voting unit. The family of weighted majority
functions is characterized as those f that are unanimous, monotonic, and satisfy

strong duality" if K e {1, 2,...}, v k V for all k, and /2
k On, then

min {f(vk)" k <- K} + max {f(vk)" k <= K} O.

When n vk= 0n, each voter has the same number of for as against votes in the
K ballot response profiles. Strong duality says that the issue passes for at least one v
if and only if it is defeated for another v

The proof that a unanimous, monotonic, and strongly dual f is a weighted majority
function is facilitated by a standard separating-hyperplane lemma or theorem of the
alternative.

LEMMA 1. Exactly one of (A) and (B) is true when 1 <-J <=K and a 1, as:
are rational vectors in

(A) There is an integral p such that

p. ak>O for l <-_k<-J,

p. ak=O forJ<k<-K.
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(B) There are nonnegative integers rl,""", rj at least one of which is positive, and
integers rj+,..., rI such that

K

Y rka On.
k=l

Assume f is unanimous, monotonic and strongly dual. By unanimity, f*(1) is not
empty. Suppose no integral p gives p. v > 0 on f*(1) and p. v 0 on f*(O), as required
by weighted majority. Then Lemma 1 (B)mreverse negative rj under duality in f*(0);
replicate v in f*(1) and f*(0) by their rkmimplies that there are vl, vH V with

V
h --On, f(vh) >-0 for all h, and f(t h) 1 for some h. But this contradicts strong

duality. Hence our supposition is false, and duality, monotonicity and unanimity then
imply that p >

Murakami [35] developed the idea of representing other majority-like functions
by nested hierarchies of weighted majority functions. These can be constructed recur-
sively by defining S(fl,. ",f:)" V
{1, 0,-1}" by

s(f, f: )(v) s(fl(v), fK (1))).

To illustrate, suppose body k (k 1, 2, 3) uses the simple-majority function f within
its body to vote on an issue, and the three outcomes are then aggregated by simple
majority to decide the fate of the issue. The overall group decision function of this
process is f s( fl, f2, f3).

More generally, let Di be the dictatorial projection for voter defined by Di(v) v,
let 50 {D,..., Dn}, and for each positive integer let

2,={s(f,,...,f)" K e {1, 2," "} and f,,...,

It is easily seen that 1 is the set of weighted majority functions and, since s(f) f,
that 5o c_ a 52 _" ". We refer to t_J , as the set of representative systems for
n voters.

Representative systems have been studied extensively by Murakami [35] and
Fishburn [9], 10], 14], 17]. Their first complete characterization in terms of conditions
on f appeared in [9]. Four conditions on f suffice for f 5, namely unanimity, duality,
monotonicity, and a "dual partition" condition that generalizes strong duality. Proofs
of the sufficiency of these conditions, which use Lemma 1 or a related separation
theorem, appear in [9], [10].

Further investigations of representative systems have focused on the number of
hierarchical levels that are needed to express all f 5 for n voters. Since 5 is finite
for each n, there is a smallest such that , for n. Let/x (n) denote this smallest
for n. Fishburn 14], 17] proved that /x (n) n 1 for 1 <- n <- 4, /x (5) =/x (6) 4,

/x(n)=< n-2 for all n->6, and z is unbounded. He also conjectured that tx(n)/nO
as n gets large. This conjecture was recently confirmed by Keiding [29] in a remarkable
paper which shows that tz(n) =<log2 (n(n- 1))+ 5.

3. Cyclic majorities: the root of the problem. We now return to the phenomenon
of cyclic majorities introduced in 1. As before, n is the number of voters, m >- 3 the
number of candidates, and >i is voter i’s preference order on the candidate set X. We
shall assume that every >i is a total order (no ties). For each voter preference profile
(> ,.’., > n), define the nonstrict simple majority relation on X by

x>-My if I{i: x

and let > t and =M be respectively the asymmetric and symmetric parts of >- M-
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McGarvey [34] showed that if n is large enough relative to m, then for every
asymmetric relation on X there is a profile that has this relation as its > t. For each
m >-3 let or(m) be the smallest n for which this is true. Stearns [45] proved that
r(m) =< m + 1 for odd m, or(m) -<_ m + 2 for even m, and these bounds are tight when
rn =< 5. He also showed that or(m) > [(log 3)/2]m/(log m). Erd6s and Moser [8] then
noted that r(m) -<_ clm/(log m) for a fixed constant cl. Precise values of or(m) beyond
the first few m are unknown, and the question of whether r(m)(log m)/m tends to
a limit is open.

How common are cyclic majorities? This has been intensely investigated; its
present status is surveyed by Gehrlein [23]. One approach considers the proportion
p(m, n) of the (m !)" profiles that have majority candidates. If each voter independently
chooses one of the m! orders according to the uniform distribution, then p(m, n) is
the probability that the chosen profile has a majority candidate.

A quick check (hold one order fixed) shows that p(3, 3) 17/18. Exact computa-
tions for m > 3 or n > 3 get complex very quickly. The most efficient method known
for three candidates [24] uses

n!
p(3, n)= 3-"+1Y 2-(n2+n3)

n!n2!n3!n4!
where Y is a triple sum with limits {O<=nl<=(n-1)/2, O<=n2<=(n-1)/2-n, 0<n3<
(n- 1)/2- nl} and n4 n-- n n2-- n3, and the most efficient method known for three
voters [25] uses

m-1 ,-1-,1 (m- 1 ma)t(m- 1 m2)!
p(m, 3)=m E Y

,1=0 ,,2=0 m!(m-l-ml-m2)!(ml+m2+l)"
When m >- 4 is even and n is odd, there is a nice recursion relationship for p(m, n).

The simplest case [33] is

p(4, n)=2p(3, n)-l.

The proof is instructive. Let q(m, n)= 1-p(m, n), the probability of no majority
candidate. Given IxI 4, x has four triples (three-element subsets), at most two of
which can have cyclic majorities. Let a, b be respectively the number of the K (4!)"
profiles with 1, 2 cyclic triples. There are a + 2b instances of cyclic triples in the K
profiles, which divide equally among the four triples. Therefore q(3, n) (a + 2b)/4K.
Now each case of b has no majority candidate in X, and exactly half the a cases have
no majority candidate in X. Thus q(4, n)= (a/2+ b)/K =(a + 2b)/2K, so q(4, n)=
2q(3, n), which is the same as p(4, n)= 2p(3, n)-1.

The recursion for rn 6 and n odd is

p(6, n) 3p(5, n) 5p(3, n) + 3,

and the general case [24] has
m/2

p(m, n)= E c(j, m)p(2j-1, n),
/=1

where c is independent of n. Unfortunately, there is no similar relationship for m odd.
The situation for a large number of voters is interesting. Guilbaud [28] observed

that, with p(m) lim,_. p(m, n),

3 3 sin_l() .__0.91226p(3) 4+27r
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and Niemi and Weisberg [37] noted that p(m) equals m times the (m- 1)-dimensional
normal positive orthant probability with all correlations equal to 1/2. The best approxima-
tion for p(m) presently known [25] is

9.33
p(m) "---+(0.63)m-3)/2,

m+9.53

which is accurate within one-half of one per cent for odd m < 50.
Several comparative results have been obtained along with the exact and approxi-

mate numerical results. Among other things, Kelly [30] proved that

p*(m, n + 1) > p*(m, n) for m _>- 3 and odd n -> 3

p*(m, n + 1) < p*(m, n) for m >= 3 and even n -> 3,

where p*(m, n) is the probability (proportion of profiles) that a profile has a nonstrict
majority candidate, i.e., an x X such that x >-4Y for all y X. The inequality reversal
is caused by majority ties when n is even. Fishburn, Gehrlein, and Maskin [22] showed
that

p(3, n)>p(3, n+2) for oddn=>l,

p(3, n) < p(3, n + 2) for even n _-> 2,

p*(3, n) > p*(3, n + 2) for all large even n.

Again, ties cause the reversal in the last two lines. They also showed that

p(m, 3) > p(m + 1, 3) for all m _-> 2.

The extent to which the preceding hold for other m and n remains open.
Another open problem, that involves correlations among orders, considers the

special case of m n. Let p’(m, m) be the probability (under uniform choices) that
there is a majority candidate, given that the ith voter has the ith candidate from an
ordered set of m candidates ranked first (i=1,... ,m). Note that p(2,2)=1/2,
p’(2, 2)= 0, p(3, 3)= 17/18=0.944..., and p’(3, 3)=3/4. I conjecture that

p(m, m) > p’(m, m) for all m -> 2.

This seems plausible because the conditioning event for p’ would appear to inhibit the
likelihood of a majority candidate.

4. Ranking paradoxes and impossibility theorems. The majority relation >--4
provides one definition of social preference on X. However, as we know from Con-
dorcet’s phenomenon, >-t need not be an ordering when m >-3, and > could be
any asymmetric relation or partial tournament on X.

Question. Is there any reasonable way of constructing a complete, transitive social
preference relation on X for every profile (>1,"" ", >,) of individual preference
orders on X on the basis of binary comparisons between candidates when m => 3?

According to Arrow’s famous impossibility theorem [1 ], the answer is "no" if by
"reasonable way" we mean that the relation > (with asymmetric part >) for each
profile must satisfy the following conditions for all x, y X and all profiles"

Pareto unanimity: x > y if x > Y for all i;
binary independence: x > yx >-’ y whenever {i: x >y} {i: x >[ y} and

{i: y>ix}={i: y>[x};
no dictator: there is no such that x > y=C,x > y.
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To appreciate the combinatorial insights of Arrow’s theorem, I sketch the proof
for X-{a, b, c}. Assume that > is a complete and transitive relation for every
(> 1,"’, > n) that obeys Pareto unanimity and binary independence. Call nonempty
coalition i c_ {1,. , n} decisive for x over y if x > y whenever x >iY for all e I and
y > ix for all e {1,. , n}\I. We observe that some {i} is decisive for some x over y,
then note that this is a dictator in the sense prohibited by the no-dictator condition.

By Pareto unanimity, {1,..., n} is decisive for x over y for all distinct x and y
in X. It follows that there is a smallest I, say I*, that is decisive on some pair. Assume
for definiteness that I* is decisive for a over b. Fix e I*. We claim I* { i}. Otherwise,
the profile

(c > ia > ib; a > jb > jc for ] I*\{i}; b > c > a otherwise)

has a > b (I* decisive, binary independence), c > a (else I*\{i} is decisive for a over
c, contrary to I* as the smallest decisive I), and b c (else {i} decisive for c over b);
but { b c, c > a, a > b} violates the ordering assumptions on .

Hence {i} is decisive for a over b. Consider a profile that has c>ia > ib and
{c >a, b >a} for all ] i. Then a > b (decisiveness) and c > a (Pareto), hence c > b
(transitivity). Since the relation between c and b for ] is arbitrary, it follows from
binary independence that c> b whenever c>ib. The argument just used can be
reapplied, first with a > ib > ic and (b > jc, b >a) for j i, then for other permutations
on {a, b, c}, to conclude that, for all distinct x and y in X, x > y whenever x > iY. Hence
is a dictator.

Arrow’s monograph introduced a level of mathematics into the theory of elections
that was well beyond anything seen previously in this area. His work has had a profound
effect on subsequent research. One closely-related contribution is the Gibbard [27]-
Satterthwaite [40] impossibility theorem. This says that every "reasonable" method
for electing one of m _-> 3 candidates is manipulable, i.e., there are situations in which
a voter can ensure a personally-preferred outcome by voting contrary to his true
preferences. Many other contributions are discussed in [10], [31], [38], [41], [42].

Arrow’s condition that is violated by positional-scoring procedures and other
methods for constructing social rankings is binary independence. If we insist on binary
independence, reasonable social rankings on X cannot be obtained for all profiles; if
we drop it, curious things can happen.

Here are two paradoxes for the Borda method. Let X={al, a2,’", a,,,} and
suppose that (> 1, ", > n) yields the Borda point-total ranking al > a2 >" > a, with
al first and a, last. Now suppose that a, withdraws, leaving Y-X\{am}, with no
change in the >-ion Y. Recompute Borda point-totals as if am were never present.
Under this recomputation we can get a,-I >’" > ae> al, completely reversing the
part of the original social ranking on Y. If you don’t believe it, consider (m, n) (4, 7)
with

(>1,""", >7)=(cbax, cbax, cbax, baxc, baxc, axcb, axcb).

The second Borda paradox says that there are profiles in which a is the original
Borda winner, but a is a Borda loser (recomputed after deletions from the original
> i) for every Y c X that contains a and at least one other candidate except for one
such Y that has IYI 2. The construction is explained in [13].

Related anomalies for more general positional-scoring rules are discussed in 18],
[39]. Among the questions these results have motivated is: What types of positional-
scoring rules are most likely to retain the winner when one or more losers are removed?

A partial answer is given in [26]. Given any m >= 3, let w (wl,’’ ", w,,) and
v (vl,." ", v,,-1) be nonincreasing real vectors with wl > w,, and v > v,,_. When
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IX[ m, use w to compute a winner when wj points are awarded to voter i’s jth-ranked
candidate, for all and j. When [Y[ m- 1, use v in a similar manner to compute a
winner.

Suppose each of n voters chooses one of the m! total orders on X as his ranking
according to the uniform distribution. Given the winner from X as determined from
w, choose one of the other candidates at random, delete this candidate from the
rankings, and compute a new winner on the basis of v. Let Pro(w, v) be the limit in n
of the probability that the (new) v winner is identical to the (original) w winner.

It is shown in [26] that Pro(w, v) is uniquely maximized by linear w and v, i.e.,
by Borda vectors or positive affine transformations of Borda vectors. The proof uses
Slepian’s theorem [43] that the positive orthant probability for a multivariate normal
distribution with positive correlations increases as the correlations increase, and shows
that the relevant correlation matrix is uniquely maximized when w and v are linear.

A new twist was introduced into the voting literature by Smith [44] and Young
[47] that enabled them to give nice axiomatizations of positional-scoring rules. Their
idea was to fix m but let n vary over all positive integers. Young’s formulation goes
as follows. Fix m _-> 2, let T be the set of m! total orders on X, and let

H ={Tr: T{0, 1,2,." .}: 7r(z) > 0 for some T}.

Each 7r is a summary profile that tells how many voters, rr(r), have each order r in
T, so n(rr) Y 7r(r) _>- 1. Given H, a social choice function is a mapping C :H - 2x\{}that assigns a nonempty subset C(rr) of X, called the choice set, to each summary
profile rr. The crucial condition on C that makes use of the variable-n feature is

consistency: C( Tr) f’l C( zr’) =:> C( zr + r’) C( Tr) f-I C( Tr’).

This says that if two disjoint voting groups of sizes n(zr) and n(zr’) have at least one
candidate in common in their choice sets, then the choice set of the combined group
of size n(zr+ zr’)-n(r)+ n(zr’) shall consist of the common choices of the initial
groups. Another condition used by Young is the following generalization of duality:

neutrality: if r is a permutation on {1,..., m} that maps zr into zr in the
natural way, then C(Tr) tr(C(zr)).

These two conditions, along with versions of continuity and monotonicity, imply
that there is a positional-scoring vector w=(wl,"’, win) of the type noted above
that determines C(zr) for all 7r II by maximum point totals. However, consistency
and neutrality alone have interesting consequences. In particular, let W be the set of
all w ,-1 (w, 0 is understood), define the lexicographic order > c on real vectors
in the usual way as (al,. , a/) > c (bl,. , b/() if a # b and ak > bk for the smallest
k where ak bk, and let 7r[x] for each 7r e H and x e X be the vector in m--1 whose
]th component is the number of orders (voters) in 7r that rank x in jth place. Then
consistency and neutrality imply that there are w1, w/ e W with K < m- 1 such
that, for all x e X and all zr e H,

xe C(zr)C:>(w" r[y], w:’Tr[y])>(wl.zr[x], w:. r[x]) forno yeX.

Young’s proof of this lexicographic maximum characterization involves a complex
separation argument with embedded convex cones that raises the question of whether
a simpler proof is possible. Such a proof would appear to hinge on the question of
whether there is a relatively simple combinatorial proof of

(*) 7fix] 7r[y]=C,{x, y e C(Tr) or x, y X\C(Tr)},
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which is an obvious consequence of Young’s theorem. Given (,), the lexicographic
representation follows easily from the separation lemma which says that if A, B Rn,
A , and the convex cone in Rn generated by A t_J B does not intersect the negative
of the convex cone generated by A, then there is a w R such that w.a >= 0 for all
a A t_J B and w.a > 0 for some a A. Our attempts to find a simple proof of (,)
have failed.

5. Approval voting: power in simplicity. Approval voting, a topic of compara-
tively recent research [4], [5], [46], offers a practicable alternative to the widespread
plurality and plurality-with-runoff methods. Each voter votes for a nonranked subset
of candidates; the candidate with the most votes wins. Although this restricts voters’
expressions of preference or approval to a simple form (unlike Borda’s method, which
he proposed as an alternative to plurality voting), it offers considerably more leeway
than the vote-for-one method.

There are severe problem with the plurality methods that are not shared by
approval voting. The most acute for ordinary plurality are the wasted-vote phenomenon
(when a voter’s favorite has little chance of winning) and division of votes between
ideologically similar candidates that allows an overall weaker candidate to win. These
are less severe when a runoff election is held between the top two candidates, but the
runoff provision introduces problems of its own that involve strategic maneuvers on
the first ballot and violations of monotonicity. To illustrate the latter, suppose 27
voters divide as follows when X {a, b, c}:

preference order: abc cab bca bac cba acb
number of voters: 6 6 6 4 2 3

Under plurality-with-runoff, a and b go on to the runoff, where a beats b by 15 to
12. Now suppose that some of the voters change their orders in favor of the winner
a by moving a toward the first position. In particular, suppose three of the four bac
voters change to abc and the two cba voters change to cab. Then a and c go onto
the runoff, where c beats a by 14 to 13. Hence plurality-with-runoff makes it possible
for a potential winner to become a loser as he gains the approval of more voters.

An axiomatic characterization of approval voting [16] is quite similar to Young’s
axioms discussed in the preceding section. Here, let II be the set of all zr:2X
{0, 1,2,...} that have or(A) > 0 for some AX, and let 7r[x] =Y {zr(A): xA}, the
number of voters whose ballots contain x. A choice function C :II- 2x\{} is the
approval voting function if

C(zr)={xeX: zr[x]-> zr[y] for all yeX}.

Unlike the situation for (*), a fairly straightforward combinatorial proof shows that
C is the approval voting function if and only if it satisfies the following conditions for
all zr, 7r’ e II, all permutations r on X, and all A, B c_ X:

consistency: C(7r) fq C(7r’) f C 7r + 7r’) C(7r) 71 C (rr’);
neutrality: C(r(Tr)) r(C(r));
disjoint equality C(Tr)=A t_J B ifAfqB =, 7r(A) r(B)= 1,and 7r(C) 0

otherwise.

The final condition distinguishes approval voting from other scoring procedures
based on the present definition of II.

Much of the research in approval voting has centered on questions of voter strategy.
A strategy is any subset of X. Given a weak (ties allowed) preference order on X for
a voter, strategy A dominates strategy B for this voter if for every possible profile of
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votes by other voters he prefers the outcome (C set) that obtains when he uses A as
much as the outcome that obtains when he uses B, and strictly prefers the A-outcome
to the B-outcome in at least one case. Call A admissible if it is not dominated by
another strategy.

Although the definition of dominance involves preference between subsets (C
sets), it turns out that it has a simple characterization if two basic assumptions are
made about the relationship between preference between candidates and preference
between subsets of candidates. First, if x > iY, then {x} > i{x, y} and {x, y} > i{Y}. Second,
if A 12 B and B U C are not empty and x y for all (x, y)
(A B) U (A C) U (B C), then A U BiBUC. Order topologies can then be used
to talk about dominance under these assumptions. Given the voter’s weak preference
order i on X with symmetric part > i, the high topology is

={Ac__X: yAandx>y=xeA},

and its complement, the low topology, is

={A c__ X: x e A and x> iy=C,ye A}.

Brams and Fishburn [4] prove that if >i#, then

A dominates BCA\B gg\{X}, B\A \{X} and A B.

Given H {X: y > ix for no y} and L {x: x > y for no y}, they also show that A is
admissible under approval voting if and only if H c__ A and A (q L . Thus if the
voter’s weak (parentheses denote ties) preference order on five candidates is (ab)(cd)e,
then his admissible strategies are {a, b}, {a, b, c}, {a, b, d}, and {a, b, c, d}. Under
plurality voting, similar definitions and analyses show that x is admissible if and only
if xC_L.

One consequence of this analysis is that if approval voting is used and if every
voter has dichotomous preferences (divides X into two subsets, within each of which
he is indifferent) and votes his (unique) admissible strategy, then the choice set C will
equal the set of all nonstrict Condorcet candidates. Another consequence is that if a
voter has dichotomous or trichotomous (divides X into three subsets... preferences
and uses an admissible strategy, then he votes sincerely in the sense that if he votes
for x then he also votes for all candidates he prefers to x. Not only is approval voting
superior to plurality voting in these respects, but it has advantages over every other
nonranked single-ballot method--such as "vote for exactly two" and "vote for no
more than three"--that counts votes in a similar way.

Because approval voting allows voters to vote for different numbers of candidates,
it might seem less equitable than plurality voting. This is true in one sense but not in
another. If there are four or more candidates, then voters who vote for about half of
X have somewhat greater chances of influencing the outcome than voters who vote
for only one or all but one candidate. On the other hand, as shown in [20], [46],
plurality voting is significantly worse than approval voting in terms of expected utility
gains to voters, and it causes greater disparities among voters’ expected gains than
does approval voting.

Concerns have been raised about approval voting that call for further research.
In particular, what effects will approval voting have on:

(a) voter interest and turnout;
(b) campaign strategies and positions taken by candidates on important issues;
(c) the numbers of candidates who run for election;
(d) party structures?
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Each concern has positive and negative possibilities. Well thought out models may
help to evaluate the likelihoods of different effects, but in the final analysis only the
use of approval voting in actual elections will tell the tale.

6. l-Iow to slice an expanding cake fairly. Proportional representation in legis-
latures has been promoted by several means, including multiple-member districts,
at-large seats, and the addition of a fixed number of seats to those won in districts
that are allocated on the basis of party vote proportions. My aim in this section is to
discuss a proposal for moving toward proportional representation by the addition of
a variable number of seats to those won in single-member districts that depends on
the numbers of districts won by the parties and their overall vote proportions. Like
Balinski and Young’s study [2] of fair apportionment--e.g., allocation of seats in the
United States House of Representatives to states based on population proportions
integer numbers of seats must be taken into account, but unlike their approach the
size of the legislature is not fixed. I shall suggest a complete solution only for the
two-party case. Good solutions for the N-party case remain an open issue.

Let M be the number of legislative districts, and let N be the number of political
parties, indexed by from 1 to N. In district elections, a voter votes for candidates
and for a party. One candidate in each district is elected to the legislature. The district
elections data are summarized by

si number of districts won by party i,

pi proportion of party vote for party i,

with S -[-" -[- SN M and Pl W" d- PN 1.
The base of the legislature is (Sl,. ", SN). Party is underrepresented in the base

if s/M < p and is overrepresented if s/M > p. Seats are added to the base (e.g., to
losers in districts with the most votes among losers of their party) to form an augmented
legislature (s*,..., s) with

si-<_s*<_-M fori=l,...,N.

Let M*-Sl* +’" / s* be the size of the augmented legislature. Then s.*,/M* is the
proportion of seats held by party i. The aim of proportional representation is to make
s*i/M* approximately equal to p for each i.

The basic question is how best to determine the s*. Since many considerations
impinge on the answer, there may be no best way, but clearly some methods can be
judged to be better than others.

Brams and Fishburn [6] form one answer for N 2 that is governed by rules for
augmentation designed to keep the increase M*-M manageable, to honor the single-
member district concept, to be fair to parties who win in the districts, to discourage
strategic maneuvers by parties and voters, and to encourage parties to do as well as
they can in every district. Their proposal is to add as many seats to the underrepresented
party as possible without violating the.rules for augmentation, except perhaps when
the underrepresented party wins a majority of the party vote. This exceptional (and
unlikely) case raises delicate political issues that are addressed in the paper but will
not be discussed here.

We use three augmentation rules for N 2:
RULE 1. Seats are added only to the underrepresented party.
RULE 2. The overrepresented party’s seat proportion in the augmented legislature

shall not be less than its p.
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RULE 3. The underrepresented party cannot achieve a greater seat proportion in the
augmented legislature by losing in more districts, given the same (Pl, P2) in both cases.

To illustrate the effects of these rules, suppose M 8 and (pl, P2)= (0.2, 0.8).
Situation 1. (Sl, s2) (1, 7). Since Sl/M < p, party 1 qualifies for additions under

Rule 1. However, since (Sl + 1)/(M+ 1)=2/9> Pl, Rule 2 prevents any additions.
Situation 2. (s, s2)- (0, 8). Now Rules 1 and 2 allow two seats to be added to

party 1 since (Sl + 2)/(M + 2) Pl, or s2/(M + 2) 0.8 P2. However, this would give
party 1 a greater seat proportion than if it had won one district (Situation 1), violating
Rule 3. Therefore, Rule 3 limits the addition to one seat when party 1 wins no district.

The effect of Rule 3 just illustrated accumulates as we work backwards from the
most to the fewest districts that the underrepresented party could win with a fixed Pi,
and severely limits the ability to achieve approximate proportional representation in
some cases. To be more precise, let p denote the pi of the underrepresented party,
and assume that 0 < p < 1/2. Also let

integer part of pM,

ao=integer part of (pM-t)/(1-p)=O or 1.

Suppose the maximum additions are made to the underrepresented party under Rules
1, 2 and 3. Then, regardless of how many districts it wins, it gets + ao seats in the
augmented legislature. Note that this does not mean that it will have no incentive to
win districts as well as party votes since its seat proportion in the augmented legislature
increases if it wins more districts.

To illustrate this result, suppose M- 100 and p 0.493. Then 40, ao =0, and
therefore the underrepresented party gets 40 seats altogether. If it wins in no district,
its seat proportion is 40/140 0.286; if it wins 20 districts, the proportion increases
to 40/120=0.333; with 40 wins, its proportion is 0.40. In general, we estimate that
the increase to M in the two-party case will seldom exceed 20%.

Although the N-party case for N-> 3 is not ignored in [6], it is dealt with
constructively only for situations in which there is one overrepresented party and a
number of smaller, underrepresented parties. Extensions of Rules 1 through 3 are
discussed along with other rules that are relevant only when N _-> 3. The impression is
given that these rules, taken together, are too restrictive to allow reasonable moves
toward greater proportional representation. The most suitable relaxations to accommo-
date the latter goal are open to further investigation.
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COMPUTING LOGARITHMS IN FINITE FIELDS
OF CHARACTERISTIC TWO*

I. F. BLAKES,, R. FUJI-HARA, R. C. MULLINt AND S. A. VANSTONE$

Abstract. A simple algorithm to find logarithms in a finite field of characteristic two is described. It
uses the Euclidean algorithm for polynomials in attempting to reduce an element to a product of factors
all of whose logarithms are stored in a database. The algorithm, which is similar to one of Adleman, has a
random runtime and constant storage requirements. It is analyzed and problems associated with the
construction of the database are considered. The aim of the work is to show that the algorithm is feasible
for the field with 2127 elements on which several proposed public key distribution systems have been based.
For such application it is felt that the discrete logarithm is still a viable technique for sufficiently large fields.
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1. Introduction. Let a be a primitive element in a finite field with q elements,
GF(q). For a positive integer j, O<=j<=q-2, the determination of a is a simple
computation requiring on the order of loga (j) operations. The inverse problem, where
the element/3 a is given and the objective is to determine the exponent j appears
to be much harder and is referred to as the discrete logarithm problem to the base a.
Two cases of particular interest have arisen in the literature and applications, where
the size of the field is either p, a large prime, or of the form 2n. Only the latter case
is of interest in this paper and it will be assumed that elements are represented as
binary n-tuples with respect to the basis {1, a, a2, a "-} where a is a root of the
primitive polynomial f(x).

The problem of finding logarithms in finite fields finds application in several areas.
For example, linear feedback shift registers are widely used in communications and
the problem of determining the number of clock cycles between two given states of
the shift register is easily shown to be equivalent to finding logarithms in the appropriate
finite field. The application of interest here is to a public key distribution system,
proposed by Diffie and Hellman [1], which can be described as follows. Two parties
A and B use a cryptographic system which requires a common key. A chooses a
random integer a and transmits a while B chooses a random integer b and transmits

ba. Both parties compute aab which is then used as the common key for some
encipherment system. A tapper on the channel has a and a b available and it appears
that it must be able to compute a or b, i.e. find logarithms, in order to compromise
the security of the system. While the most popular use of discrete logarithms and
exponentiation appears to be in the key distribution problem for encipherment systems,
it finds many other uses. It can be used as an encipherment system itself, although it
is often regarded as being too slow for such an application. It also finds use in
authentication and verification schemes.

Another public key distribution system which has been widely discussed in the
literature is the RSA scheme [2] which depends for its cryptographic strength on the
difficulty in factoring large integers. Some comments will be given on the utility of the
two systems later in the paper.
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From an implementation point of view it is felt there may be advantages in using
fields of characteristic two and this will be the case considered in this paper. It has
been observed [3] that, for an arbitrary finite field GF(q), when q 1 is highly composite
and the size of the largest factor is "small", the complexity of finding logarithms is
greatly reduced. Some comments on this event will be given later in the paper. To
avoid this possibility, our concern will be focussed on those values of n for which
2n- 1 is prime (i.e. a Mersenne prime), and the first few interesting values of n for
which this occurs are 31, 61, 89, 107, 127, 521,607, 1279, 2203 and 2281.

The algorithm for determining discrete logarithms is described in the next section
and techniques used for constructing a certain database which the algorithm requires
are given in 3. These techniques have been successfully applied to the cases n 31
and 61 which correspond to primes 2n-1 of the order 2.1109 and 2.310TM

respectively. It is currently being applied to n 127 which gives a prime of the order
1.7 1038. Our purpose in this paper is to establish the feasibility of the algorithm for
n- 127 and to examine the problems associated with implementing the algorithm for
this value and the properties and characteristics of the implementation. Section 4
considers briefly some associated problems.

2. The algorithm. The algorithm described here is, except for one important step,
similar to one proposed by Adleman [4]. It is very simple in concept and most of the
paper is concerned with the analysis and implementation details of it. A comparison
with the Adleman algorithm will be given later in the section. Unless specified otherwise
the field in use will be GF(2") where 2"- 1 is prime. Elements of the field will be
viewed equivalently as powers of a primitive element a (a root of a primitive polynomial
f(x)), binary n-tuples with respect to the basis {1, a, a2, a "-1} and binary poly-
nomials of degree at most (n- 1).

The algorithm makes use of the Euclidean algorithm for polynomials and some
preliminary properties of it are first noted. A convenient reference for the material
needed is McEliece [5] who presents a continued fraction version of the algorithm.

Let a(x) and b(x) be two binary polynomials and (a(x), b(x)) their greatest
common divisor. Then there exist two polynomials s(x) and t(x) such that

s(x)a(x) + t(x)b(x) (a(x), b(x)).

The polynomials s(x) and t(x) can be determined by the following recursion relation-
ships: for the initial conditions

S-l(x)=l, t-l(x)=O, r_l(x)=a(x),

define
So(X) O, to(X) 1, ro(x) b(x),

ri(x) ri-2(x)-qi(x)ri-a(X),

Si(X) Si-2(x)--qi(x)Si-l(X),

ti(x) ti-z(x)-q(x)t_a(x).

The following properties are easily established by induction:

s(x)a(x)+ t(x)b(x)= ri(x), i-l,

deg si(x) +deg r_l(X)=deg b(x),

deg t(x) +deg r-a(x)=deg a(x), i=>O,

deg t (x) + deg ri (x) < deg a (x).
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The degrees of the remainder polynomials r(x) are strictly decreasing and if r,(x) is
the last nonzero one it is (a(x), b(x)). From the first relationship above it is observed
that

ti(x)b(x) ri(x) mod (a(x)).

Using the above properties and observations the following lemma is readily established.
LEMMA [5]. Let and k be nonnegative integers with k >_-deg (a(x), b(x)), l+ k

deg(a(x))-l. Then there exists a unique integer j such that deg(tj(x))<-I and
deg(rj(x))<=k.

This result is applied to elements of GF(2"), generated by a root of f(x), as
follows. Let g(x) be an arbitrary element of GF(2"), degg(x)>(n-1)/2, whose
logarithm is required. By the lemma there exists two polynomials r(x), t(x),
deg (r(x)) <-_ (n- 1)/2, deg (t(x)) <- (n- 1)/2 such that

t(x)g(x) =- r(x) mod f(x),

where f(x) and g(x) are identified respectively with a(x) and b(x). It follows that if
the logarithms of the lower degree polynomials r(x) and t(x) can be found then

log g(x) log r(x)-log t(x).

Since the probability is high that a randomly chosen element of GF(2") will be of
large degree, this step, which reduces the problem to finding logarithms of two
polynomials, each of degree at most n 1) ! 2, turns out to be crucial in the implementa-
tion of the algorithm. At another step of the algorithm the polynomials have to be
factored and a further saving is realized by factoring two relatively low degree poly-
nomials rather than one high degree one.

It will be assumed that a database D is available which contains the logarithms
of all irreducible polynomials of degree at most b. These correspond to the "smooth"
elements in [4]. The choice of the integer b will be discussed later in the section and
techniques useful in constructing D will be given in the next section. The aim of the
sequel will be to establish the feasibility of constructing the database of GF(227) and
the performance of the algorithm given that D is available.

THE ALGORITHM. The logarithm of g(x) is required.
0. SetAto0.
1. If deg (g(x))<= b then find log g(x) in D and go to 4.
2. If deg (g(x)) > b then apply the Euclidean algorithm to g(x) and f(x) to obtain

t(x), r(x), t(x)g(x) =- r(x) mod (f(x)), deg t(x), deg r(x) <- (n-1)/2.
3. Factor t(x) l-li pa’(x), r(x) I-I pJ(x). If deg pi(x) <- b, deg p(x) <-_ b, Vi, ] then

compute from the database log g(x)=Y e. log pj(x)- di log p(x)-A and
go to 4. Otherwise generate a random integer a, set g(x) to xag(x), A to A + a
and go to 1.

4. End.

To begin the analysis of the algorithm we give a recursive technique for computing
the probability that a randomly chosen polynomial of degree at most rn has all of its
irreducible factors of degree at most k. Let Ne(m, k) denote the number of monic
polynomials over GF(q) of degree at most m whose largest (highest degree) irreducible
factors are of degree exactly k, for m_->0, k->_ 1. Similarly let N(m, k) denote the
number of monic polynomials over GF(q) of degree at most m whose largest irreducible
factors have degree at most k, including the zero polynomial. By convention let

Ne(m, O) Nt(m, O) l, m>0,
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and notice that

and

Nt(m, k) q "+1, k>m>0=

Ne(m,k)=O, k>m>0,

while Ne(m, m) denotes the number of irreducible polynomials of degree m over
GF(q) for m => 1 (see [6])

Ne(m, m)=1 y tx(m/d)qd

m dim

where /x(.) is the MGbius inversion function. For m_-> k + 1 we have the recursion
relation

k

N(m,k)= Y N(m,r)=N(m,k)+Nt(m,k-1),
r=O

and for m_->k+l_->l

N(m,k)=

and for m ->_ 1,

N(m, m) Nt(m, m)-Nt(m, m- 1).

Taken together, we can use these recursion relations to compute N(m, k). Dividing
this quantity by the total number of polynomials of degree at most m yields the
probability that a randomly chosen polynomial of degree at most m has all of its
irreducible factors of degree at most k, a quantity we denote by p(m, k).

In GF(2n) the probability that a randomly chosen binary polynomial of degree
at most n- 1 yields, by the Euclidean algorithm, two polynomials of degree at most
(n-1)/2, each of which factors into irreducible polynomials of degrees at most k, is
approximately pZ(((n- 1)/2), k). It is an approximation since it has been assumed the
two polynomials resulting from the Euclidean algorithm are independently chosen,
which appears to be a reasonable assumption for this analysis. The expected number
of iterations of the algorithm to obtain a pair of polynomials, all of whose irreducible
factors are of degree at most k, is (pZ((n-1)/2, k))-1. To construct the database one
might argue as follows. If a polynomial is generated in some random manner but in
a way such that its logarithm is known, then with probability pZ((n-1)/2, k) all of
the irreducible factors of the two polynomials resulting from applying the Euclidean
algorithm to this polynomial will be of degree at most k. If the factors are indeed of
degree at most k then an equation results relating the logarithm of a known quantity
with those of irreducible polynomials of degree at most k. If it is desired to find the
logarithms of all Nb irreducible polynomials of degree at most b, the expected number
of equations one would have to examine in order to obtain a sufficient number of
equations to permit construction of the database, assuming all such equations are
linearly independent, would be Nb/pZ((n 1)/2, b). It is this rough measure of com-
plexity, together with the magnitude of pZ((n-1)/2, b), that will be used to determine
the size of the database. The quantities Nb, pZ((n-1)/2, b) and Nb/pZ((n 1)/2, b)
are shown in the appropriate columns of Tables 1 and 2 for n 61 and 127 respectively.
The algorithm described in this paper is referred to as the new algorithm.
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TABLE
Probability and expected number of runs for the new and Adleman algorithm, n 61.

Total no. of
Degree irred, polys Probability

New algorithm Adleman algorithm
Expected no. Expected no.
of runs Probability of runs

2 2
3 4
4 7
5 13
6 22
7 40
8 70
9 126
10 225
11 411
12 746
13 1376
14 2537
15 4719
16 8799
17 16509
18 31041
19 58635
20 111012
21 210870
22 401427
23 766149
24 1465019
25 2807195
26 5387990
27 10358998
28 19945393
29 38458183
30 74248450

5.33462163E-14 1.87454719E+13 8.20090524E-16 1.21937758E+15
1.76871018E-12 1.13076751E+12 8.81933415E-15 2.2677449E+14
1.42920165E-10 2.79876531E+10 2.4088587E-13 1.66053741E+13
6.35613994E-09 1.10129734E+09 6.16697535E-12 1.13507832E+12
3.22381391E-07 40324908.2
5.33811982E-06 4121301.27
6.74428582E-05 593094.674
4.2333643E-04 165353.121
1.86019133E-03 67734.9679
5.77168417E-03 38983.4221

2.87534365E-10 4.52119871E+10
6.49386181E-09 3.38781462E+09
1.45140186E-07 275595623
1.6240426E-06 43102317.6
1.2624515E-05 9980581.43
6.39169698E-05 3520191.91

.0144081649 28525.4925 2.48450225E-04 1654254.89

.0293335145 25431.6611 7.38423665E-04 1010260.15

.0528409512 26040.4094 1.84778808E-03 744674.141

.085727823 29593.6595 3.94471792E-03 643138.509

.128359867 36763.8274 7.51093409E-03 628284.038

.176843304 49755.9127 .0129724298 678284.649

.229773022 71849.166 .0207338898 796232.649

.285984158 108540.977 .0310329059 1000260.82

.345031001 169941.251 .0441310341 1328656.83

.40617628 273309.904 .0601228451 1846419.61

.469073093 449546.143 .0789028551 2672526.87

.533239803 752807.645 .100132689 4008950.56

.598365862 1280402.26 .12355915 6200665.83

.664015691 2206301.78 .148935705 9836586.87

.729737155 3846857.71 .176080582 15942672.2

.794775116 6779263.58 .204816723 26306396.9

.857890338 12074967.6 .235001922 44080482

.916752227 21756579.8 .266478225 74848115.6

.966945476 39772855.8 .299022554 128612984

.999999999 74248450.1 .332077077 223588002

Choosing the database by the criterion discussed above, then for n 61 the 746
logarithms of all irreducible polynomials of degree at most 12 should be stored. Of
course, storing more logarithms will improve the efficiency of the algorithm but will
require more effort to construct the database. Independent equations relating the
logarithms of the 225 irreducible polynomials of degree at most 10 were found, by
techniques described in the next section, and solved. The algorithm itself was then run
with b 10 to build the database up to b 12, i.e. to find the logarithms of the
irreducible polynomials of degrees 11 and 12. Five hundred randomly chosen poly-
nomials of degree at most 60 were run with the algorithm with this database and the
distribution of the number of polynomials requiring a given number of iterations is
shown in Table 3. The average number of iterations of the algorithm was 56.0 with
an average runtime on a VAX 11/780 of under 5 seconds to determine a logarithm.

For n 127 the optimal value of b, for the database, would be 20. This would
require the determination and storing of 111,012 logarithms. It was felt that b= 17,
requiring 16,509 logarithms would not significantly degrade performance while making
the task considerably simpler. As with n 61, the initial approach taken to construct
this database was to find the 746 logarithms of polynomials of degree at most 12.
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TABLE 2
Probability and expected number of runs for the new and Adleman algorithm, n 127.

New algorithm Adleman algorithm
Total no. of Expected no. Expected no.

Degree irred, polys Probability of runs Probability of runs

2 2
3 4
4 7
5 13
6 22
7 40
8 70
9 126
10 225
11 411
12 746
13 1376
14 2537
15 4719
16 8799
17 16509
18 31041
19 58635
20 111012
21 210870
22 401427
23 766149
24 1465019
25 2807195
26 5387990
27 10358998
28 19945393
29 38458183
30 74248450

1.27141469E-32 7.8652544E+31 0.47772090E-34 0.20932720E+35
1.61023467E-30 1.24205499E+30 0.10391370E-32 0.19246730E+34
1.42003032E-27 2.81684126E+27 0.10686600E-30 0.37430020E+32
1.15313844E-24 6.07038995E+24 0.16022050E-28 0.43689770E+30
3.46321796E-21 3.75373429E+21 0.12806100E-25 0.10151400E+28
2.43083741E-18 9.05037906E+ 18 0.60489980E-23 0.36369650E+25
1.75009226E-15 2.28559379E+16 0.58661830E-20 0.68187380E+22
2.99279106E-13 2.33895379E+ 14 0.20402690E-17 0.34309190E+20
2.39477444E-11 5.26145586E+ 12 0.40463370E-15 0.31139250E+ 18
7.73424039E-10 2.90914154E+11 0.31781350E-13 0.70796220E+ 16
1.42517804E-08 2.88385022E+10 0.13612270E-11 0.30193290E+15
1.48157461E-07 5.03518348E+09 0.29555160E-10 0.25240930E+ 14
1.0660927E-06 1.29069451E+09 0.41129290E-09 0.33455440E+13
5.46899677E-06 463887639
2.19028276E-05 215451634
7.12191038E-05 123548311
1.96662481E-04 83945854.4
4.71015488E-04 65902291.5
1.00764675E-03 58190035.4
1.96260912E-03 56563479.1
3.54177251E-03 59537985.4
5.96621694E-03 67283339.5
9.45338803E-03 81044911.9
.0142135998 103071637
0204564492 137227872
.0283794933 189855046
.0381757153 271350462
.0500248252 398709899
.0640949758 600018684
.0805164802 922152208

0.37461550E-08 0.67722710E+ 12
0.24991280E-07 0.18882570E+ 12
0.12723630E-06 0.69154690E+ 11
0.52428530E-06 0.31488570E+ 11
0.17992970E-05 0.17251720E+ 11
0.53284450E-05 0.11004140E+ 11
0.13895770E-04 0.79888990E+ 10
0.32587350E-04 0.64709140E+ 10
0.69740460E-04 0.57560100E+ 10
0.13806940E-03 0.55490060E+ 10
2.25535770E-03 0.57373450E+ 10
0.44523690E-03 0.63048900E+ 10
0.73751900E-03 0.73054240E+10
0.11680410E-02 0.88686300E+ 10
0.17773340E-02 0.11222780E+ 11
0.26095230E-02 0.14737250E+ 11
0.33185230E-01

TABLE 3
Number of iterations of the algorithm for 500 randomly chosen polynomials, n 61.

Number of
trials 1-2021-4041-6061-80 81-100 101-120 121-140 141-160 161-180 181-200 >200

Number of
polynomials 140 109 81 56 48 22 15 9 7 4 9

Although the probabilities were such that our main algorithm would not contribute
much to this database a combination of various heuristic techniques, including those
discussed in 3, were used to create this database, and using a variety of techniques
this base was extended to cover all polynomials of degree up to and including 17.

To compare this algorithm with the Adleman algorithm [4], a brief description
of that algorithm is given, modified appropriately for fields of characteristic two, the
case of interest here. Let pl(x), p2(x),’", pv,,(x) be all the irreducible polynomials
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of degree at most b over GF(2). Define a polynomial a(x) to be smooth if

N

a(x)= H pi(x)
i=1

and with each such polynomial associate a vector a(x)= (el, e2,""", eNb). Let g(x) be
an arbitrary nonzero element of GF(2n).

Determine positive integers s, sl, , si such that g(x)as,_._a sl, , a ’ are smooth
elements and g(x)a is linearly dependent on a 1, a s2, a s,. Thus

g(x)a= E x’"
i=1

for some positive integers Ii and

logs (g(x)) -s + Y isi.
i=1

The Adleman algorithm, as with the one presented in this paper, requires factoriz-
ation of polynomials and solutions of linear equations over GF(2 1). For a systematic
attack on an encipherment it is likely better to compute the logarithms of all irreducible
polynomials of degree at most b, as advocated in our algorithm, rather than attempt
to find an appropriate set of equations to solve for each element. This is an operational
difference between the two algorithms rather than a philosophical one.

For the Adleman algorithm, a randomly chosen element of GF(2n) will be smooth
with probability p(n- 1, k) and the expected number of iterations of the algorithm is
p(n-1, k)-1. Thus the difference in the two algorithms means for the Adleman
algorithm a polynomial of degree at most n-1 will have to be factored for each
iteration while for the new algorithm each iteration requires a use of the Euclidean
algorithm and the factorization of two polynomials, each of degree at most (n- 1)/2.

For GF(261) the optimal size of the database for the Adleman algorithm in terms
of minimizing the number of random equations which must be considered, is found in
Table 1 and given by b- 15, requiring 4719 logarithms to be stored with an expected
number of iterations of 628,284. This is compared to b-12, 746 logarithms and
25,431 iterations for the new algorithm. The equivalent information in Table 2 for
GF(2127) shows an optimal value of b--23, 766,149 logarithms and 5,549,006 x 103
expected iterations for the Adleman algorithm and b 20, 111,012 logarithms and
56,563,479 expected iterations for the new one. Thus in terms of numbers of iterations
alone the new algorithm is approximately 100 times as efficient as the Adleman
algorithm for n-127 and requires less storage. Since factoring one high degree
polynomial is less efficient than factoring two polynomials of much smaller degree, it
appears that the factor of 100 is conservative although some caution is required in
interpreting this statement.

A brief comment should be made on the factoring algorithm used. It is desired
to find the largest irreducible factor of the given polynomial first, since if its degree
exceeds that chosen for the database that iteration of the algorithm is terminated. For
an arbitrary polynomial g(x) define Sim (g(x)) as the product of all the irreducible
factors of g(x) which occur to the first power. The repeated part of g(x), Rep (g(x))
is then g(x)/Sim (g(x)). It is a relatively simple matter to isolate Sim (g(x)). The
Berlekamp algorithm for polynomial factorization over GF(2) [6] is used and requires
Gaussian elimination on a d x d matrix where d is the degree of g(x). By factoring
Sim (g(x)) first, and using a modification of Berlekamp’s algorithm to extract irreduc-
ible factors of largest degree first, an "early abort" strategy was developed.
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3. Construction of the database. The algorithm described in the previous section
depends critically in the ability to find the logarithms of all irreducible polynomials of
degree less than or equal to some degree b. It appears unlikely at this point that an
algorithm that does not require the construction of some data base will be found and
that for useful field sizes this database will have to be substantial. There is no systematic
construction of the database of interest here, but several techniques which have proven
useful and successful for the fields GF(231) and GF(261) are described.

The underlying idea is to attempt to establish relationships between an element
with a known logarithm and its factors if all of its factors have degree at most b. Such
a relationship gives a linear equation over the integers modulo 2n- 1 and the problem
is to establish a sufficient number of such equations to permit solution.

For an arbitrary nonzero element/3 GF(2n) define the square orbit of/3 as

SO()={2,O<-i<=n-1}.
If the logarithm of any element in SO(fl) is known, the logarithms of all elements in
the set are easily found. In particular, if a is a primitive element and SO(fl) contains
polynomials of low degree we say this field representation exhibits "orbital weakness"
which can be exploited to obtain many equations.

As an example consider a a primitive element of GF(2127) which satisfies the
primitive trinomial f(x) x 127 / x / 1. For i_-> 7

a 2i (a27) 2i-7 (a / a2) 2i-7
--’a

2i--6 /a 2i--7

and by repeated application it is concluded that every element of the form a 2i,
0_-__ i_-< 127 can be expressed as a linear sum of elements in SO(a). Furthermore, since

( + )=(1 +)=
2the logarithm of every element in the span of the set {1, a, az, a a26} is known

and this fact will yield many equations.
The following theorem has also proven useful in assisting with obtaining equations

for the construction of the database.
THEOREM. Let f(x) be an irreducible polynomial of degree n over F GF(q) and

let g(x) be an arbitrary polynomial over GF(q). If re(x) is any divisor of f(g(x)) then
the degree of re(x) is a multiple of n.

Proof. It is sufficient to prove the result for irreducible factors re(x). Let re(x)
be a divisor of h(x)=f(g(x)), K the splitting field of h(x), a a root of re(x) in K
and L the splitting field of re(x). Since m(x)lh(x) we have h(a)=f(g(a)) so that
g(a) lies in the splitting field of f(x), which is R GF(q"). Also g(a) does not lie in
any proper subfield of GF(q) since all zeros of f(x) generate R. Since g(a) lies in
L then R c L and therefore n Idim [L: GF(q)]. Since re(x) is irreducible and L is its
splitting field we have that

deg m(x)=dim[L: GF(q)]

and the result follows.
To illustrate the use of this theorem and the notion of orbital weakness in finding

equations consider GF(2127) generated by the primitive trinomial f(x)= 1 + x + x 127.
The polynomial g(x) 1 + x2 + x5 is irreducible and, since x27 x + x2,

g(x27) g(X / X2) 1 + X
2 / X

4 / X
5 / X

6 / X
9 / X

10

1 + x2 + x3 / X
4 / X5)( 1 + x3 + x5) pl(x)p2(x).
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Now g(x27) g(x)27 and so

27 log g(x) log pl(x) + log p2(x),

which gives a linear equation between the logarithms of three quintics.
Equations generated as in this example are referred to as systematic. The system

of linear equations required to construct the database for GF(2127) cannot be made
up entirely of systematic equations. It seems likely however that a large portion of
them can be systematic and the remaining ones must be found using other methods.
A start was made, for example, in constructing the data base ot GF(2127). There are
226 irreducible polynomials of degree at most 10 and 142 linearly independent
systematic equations were developed for them. There are 126 irreducible polynomials
of degree at most 9 and 90 linearly independent systematic equations were found for
them. As mentioned previously, to increase this initial database to include all poly-
nomials of degree up to 17, a variety of techniques were used. With the probabilities
involved, it was not feasible to use the algorithm itself to build up the database.
Techniques similar to those introduced earlier in the section were applied very effec-
tively here.

In generating new equations it is noted the equations are over GF(2"-1) with
m variables where m is the size ot the database. If independent equations are
available, the probability that a new random equation will be linearly independent is

(2" 1)" (2" 1)’
(2"-1)"

which has a minimum nonzero value of

2"-2
2"-1

when m- 1. Thus as each new equation is found it has a high probability of being
independent of previous equations.

A general conclusion of the experience gained in constructing the databases is
that the problem does not appear to be hard although a systematic and deterministic
approach is not yet available.

4. Other issues. Several questions arose during the course of the work which
have not been well investigated. They are briefly mentioned here.

Much of the available literature on the discrete logarithm implementation of a
public key distribution system assumes the order of the multiplicative group of the
field, q- 1, is a Mersenne prime. It has been shown [3] that when q is prime and q- 1
has a prime factorization with all prime factors small, then it is a fairly simple matter
to determine logarithms. A similar technique is also applicable to fields of interest
here. The question remains however if there is any technique to weaken the security
of the system if 2"-1 has at least one relatively small factor and a very large factor.
Intuitively one might argue the security of the system is determined by the size of the
largest factor, but there has been no serious investigation to determine whether the
existence of small factors compromises it or not. The problem is of some interest
because of the sparseness of Mersenne primes.

Of the finite fields considered in our study GF(231) and GF(22) were generated
by trinomials. This turned out to be quite convenient for our purposes since much of
the experimentation was done by hand. For implementation this would seem to be
relatively unimportant in terms of both speed and complexity. The question arises as
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to whether the choice of a trinomial field generator polynomial has any implications
for the security of the system. Said another way, is it significantly easier to determine
logarithms in a field generated by a trinomial than it is in one generated by any other
polynomial? Our feeling is that the effect of choosing a trinomial will have a negligible
effect on the security of the system, but the question has not been seriously investigated.

5. Comments. An algorithm for the determination of logarithms in a finite field
has been discussed. The interesting aspects of the work pertain to the analysis and
implementation of it. For GF(2127) it was shown that the construction of the database,
while nontrivial, is a feasible task. It is also observed that the probability that a randomly
chosen polynomial in the field has all of its factors in the database is sufficiently (and
surprisingly) high to imply a relatively modest expected number of iterations to
complete the algorithm. Taken together they demonstrate the feasibility of the
algorithm for this field, which was the major aim of the work.

The RSA algorithm for a public key distribution system [2] depends for its security
on the difficulty of factoring large integers. Because of the inherently binary character
of the logarithm problem for fields of characteristic two it is felt there may be
implementation advantages for the discrete logarithm problem over the RSA, in terms
of speed and complexity of hardware required for the same level of security. This
aspect has not been sufficiently well investigated to state with any confidence. It is
noted however that the 127 bits used in GF(2127) corresponds approximately to 38
digits, for which integer factorization algorithms can be quite easily implemented.

Ultimately, confidence in a security system can only be established by its continued
analysis over a long period of time by highly qualified people working with sufficient
resources. This has certainly been true for the RSA system where a successful attack
would imply the existence of an integer factorization algorithm far more efficient than
is presently felt possible. The discrete logarithm problem has not yet withstood such
a test of time.
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EXPLICIT CONCENTRATORS FROM GENERALIZED N-GONS*

R. MICHAEL TANNER?

Abstract. Concentrators are graphs used in the construction of switching networks that exhibit high
connectivity. A technique for establishing the concentration properties of a graph by analysis of its eigenvalues
is given. If the ratio of the subdominant eigenvalue to the dominant eigenvalue is small, the graph is a good
concentrator. Generalized N-gons are very sparse, locally tree-like graphs for which the eigenvalues can
be calculated with relative ease. The eigenvalue ratios for the known N-gons are calculated and show that
the N-gons are excellent concentrators.

1. Introduction. A variety of problems concerned with information transmission
and complexity have shown the importance of constructing graphs that are highly
connected yet sparse. A survey article by Pippenger [12] discusses the complexity of
constructing switching networks. The existence of nonblocking networks requiring only
O(N log N) switches was first proven by Bassalygo and Pinsker [1] using a recursive
construction based on sparse graphs called concentrators. Concentrators are also a
key building block for the construction of a class of graphs called superconcentrators
[15][13] useful in studies of algorithmic complexity [11][8], and they are the basis for
another class of graphs called generalized connectors [13]. In a seemingly unrelated
area, Tanner [14] has shown the importance of concentrator-like bipartite graphs for
the construction of low complexity error-correcting codes.

For the Bassalygo-Pinsker network construction, a sequence of graphs is required
that can be concatenated, connecting the outputs of one graph to the inputs of the
next, to form the entire switching network. Using a counting argument, Bassalygo and
Pinsker proved the existence of the necessary concentrators, but did not give an explicit
construction. Margulis [10] gave the first explicit construction for concentrators, but
his result was deficient in that he could not give an exact value for the expansion
factor. In the language of Gabber and Galil [6], an (n, k, d) expander is a bipartite
graph with n inputs, n outputs and at most kn edges, such that for subset X of inputs
the subset Fx of outputs satisfies IFx -> [1 + d(1 -IXI/n)]lXI, where Fx is the set of
outputs connected to X and I" is the cardinality of the set. Margulis exhibited (n, 5, d)
expanders for n m2, but could only show that d > 0. Gabber and Galil_ gave an
explicit construction for a family of (n, 5, do) expanders with do (2-/3)/4, as well
as a family of (n, 7, 2do) expanders.

In this paper, we provide first a simple lower bound on the concentration level
of an arbitrary bipartite graph. In Gabber and Galil’s terminology, an (n, 0, k, a, c)
bounded strong concentrator (bsc) is a bipartite graph with n inputs, On outputs, and
at most kn edges, such that if X is a set of inputs with [XI-<-an, then [Fxl -> clX]. We
bound c as a function of a in terms of the eigenvalues of the graph. In brief, if the
ratio of the subdominant eigenvalue to the dominant eigenvalue is small, c(a) is large.
Second, we show that a class of graphs derived from finite geometries, called generalized
N-gons, have an eigenvalue ratio that gives a relatively large c. These graphs are
distance regular graphs that form metric association schemes, which permits the
eigenvalues of the adjacency matrix to be determined quite easily. They have the
remarkable property that the girth is exactly twice the diameter, and thus the graph
is locally tree-like. Using the N-gons as expanders, we show that for those values of

* Received by the editors November 18, 1980, and in revised form April 15, 1983.
? Department of Computer and Information Sciences, University of California, Santa Cruz, California
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n and k for which N-gons exist, they are (n, k, d) expanders with much larger values
of d than those of the Gabber and Galil construction.

Unfortunately, the generalized N-gons do not provide a complete solution to the
problem of constructing concentrators for two reasons: First, there do not exist
generalized N-gons for arbitrary parameters n and k. We discuss techniques for pruning
a generalized N-gon to obtain a bsc with a smaller number of input and output nodes.
However, the pruned graphs are no longer distance regular, and the concentration
factor c must be bounded by modification of the bound for the original N-gon. The
modified bound weakens as the pruning becomes more severe. Second, as shown by
Feit and Higman [5], generalized N-gons do not exist for arbitrarily large N. While
the N-gons can be used to build very large bsc’s, they do not provide arbitrarily large
bounded-degree bsc’s.

2. An eigenvalue argument. Consider a bipartite graph G with a set of input
nodes A of size n, a set of output nodes B of size m, edges connecting input nodes to
output nodes. In keeping with the notation of finite geometries, let the degree of each
input node be s+ 1 and that of each output node be r+ 1 n(s+ 1)/m. Let M be the
real valued incidence matrix of the bipartite graph: M [mij], m0- 1 if the ith input
node ai is connected to the jth output node b. and 0 otherwise. Since MMT‘ is a real
symmetric nonnegative definite matrix, it is diagonalizable and has real nonnegative
eigenvalues and orthogonal eigenvectors. Let A A2 ->" => An be the ordered eigen-
values, and el, e2," ’’, en the corresponding orthonormal eigenvectors.

THEOREM 2.1. If A > A2, then G is an (n, m n, s + 1, a, c(a)) bsc with

(s+l)2

[a((s + 1)(r+ 1)- A2) + A2]"

Proof. Let row vector A be the characteristic vector of some set Xa of size
IXAI- n. That is, A =[Ai] with A 1 if the ith input is in XA, 0 otherwise. Thus
AAT ]]A 2= an. Let Yi be the set of output nodes connected to the ith input node,
X. Let YB U{Y" xXA}, and let B be its characteristic vector. Note that if
Yi f’) Y for all xi, x XA, # j, then

AMMTAT an(s+ 1)--AM[l, 1,’", 1] 7

AM= B, and IYBI IIBII 2-- n(s+ ). Any overlap in the Yi will cause AMMT‘AT‘ to
increase, and our strategy is to lower bound [YI by upper bounding AMMT‘AT‘. Let
C AM. By convexity of f(x) x2,

(2.1)

Thus IYl(n(s+l))2/{[CII 2. Expanding A in terms of the eigenvectors, let A=
Yi=l ye. Then AMM’=Yi=I Ai/,ei and IIcIl=-y 2

=1 Aiyi by orthonormality of the
eigenvectors. Since all input nodes have degree s + 1 and all output nodes have degree
r+l, it is easy to prove that__Al=(s+l)(r+l) and, without loss of generality, we
may take el=J1, 1,..., 1]//n. (Clearly this el is an eigenvector with eigenvalue
(s + 1)(r + 1). Any other Ai <= (s + 1)(r + 1 ), as can be seen by considering the equations
satisfied by the eigenvector component with largest absolute value [2, p. 14].) This
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implies immediately that 3’1 Ae( a/n. Thus

=2 i=2

(2.2) _<-,,c=n+,= ,,2. =cn(,l-X)+,llAll
i=2

<= a2n((s+ 1)(r+ 1)- A2) + A2an.

Therefore, the concentration c(a) satisfies

(2.3)
c(a)=lYl/IXAl>--a=n (S+I)2

a2n2[a((s + 1)(r+ 1)- A2) + A2]

(S+I)2

[a((s + 1)(r+ 1)- A2) + A2]"

3. Generalized polygons. The generalized polygons [4] are incidence structures
consisting of points and lines; for our purposes we can restrict our attention to those
in which every point is incident on s + 1 lines and every line is incident on r + 1 points,
for some positive integers s and r. By identifying points with input nodes and lines
with output nodes, a generalized N-gon defines a bipartite graph G that satisfies the
following conditions:

(1) For all nodes u, v G, d(u, v) =< N, where d(u, v) is the length of the minimum
path connecting u and v.

(2) If d(u; v)= h < N, then there is a unique path of length h joining u and v.
(3) Given a node ueG there exists a node veG such that d(u, v)=N.
When s r 1, the graph is the standard N-gon. Note that (2) implies that every

cycle of even length has length at least 2N; since every cycle in a bipartite graph must
be even, the girth of the N-gon is at least 2N.

These conditions ensure that the graph forms a metric association scheme [9].
Moreover, the set of input nodes alone form an association scheme with nodes u and
v in the ith relation whenever d(u, v)= 2i. Consequently, the eigenvalues of MMT

can be determined for a generalized N-gon by finding the eigenvalues of an associated
IN/2] + 1) x IN/2] + 1) matrix. Alternatively, and equivalently,MMT (s+ 1)I + D,

where (D),v 1 if d(u, v)=2 and 0 otherwise. The matrix D can be used as the
adjacency of a distance regular graph with the input nodes as its node set. As shown
in [2, pp.140-142], the distinct eigenvalues of D are the same as those of an intersection
matrix P whose (i, j)th entry, Pij, 0 i, j <= IN2J is the number of nodes w that satisfy
d(u, w)= 2 and d(u, v)= 2i, for any pair of u, v, with d(u, v)= 2j.

The meaning of the intersection matrix is clarified by considering the form of a
possible eigenvector for the graph defined by D. Starting from an arbitrary node in
the graph, let E be a vector for which all components corresponding to nodes at
distance in the graph have the same value, xi, i=0,..., [N/2J. Let X be the
([N/2J + 1)-dimensional vector with components xi. The matrix P defines the set of
equations that must be satisfied by X in order to make E an eigenvector of D; that
is, X is an eigenvector of P implies E is an eigenvector of D. The matrix entry Pu is
the number of edges connecting a node with value xi to any other node with value xj.

The P matrices of the generalized N-gons for N 3, 4, 6, and 8 are given in Fig.
1, along with the corresponding eigenvalues of P and the N-gon. Of course, one can
readily verify a given eigenvalue A by checking that the matrix P-AI is singular. The
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3-gons

P eigenvalues: s(s + 1),
3-gon eigenvalues" (s + 1)(s + 1),

[0 ]s(s+ 1) s(s+l)-

4-gons

0 0

(s+l)r r-1 s+l

0 sr (s+ 1)(r- 1)

P eigenvalues: r(s + 1), r- 1, -(s + 1)
4-gon eigenvalues: (s+ 1)(r+ 1), s+ r, 0

6-gons

0 0 0

)1s+l)r r-1 0

0 sr r-1 s+l

0 0 sr (s+ 1)(r-

P eigenvalues" (s+ 1)r, r- +x/rs, r- 1-x/__s, 0
6-gon eigenvalues: (s+ 1)(r+ 1), r+ s+x/rs, r+ s-x/rs, 0

8-gons

0 0 0 0

+l)r r-1 0 0

0 sr r-- 0

0 0 sr r-1 s+l

0 0 0 sr (s+l)(r-1

P eigenvalues: (s+ 1)r, r- +/2rs, r- 1, r- 1-/2rs, 0
8-gon eigenvalues: (s + 1)(r + 1), + + /2rs, + s, + s -/2rs, 0

FIG. 1. P matrices and eigenvalues of the N-gons.

eigenvalues can be deduced from the roots of the characteristic equations provided
by [5] (e.g., [5, p.122], the value given for 0).

The concentration c(a) derived in 2 can be rewritten

c()_->
(s+l) m

(r+ 1)(a +p(1- a)) n(a +p(1- a))

with p t2/(s-4r-1)(r+ 1). Clearly, for all the generalized N-gons, p can be made as
small as desired by choosing s and r sufficiently large, thus permitting c(a) to be as
large as m/ na ).

In Table 1 we list the parameters of all currently known generalized N-gons [7]
withs>l and t>l.

As an example, take s r 7 in a 6-gon. The graph has (76-1)/(7-1) input
nodes and the same number of output nodes. The eigenvalues ratio is p 21/64, and
the concentration satisfies c(a) >-_ 64/(43a + 21) for 0<_- a -< 1.
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TA Bl.t..

Known generalized polygons.

N

q
q
q2
q-1
(q#2)

2

q
q2
q3
q+l

q
q3

22,,i

S2+S+I

sr2 + sr + +

+ + sr +

s+l)S15+(S 12- l) +s----l]
(q a prime power)

4. Comparison with the Gabber-Galil construction. For those parameters n, m,
and k s + 1 for which N-gons exist, they are excellent concentrators, as we will now
show by comparing the expanders derived from an N-gon with those of the more
general construction of Gabber and Galil.

An (n, 1, k, a, c 1 + d(1- a)) bsc is an (n, k, d) expander. An N-gon with n m
is therefore an expander with parameter d satisfying

d=[1/(1-c)]
(a+p(1-c))

1 =a+p(l_a).
Here d is a function of a. Since p < 1, a lower bound for d over the entire range of
a is obtained by letting a 1, which gives d >= (1 p)/(1 + p).

Theorems 2 and 2’ of Gabber and Galil furnish (n, 5,(2-/)/4) and
(n, 7, (2-/3)/2) expanders, respectively. The example s= r= 7 hexagon above is a
(19,608, 8, 43/85=0.506) expander. The most closely comparable expander of
Gabber and Galil is a (19,600, 7, 0.134) expander. Taking s=r=4 in a hexagon
produces a (1,365, 5, 13/37=0.351) expander, compared with a (1,369, 5, 0.067)
expander of the Gabber and Galil construction.

5. Pruning. Although generalized N-gons do not exist for all possible parameters
n, s, and r, it is possible to obtain good bsc’s by pruning, eliminating nodes and edges
from an N-gon. The first observation is that given an (n, m/n, k, a, c(a)) bsc, an
(n’, m/n’, k, a’, c((n’/n)a’)) bsc can be formed merely by eliminating some arbitrary
set of n- n’ input nodes. Second, if n’ is much smaller than n it will be possible to
eliminate some of the output nodes also, those incident on none of the n’ remaining
input nodes, without decreasing the concentration factor c. Third, suppose it is possible
to prune a bipartite graph G of Theorem 2.1 to create a graph G’ in which all input
nodes have degree at least t+l and at most s’+l. Then we have the following
modification of Theorem 2.1:

THEOREM 5.1. G’ is an (n’, m’/n’, s’+ 1, a’, c(a’)) bsc with

C(Ce,) _>
(t+l)2

[a’(n’/n)((s + 1)(r + 1)- A2) + A2]’
where A1 and 12 are the eigenvalues of the original graph G.
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Proof. Equation (2.1) can be replaced by

(4.1) IICII2-,G, C]_-> C Ig[ {YBl>=(a’n’(t+l))2/Iyl.
j___!

Equation (2.2) becomes

=2 =2

(4.2) A’2(n’2/n)+A2 E V=’2(n’2/n)(X-X)+X211A[[ 2

i=2

a’2(n’2/n)((s+ 1)(r+ 1)- X2) + A2a’n’.
Combining these two as in (2.3) yields the statement of the theorem.

The main source of weakness in this modified bound is in (4.2), where the use of
the eigenvalues for the original graph gives a relatively loose upper bound on IIcII 2.
For example, by taking an input node and an output node that are connected in a

generalized N-gon with parameters r and s and eliminating all nodes that are at
distance N-2 or less from either, one obtains a graph in which all input nodes have
degree s and all output nodes degree r The dominant eigenvalue for this graph is rs,
and the subdominant is strictly less than the dominant because the graph is connected.
When r s, the bound of Theorem 2.1 shows that c(a) 1 for all a, but the bound
obtained from Theorem 5.1 allows c(a’)< 1 at a’= 1.

6. Tensor product extension. The eigenvalue argument makes it easy to prove
the properties of bsc’s that are constructed by forming the tensor product ((x)) of
two known bsc’s [3, pp. 67-70].

THEOREM 6.1. Let M be an mi X n bsc incidence matrix such that MMf has
eigenvalue ratio p Ai2/AI, 1, 2. Then the matrix M’ M1 (x) M2 is an (mlm2) x
(nl n2) bsc incidence matrix with p’ max (pl, p2).

Proo
M’M’r (M (x) M2)(M1 (x) M2) r (MM)(x)(M2Mf).

Consequently the eigenvalues of M’M’r are AA2 for 1, , n, ] 1,. , n2.
Then

max (AA22, A12A2)
p max (Pl, P2).

AIA2

Applying this theorem when both constituents are the 6-gon with s r 7 gives
a square bsc with node degree 82=64, [(76-1)/(7-1)]2 input nodes, a like number
of output nodes, and the same c(a) as the constituents.

7. Conclusion. We have exhibited a straightforward technique for lower bounding
the concentration level of a bipartite graph. This technique may simplify substantially
the analysis of new concentrator constructions and suggests new construction algebras
such as the tensor product. Although the bound is not tight, particularly for small a,
it is nonetheless strong when compared to previous bounding techniques. It can be
strengthened by more detailed analysis of the relative size of the components of the
input set vector in the eigenspaces of MM.

The bounding method is applied to the generalized N-gons and shows that these
graphs are excellent concentrators. We surmise that they are indeed the best possible
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uniform concentrators of a given size and graph degree. While very large N-gons can
be constructed, it is known that N-gons do not exist with arbitrarily large N, nor for
arbitrary node degree, and thus our results fall short of giving an asymptotic con-
struction.
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Oguri for calculation and verification of their eigenvalues, and all three for many
helpful discussions.
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ON THE VORONOI REGIONS OF CERTAIN LATTICES*

J. H. CONWAY" AND N. J. A. SLOANE:I:

Abstract. The Voronoi region of a lattice Ln R is the convex polytope consisting of all points of I
that are closer to the origin than to any other point of Ln. In this paper we calculate the second moments
of the Voronoi regions of the lattices E6*, E7*, K12, A16 and A24. The results show that these lattices are
the best quantizers presently known in dimensions 6, 7, 12, 16 and 24. The calculations are performed by
Monte Carlo integration, and make use of fast algorithms for finding the closest lattice point to an arbitrary
point of the space. We also establish two general theorems concerning the number of faces of the Voronoi
region of a lattice.

AMS(MOS) subject classifications. Primary, 10E05, 52A45

1. Introduction. The Voronoi region of an n-dimensional lattice Ln
_
R is the

convex polytope

:= {x R :N(x) <= N(x- l) for all L},

where N(x)= x.x denotes the norm of a vector (cf. [10] and the references given
there). Figure 1 for example shows the Voronoi region of the body-centered cubic
lattice A3*. If L is used as a quantizer (or analog-to-digital convertor), its average
mean squared error per symbol is given by

1 x. xdx
(1) G(L,) :=-

n det (Ln) +2)/)’

where det (L), the determinant of L, is the square of the volume of ([10], [22],
[39]). G(L) is a normalized second moment of about the origin. (The formula (1)
assumes that the input to the quantizer is uniformly distributed over a large region of, and the number of output levels is very large.)

FIG. 1. The Voronoi region of the body-centered cubic lattice A*3(D) is a truncated octahedron. The
open circles represent lattice points, the solid circles the vertices of the Voronoi region.

G(Ln) measures the average error introduced when points of Nn are replaced by
the closest lattice points. If we use the 1-dimensional integer lattice 7/as a quantizer,
the average error is G(7/)= 1/12 =0.08333....But by using higher-dimensional lat-
tices this can be reduced (see Table 1 and Fig. 2). The expression for G(Ln) in (1)
has been scaled so as to provide a proper comparison between quantizers of different
dimensions.

* Received by the editors February 7, 1983, and in revised form May 27, 1983.
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge

CB2 1SB, England.
$ Mathematics and Statistics Research Center, Bell Laboratories, Murray Hill, New Jersey 07974.
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TABLE
Smallest mean squared error G(Ln) ofany known n-dimensional

lattice Ln

dimension lattice mean squared error
n L, G(L,)

7/ 0.0833333
2 Az 0.0801875
3 A3* 0.0785433...
4 D4 0.0766032
5 Ds* 0.0756254
6 E6* 0.074239 + 0.000018
7 E7* 0.073124 +0.000013
8 E8 0.0716821

12 Kle 0.070100 + 0.000024
16 A16 0.068299 +/- 0.000027
24 A24 0.065771 +/-0.000074

0.084[-
O. 082 I-
0"080

0.078[-
O. 076

0.074-

0.072-

0.070-

0.068-

0.066

0.064
0

AI

A2

E7

SPHERE BOUND

Dn

K12 o

oA16

ZADOR BOUND

oA24

2 4 6 8 10 12 14 16 18 20 22 24

DIMENSION

FIG. 2. Normalized second moment G for various lattices, and the Zador and sphere bounds. It is known
that the best quantizers must lie between the two bounds.

In 1953 Fejes T6th ([20], see also [30]) proved that the hexagonal lattice A2 is
the optimal lattice quantizer in two dimensions, i.e., has the smallest value of G(L2),
namely 5/36/=0.0801875. .. He also showed that no nonlattice quantizer can
do better. Gersho [22] computed G(A3), G(A’) and G(D4), and conjectured that
A3* (D3*) is the optimal lattice in three dimensions. This conjecture was established
in [2]. In an earlier paper [10] we determined the Voronoi regions and evaluated G
for all the root lattices A,,(n >- 1), Dn(n >- 3), E6, E7, E8 (=E8*) and the dual lattices

An* (n _-> 1) and D* (n _-> 3). We observed that the optimal lattice quantizer was often
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the dual of the densest lattice packing, and conjectured that this may be true in general.
It is true in dimensions 1, 2 and 3, and is supported by the available data in dimensions
4, 5 and 8. In the present paper we evaluate G for the duals of the densest known
packings in 6, 7, 12, 16 and 24 dimensions, namely for the lattices E6*, ET*, the
Coxeter-Todd lattice K12 (-Kl*2), the Barnes-Wall lattice A6 (-A*6), and the Leech
lattice A24 (=A2"4). The results are summarized in Table 1 and Fig. 2 and support our
conjecture.

It is worth pointing out that this conjecture would imply the somewhat surprising
result that the best quantizer is in general different from the most efficient lattice
covering of space by spheres. Indeed, the two problems already have different answers
in dimensions 4 and 5. There the best lattice coverings are known to be A4* and As*
[33], yet D4* and Ds* are better quantizers (see Fig. 2). In higher dimensions, the best
coverings known are A*, if n <-23, and then various lattices constructed from A2411].
So it seems likely that, in all dimensions between 4 and 23, the best lattice quantizers
and coverings are distinct.

The values of G for various lattices are compared in Fig. 2, the values for An,
A*, Dn, D*, E6, E7 and E8 being taken from [10]. In 1964 Zador proved by a
nonconstructive argument that good quantizers exist in sufficiently high dimensions,
and observed that the second moment of a sphere gives a bound in the other direction
(see [39], and also [22], [10, Eq. (3)]). These two bounds are also plotted in the figure.

We use Monte Carlo integration to compute G. The technique is briefly described
in 2. It requires that we have a fast algorithm for performing the quantizing, that is,
given an arbitrary point of n, for finding the closest lattice point. (If the lattice is
used as a code for a band-limited channel, this algorithm performs the decoding [9],
[11].) The best quantizing algorithms we have found for these lattices, and the values
of G that were obtained, are given in 3-7.

If a more complete description of the polytopes were available, we could
determine G exactly by decomposing each polytope into simplices and using the
methods of [10]. Unfortunately little is known about the polytopes of these lattices.
For E6* and ET*, for example, even the covering radius (the distance of the furthest
vertex of from the origin) is unknown, although it is known for all the other lattices
mentioned [8], [10], [13], [15], [17]. In 8 we establish two theorems which help
determine the number of (n-1)-dimensional faces of , and in the last section we use
them to study the Voronoi region of KI2.

Notation. If Ln is a lattice in n (the subscript indicates the dimension), the dual
lattice L* {x n. x. y 7/ for all y Ln}. Two lattices Ln and M are equivalent,
written Ln M, if they differ only by a rotation and possibly a change of scale. The
direct sum of k copies of L is written Lk. For further information about these lattices
see [4], [10], [13]-[17], [27], [31], [36], [37].

2. Monte Carlo integration over a Voronoi region. The Monte Carlo technique
that we use to calculate G is slightly unusual. We wish to find I := x. x dx. Conven-
tional Monte Carlo methods ([24], [25], [28], [34]) would begin by replacing ! by
X(x)x" x dx, where is a region enclosing , usually a sphere or a cube, and X,(x)

is 1 if x , 0 otherwise. This is wasteful, since points in do not contribute to
the estimate. The following approach avoids this difficulty, by exploiting our fast
quantizing algorithms.

Let vl), v) be linearly independent vectors spanning the lattice, and let
Ul,’’’, un be independent random numbers, uniformly distributed between 0 and 1.
Then y Euivi) is uniformly distributed over the fundamental parallelepiped generated
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by the v(i). Let be the closest lattice point to y (found by the quantizing algorithm
for this lattice); then w(y):= y- is uniformly distributed over the Voronoi region .
Figure 3 illustrates this for the hexagonal lattice A2.

(C) (C)

FIG. 3. Hexagonal lattice A2 with spanning vectors v(a), v(2); y is a random point in the parallelogram
0, v(1), v<2), v<1) + v2)" is the closest lattice point to y; and w y is a random point in the Voronoi region

Then if m gh random points y(O),..., y(m-1)
described,

are selected in the manner just

(2) a= 1 m--1

2 N( w(yi)))
m i=o

is an estimate of L and whensuitably scaled (see (1)) produces our estimate ( of G.
To estimate the variance of/, we group the measurements into g sets of h, and use
the jackknife estimator (see [29], [32], [38])"

(3) var (I) Ai-g(g- 1)

where

(j+l)h-1

(4) Ai N(w(y())), j O, 1,..., h 1.
i=jh

By taking the square root of (3) and scaling, we obtain an estimate for the standard
deviation of G, and then ( +2 is our final estimate for G. The portable random
number generator on the PORT library [21 ], which combines a congruential generator
and a Tausworthe generator, was used to produce the u’s.

To test this procedure we applied it first to the lattices E6, E7 and Es, for which
the exact value of G is known [10]. The estimates agreed closely with the exact values.
For example, for E8 we found using m 107 points (g was always taken to be 100) that

((Es) 0.071689 + 0.000008,

while the true value is

929
G(E8) ---0.0716821 .

12960
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3. The lattices E6 and E*. E6 is most easily obtained from the complex 3-
dimensional 7/[o)]-lattice with generator matrix

(5) 0 w=e2i/3, O=oo-d)=ix/5,
1 1

([16, p. 421], [35, Example 5], [36, 5.8.2], [37, 17]), and the dual lattice E from

(6) -1
0

Thus the real 6-dimensional lattices 6 and E have generator matrices

(7a)

o ,/5 o
0 0 0
1 0 1- 2

0

-3
0 0

2

2 2 2

0
1
1
-3
2
-1
2
-1
2

(7b)

45 o
0 -1
0 0

0
2

2 2

5- 0

0 0 0
o o

0 1 0

0 0 0

-,/3
0 0

2

2 2 2

0 0 0
0 0 0

0 -1 0

0 0 0

0 0

a -43
2 2

respectively. (For example (7a) is obtained from the real and imaginary parts of (5)
and o) times (5).)

To find a quantizing algorithm for any of these lattices, we proceed as follows,
following [11]. Inside our lattice Ln we look for a sublattice Sn, of small index (say),
for which quantizing is easy. Suppose

(8) L, (a() + S,) U. U (a(’-l) + S,),

where a(), a (t-) are coset representatives for S, in L,. Let b’Rn--> Sn be a
quantizer for S,, so that 4,(x) is the closest point of S to a given vector x. Then a
quantizer for L, is obtained by taking the given vector w, forming the candidates

C
(i) ( W-- a (i)) + a (), 0,. , t-- 1,

and choosing the closest candidate to w.
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Both E6 and EG* contain a sublattice S6 isomorphic to A23, namely the real version
of the lattice 07/[w]3 with generator matrix

0

0

$6 has index 3 in E6, with coset representatives

a()= (0, 0, 0, 0, 0, 0), a (1)= (1, 0, 1, 0, 1, 0) a (2 =-a(1

and has index 9 in E6*, with coset representatives given in Table 2.

TABLE 2
Coset representatives a(), , a (8) for S in E*6

O,

+( 1,

+( O,
+/-(-1,

+( 1,

o, o, o, o, o)
o, -1, o, o, o)
o, 1, o,-1, o)
o, o, o, 1, o)

o, 1, o, 1, o)

It is easy to design a quantizer for the hexagonal lattice A2 (and hence A23), either
using the fact that A2 is the union of a rectangular lattice and a translate, as suggested
by Gersho [23, p. 165], or via 3-dimensional coordinates as we suggest in [10, VII].
Gersho’s method seems slightly simpler and is the one we adopted. From the previous
discussion we have the following quantizing algorithms for E6 and EG*.
QUANTIZING ALGORITHMS FOR E6 (t=3) AND EG* (t=9)

Given w (w,..., WG), to find the closest lattice point of E6 (or E).
Subtract one of coset representatives a (i), obtaining

z w- a(i)= (ZI," Z6).

Divide the corresponding complex vector by 0, i.e., form

Z2 --Z Z4 Z3 Z6

,/5’,/3’ ,/5’,/5’

Apply the quantizer for A2 to the three pairs

(_Z2 --Z1_) (_Z4 --Z3_) (__Z6
obtaining say

(ml, m2), (m3, m4), (ms, mG).

Multiply by "0", to get

m’= (-/m2, x/Sml,--x/Sm4, w/m3,--/mG, x/ms).
Then c() m’ + a (i) is the ith candidate.
The final answer is the candidate which minimizes N(w-c()).
We used this algorithm in the Monte Carlo procedure described in 2, in order
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to estimate G(E6"). With 5 106 random points we obtained

(9) 0(E6*) 0.074239 + 0.000018.

(As a check, 107 points for E6 gave t(E6) =0.074342+0.000013, while the exact
value from [10] is G(E6) 3-1/65/56 0.07434671 "", well within the range of the
estimate.)

4. The lattices E7 and ET*. E7 may be obtained by applying Construction A of
[27] to the little [7, 3, 4] Hamming code 1, and a generator matrix for /7 may be
found on [37, p. 335] (see also [4], [16], [13], [27]). Similarly ET* may be obtained
from the [7, 4, 3] Hamming code 2. Both E7 and ET* contain a sublattice $7 2’7,
of index 8 and 16 respectively; the coset representatives are the codewords of either
1 or 2. Since there is a trivial quantizer for 7/7 (see [11, III]), this leads to fast
quantizing algorithms for 77 and ET*; we omit the details. (Alternative algorithms,
based on the sublattice A7, were proposed in [11, VIII.) Our Monte Carlo estimate
for G(E*7), based on 107 points, is

(10) 0(E7*) 0.073124 + 0.000013.

This is slightly better than the value for E7, which is 0.07323063....

5. The Coxeter-Todd lattice K12. The real 12-dimensional lattice K12 was first
described in [18]. It is the subject of our earlier paper [15], and further properties will
be found in 9 below and in [13], [14], [27]. Since it is the densest sphere packing
known in 12 dimensions [13], [27], and is also equivalent to its dual, according to the
conjecture mentioned in 1 it is a good candidate for a quantizer. The same remark
applies to the lattices A16 and A24 studied in the following sections.

Regarded as a complex 6-dimensional 7/[w]-lattice, K12 has the generator matrix

(11)

-2 0 0 0 0 0-
0 2 0 0 0 0
0 0 2 0 0 0
0 1 0 1 to 6

1 0 1 0 to 5

& 0 1 0 1

and so as a real 12-dimensional lattice it has the generator matrix shown in Fig. 4.
K12 has a sublattice isomorphic to A26, of index 64, namely the real version of the
lattice 27/[09]6. The coset representatives correspond to the codewords of the hexacode
(the code over GF(4) {0, 1, to, o3} spanned by the last three rows of (11)). This leads
to a quantizing algorithm similar to those for E6 and E6* described in 3.

There are alternative definitions of K12 (see [15]), which make four other sublat-
tices visible, namely the real lattices corresponding to Z[w](R) A6, 7/[to] (?.) D6, Z[to] () E6,
and the lattice {(Xl,’’’, x6)" all xi Z[w], Exi =0 (rood 0)}. Each of these leads to a
decoding algorithm. However the one described above seems to be the simplest.

Our Monte Carlo estimate, based on 106 points, is

(12) ((K2) 0.070100 + 0.000024.

6. The Barnes-Wall lattice A16o The lattice A16 was first described in [3]. Other
references are [13] and [27], and a generator matrix is given on page 336 of [37]. A16
has a sublattice 2D16 of index 32, with coset representatives which are the codewords
of the [16, 5, 8] first-order Reed-Muller code. Then the quantizing algorithm for Dn
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0 0
0
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FIG. 4. Generator matrix for Coxeter-Todd lattice K12.

described in [11, IV] leads to an efficient quantizer for A16. Using 2.106 points we
found

(13) 16) 0.068299 + 0.000027.

7. The Leech lattice A24. The Leech lattice A24 ([5]-[8], [12]-[14], [26], [27],
[36], [37]) may be constructed in many ways. The standard MOG (or miracle octad
generator [7], [8], [19]) basis is shown in Fig. 5. A24 has a sublattice 4D24 of index
8,192, with coset representatives

2c and 2c + u,

where u (-3, 1, 1,. ., 1), and c runs through the vectors of the [24, 12, 8] Golay
code with generator matrix shown in Fig. 6. Because of the large index of the sublattice,
this is by far the slowest of our quantizing algorithms. Using 25,000 points we found

(14) t(A24) =0.065771 +/-0.000074.

8. The number of faces of the Voronoi region. The Voronoi region of a lattice

L. G R" may be expressed as

(15) N 5(v),
vLn,v#O

where 5(v) is the half-space {x R"’x. v <--v. v}, bounded by the hyperplane

rI(v)={x".x, v=v. v}.

Of course only finitely many of the 5(v) are really needed to define . Let

= n 5e(v),

where is a minimal subset of L\{0} that will define . We call the lattice vectors
in t relevant, and the remaining vectors of L, irrelevant. The number of relevant
vectors is the number of (n- 1)-dimensional faces of . For example, in the body-
centred cubic lattice (Fig. 1) there are 14 relevant vectors, namely the six minimal
vectors and the eight vectors of the next smallest norm.
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8000 0000 0000 0000 0000 0000
4400 0000 0000 0000 0000 0000
4040 0000 0000 0000 0000 0000
4004 0000 0000 0000 0000 0000

4000 4000 0000 0000 0000 0000
4000 0400 0000 0000 0000 0000
4000 0040 0000 0000 0000 0000
2222 2222 0000 0000 0000 0000

4000 0000 4000 0000 0000 0000
4000 0000 0400 0000 0000 0000
4000 0000 0040 0000 0000 0000
2222 0000 2222 0000 0000 0000

4000 0000 0000 4000 0000 0000
2200 2200 2200 2200 0000 0000
2020 2020 2020 2020 0000 0000
2002 2002 2002 2002 0000 0000

4000 0000 0000 0000 4000 0000
2020 2002 2200 0000 2200 0000
2002 2200 2020 0000 2020 0000
2200 2020 2002 0000 2002 0000

0222 2000 2000 2000 2000 2000
0000 0000 2200 2200 2200 2200
0000 0000 2020 2020 2020 2020
-3111 1111 1111 1111 1111 1111

FIG. 5. Generator matrix for Leech lattice A24 in standard MOG form.

1111
1111
1100
1010

1001
1010
1001
1100

0111
0000
0000
1111

1111
0000
1100
1010

1001
1001
1100
1010

1000
0000
0000
1111

0000 0000 0000 0000
1111 0000 0000 0000
1100 1100 0000 0000
1010 1010 0000 0000

1001 1001 0000 0000
1100 0000 1100 0000
1010 0000 1010 0000
1001 0000 1001 0000

1000 1000 1000 1000
100 100 100 100

1010 1010 1010 1010
1111 1111 1111 1111

FIG. 6. Generator matrix for Golay code in standard MOG form.

[10, III] contains two theorems which give sufficient conditions for a lattice to
have the property that the minimal vectors are the only relevant vectors. The lattices
An, Dn, E6, E7 and E8 have this property [10, Corollary to Theorem 5]. The following
theorems can also be used to show that certain vectors are irrelevant.

THEOREM 1. If Ln has covering radius Re (cf. [8]), then any vector v Ln of
norm >- 4R 2 is irrelevant.
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Proof. Suppose v Ln is relevant and N(v)>= 4R2. Then II(v) meets in a set
of positive measure. On the other hand the closest point of H(v) to the origin, 1/2v, has
norm =>R2c, so II(v) can contain at most a single vertex of , which is a contra-
diction. Q.E.D.

For example, Theorem 1 and the main result of [8] imply that for the Leech lattice
only the minimal vectors and those of the next smallest norm are relevant. Thus the
Voronoi region has 16,969,680 faces.

When attempting to show that a vector v Ln is irrelevant, it is sometimes possible
to prove that the point 1/2v is not in the Voronoi region. In general this is not enough
to prove that v is irrelevant, since it is certainly possible for the hyperplane II(v) to
intersect in an asymmetric region not containing 1/2v. The next theorem establishes
a condition under which this does not happen.

THEOREM 2. Let 3 be the subgroup of the automorphism group Aut (Ln) fixing
a lattice vector v. Suppose fixes exactly one 1-dimensional subspace, namely the
1-dimensional subspace containing v. Then if the hyperplane H(v) contains a point x
of the Voronoi region different from 1/2v, it follows that 1/2v .

Proof. Consider the point

X
g

Since x e H(v), xg f’l II(v). Because is convex, y e f’l H(v). Clearly y is
fixed by 3. But the only point of II(v) fixed by is v. Therefore y=1/2v and
1/2v6. Q.E.D.

An application of these theorems will be found in the following section.

9. The Voronoi region of Klz. We shall determine the number of faces of the
Voronoi region of K12. We assume K12 is scaled so that the minimal norm is 2. It
was shown in [15] that the covering radius of K2 is /4/3, and that there are 20,412
vertices of at this distance from the origin, all equivalent under Aut (K12). Unfortu-
nately nothing is known about other vertices of .

K12 is best studied via the corresponding 6-dimensional lattice A (see [15]). The
latter has several equivalent definitions, one of which may be seen in (11). In this
section, however, another construction is more convenient, the so-called 3-base. In
this form A’ is defined as the set of vectors

{(Xl, X6)3: all xi 7[w], Xl x6 (mod 0) and Zxi 0 (mod 3)},

where (xl,’’’, X6)3 is an abbreviation for 0-1(xl, X6).
T-IEOREM 3. The Voronoi region of K12 has 4,788 11-dimensional faces, and

is bounded by the hyperplanes determined by the 756 vectors of norm 2 and the 4,032
vectors of norm 3.

Proof. We shall show that the vectors of norm >-4 in K2 are irrelevant. Theorem
1 already implies that the vectors of norm_>-6 are irrelevant. Also it is easy to verify
that Aut (K2) is transitive on the vectors of norms 2, 3, 4 and 5. The vectors of norms
2, 3 and 4, expressed in the 3-base, are listed in Table II of [15].

(i) The vectors of norm 5 are irrelevant. In view of the transitivity just mentioned,
it is enough to show that a single norm 5 vector, say v5 (20, 0, 0, 0, 0, 0)3, is irrelevant.
We first show that 1/2v5 . In fact it is easily checked that 1/2v is outside the hyperplane
II(v2) determined by v2 (w, w, o, w, a3, 1)3, and therefore by (15) is not in .
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Next, let be the stabilizer of v5 in Aut (A’). We show that o% only fixes a
(complex) 1-dimensional subspace. Since contains the diagonal matrices

diag { 1, 1, 1, 1, 09, 03 },

where the 09 and 03 may be in any of the last four positions, any vector fixed by
must have the form f (a,/3, 0, 0, 0, 0)3. Also o% contains the reflection

R x-x- x" ’ w,

where w=(1,-2, 1, 1, 1, 1)3, and sol (2/3,/3, 0, 0, 0, 0)3; in other wordsf is a multiple
of Vs.

Let 5 be the stabilizer in Aut (Kla) of the real vector corresponding to vs. Since
Aut (Kla) contains a transformation which corresponds to complex conjugation in A’,
only real multiples of v are fixed by g5. Thus 3 only fixes a single 1-dimensional
space. We can conclude from Theorem 2 that v is irrelevant.

(ii) The vectors of norm 4 are irrelevant. It is enough to consider one vector of
norm 4, say v4 (1 + 309, 1, 1, 1, 1, 1)3. One can now show that the equation to the
hyperplane H(v4) is already implied by the equations to the ten hyperplanes II(v2)
passing through 1/2v4, and defined by the following vectors v2"

(09, o3,1,1,1,1)3,

(09,1,1,1,1,03)3,

(0, --090, O, O, O, 0)3

(0, 0, 0, 0, 0, -o0)3.

We leave this verification to the reader, as well as the easy justification that the vectors
of norms 2 and 3 are relevant. Q.E.D.

Acknowledgments. We should like to thank W. M. Kantor for some helpful
discussions about K12, and C. L. Mallows for valuable statistical advice concerning the
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A SEPARATOR THEOREM FOR CHORDAL GRAPHS*

JOHN R. GILBERT?, DONALD J. ROSES AND ANDERS EDENBRANDT

Abstract. Chordal graphs are undirected graphs in which every cycle of length at least four has a
chord. They are sometimes called triangulated graphs, monotone transitive graphs, rigid circuit graphs, or
perfect elimination graphs; the last name reflects their utility in modelling Gaussian elimination on sparse
matrices. The main result of this paper is that a chordal graph with n vertices and m edges can be cut in
half by removing O(/) vertices. A similar result holds if the vertices have nonnegative weights and we
want to bisect the graph by weight, or even if we want to bisect the graph simultaneously by several
unrelated sets of weights. We present an O(m) time algorithm to find the separating set.

AMS(MOS) subject classifications. 05C40, 68E10

1. Introduction. Many divide-and-conquer algorithms on graphs are based on
finding a small set of vertices or edges whose removal divides the graph roughly in
half. Examples include layout of circuits in a model of VLSI [11], efficient sparse
Gaussian elimination [5, 13], and the solution of various geometric problems [14].

Most graphs do not have small separators that divide them evenly in half, but
some useful ones do. Lipton and Tarjan’s planar separator theorem gives an example.

PROPOSITION [15]. A planar graph with n vertices has a set of at most 2x/2n
vertices whose removal leaves no component with more than 2n/3 vertices. [3

This theorem is the best possible within a constant factor. Djidjev [3] improved
the constant 2x/ to x/; the tightest possible constant is not known. Other kinds of
graphs that can be separated evenly by deleting o(n) vertices are trees (O(1) vertices
[8, 12]), outerplanar graphs (O(1) vertices [11]), hypercubes (O(n/x/log n) vertices
[5]), graphs of genus at most g (O(x/--h-) vertices [6]), and several interconnection
graphs for parallel computation [9, 10, 11].

An undirected graph is said to be chordal if every cycle of length at least four
has a chord, which is an edge joining two vertices that are not adjacent on the cycle.
Chordal graphs are perfect; that is, every induced subgraph of a chordal graph has a
clique covering and an independent set of the same size [7]. Much of the basic theory
of chordal graphs was developed by Dirac [2] and Fulkerson and Gross [4]. Chordal
graphs have also been called triangulated graphs, monotone transitive graphs, rigid
circuit graphs, and perfect elimination graphs.

Rose [18] discovered a connection between chordal graphs and systems of linear
equations whose coefficient matrices are sparse, symmetric, and positive definite. Such
a system can be solved using Gaussian elimination with pivots chosen from the diagonal.
The coefficient matrix is the adjacency matrix of an undirected graph; the graph is
chordal if and only if the elimination can be done in some order without fill-in, that
is, without changing any zero entries to nonzeros.

Since a complete graph is chordal and has only trivial separators, chordal graphs
in general cannot be separated by removing o(n) vertices. The main result of this
paper is that chordal graphs do satisfy a separator theorem in which the size of the
separator depends on the density of the graph. We prove that a chordal graph with
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n vertices and m edges has a set of O(x/) vertices whose removal leaves no
component with more than n/2 vertices. (This is immediate at the extremes of density,
for complete graphs and for trees). We show that the separator can in fact be chosen
to be a complete subgraph. We also show that the result holds if the vertices have
nonnegative weights and we want to bisect the graph by weight, or even if we want
to bisect the graph simultaneously by several unrelated sets of vertex weights.

The next section contains some definitions and results from the literature that
we will need later. 3 proves the main result. 4 presents a linear algorithm to find
the separator. 5 extends the main result to graphs whose vertices have multiple
weights. The final describes possible applications and open problems.

2. Results from the literature. The first results we require concern the graph
model of Gaussian elimination. Let G (V, E) be a (not necessarily chordal) graph.
Let v be a vertex of G. The deficiency of v is the set of nonedges between neighbors
of v,

D(v)= {{x, y} {v, x}eE, {v, y}eE, {x, y} E}.

The deficiency of v corresponds to the zeros of the coefficient matrix that become
nonzero when the equation in v’s row is used to eliminate the variable in v’s column.
The graph G produced by eliminating v from G is obtained by adding v’s deficiency
and deleting v and its incident edges, so

G (V -{v}, E(V -{v}) U D(v)).

When a sequence of vertices is eliminated from a graph, the edges in the deficiencies
that are added are called fill-in edges. A simplicial vertex of a graph is a vertex that
has a null deficiency, so it can be eliminated without fill-in; thus, it is a vertex whose
neighbors form a clique. A graph G is a per]ect elimination graph if its vertices can
all be eliminated in some order without any fill-in. Such an order is called a perlect
elimination ordering of the vertices of G.

The lemmas that follow are due to Dirac [2], Fulkerson and Gross [4], and Rose,
Tarjan, and Lueker [16], [18], [19].

LEMMA 1. A graph G is chordal i]’ and only i1 it is a per)ect elimination graph.
A perfect elimination ordering must start with a simplicial vertex. Any simplicial

vertex will do, and a choice of simplicial vertices is always available.
LEMMA 2. I G is chordal and C is any complete proper subgraph, then there is a

simplicial vertex in G- C. Any simplicial vertex can be eliminated first in some perlect
elimination ordering.

Now we give a condition that determines the fill-in for any elimination ordering
on any graph.

LEMMA 3. Fix an elimination ordering for a graph G. Let v and w be nonadjacent
vertices ol G. Then {v, w} is a fill-in edge il and only i) there is a path ]rom v to w
consisting o1 vertices that are eliminated earlier than both v and w.

In an ordered graph, a path is a monotone path if the indices of its vertices are
strictly increasing.

LEMMA 4. Fix a per]ect elimination ordering v 1," ", l)n [or a chordal graph G.
k < h and there is a path from vk to Vh through vertices numbered at most h, then there
is a monotone path from vk to Vh.

A separation clique is a complete subgraph whose removal leaves a disconnected
graph.

LEMMA 5. If G is chordal and not complete, then G has at least one separation
clique.
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We mention the following result to contrast it with the first theorem of the next
section; the proofs below do not use it. A v, w separator is a set of vertices that cuts
every path from v to w.

LEMMA 6. A graph G is chordal if and only if ]’or all vertices v and w, every
minimal v, w separator in G is a clique. [3

3. A /--vertex separator theorem. Let G be a chordal graph with n vertices
and m edges. Suppose that each vertex of G has a nonnegative weight, and that the
sum of the weights is n. The main result of this section is that there is a clique that
divides the weight roughly in half.

THEOREM 1. Let G be a weighted chordal graph as above, with p vertices in its
largest clique. Then G contains a clique whose removal leaves no connected component
of weight more than n/2. Unless n 1, the clique can be chosen to have at most p 1
vertices.

Remark. This theorem resembles Lemma 6 above, but seems not to follow from
it. Let us call the separator in the statement of Theorem 1 an n/2 separator. Then a
minimal n/2 separator need not be a clique; for example, if G is a path with 5 vertices,
then one minimal nJ2 separator is the second and fourth vertices. Also, there need
not be a minimal v, w separator that is an n/2 separator; for example, if G is an
n/2-vertex clique with an additional vertex of degree one adjacent to each clique
vertex, then the only minimal v, w separators are single clique vertices.

Proof. The idea of the proof is to start with an arbitrary clique and make it ooze
around the graph like an amoeba until it is an n/2 separator. It oozes by disgorging
vertices that can join or become components of weight less than n/2, and by engulfing
vertices that are in a component of weight more than n/2.

Here are the details. We will not distinguish between a set of vertices of G and
the subgraph of G it induces. Unless G is empty, it has at least one clique. Let C be
the clique that minimizes the maximum weight of a connected component of G-C.
In case of ties, minimize the number of vertices in a maximum-weight component of
G -C. If ties remain, minimize the number of vertices in C. If ties still remain, choose
arbitrarily.

Assume for the sake of contradiction that G- C has a component A of weight
greater than n/2. Then the total weight of G-A is less than n/2. We shall state and
prove three facts about A and C.

FACT 1. Every vertex of C is adjacent to some vertex ofA.
Proof. If v C were not adjacent to any vertex of A, then C-{v} would have

been chosen in preference to C.
FACT 2. If B is a nonempty subset of A, then B contains a vertex that is simplicial

inBC.
Proof. Immediate from Lemma 2.
FACT 3. Component A contains a vertex v adjacent to every vertex of C.
Proof. We will take v to be the last vertex of A in a perfect elimination ordering

of A (_J C with C ordered last. Thus v a where {a , , a, c 1, , Ch} is a perfect
elimination ordering of ALI C. Such an ordering exists because by Fact 2 we can
repeatedly choose simplicial vertices that are not in the clique C.

Let x be a vertex of C. Since A is connected and (by Fact 1) x is adjacent to a
vertex of A, there is a path from x to a in ALIC that uses only vertices of
A--{ak}--{a l,’’’, ak-x}. Lemma 3 says that if {x, ak} is not an edge of A I,.J C, then
it is a fill-in edge. But a perfect elimination ordering has no fill-in, so x is adjacent
to a in A 12 C and in G. Thus a is adjacent to every vertex of C, so we can take v a.



A SEPARATOR THEOREM FOR CHORDAL GRAPHS 309

Fact 3 leads to a contradiction: C [.J {v } is a clique, and it should have been chosen
in preference to C. Thus C is the desired n/2 separator.

The argument above shows that each component of G-C contains a vertex
adjacent to all of C’s vertices. If G is not complete then C is not the largest clique
in G, and C has at most p- 1 vertices. If G is complete we can take C to be all of
G except the lightest vertex. [3

COROLLARY 1. Let G be a chordal graph with n vertices and m edges. Suppose
G’s vertices have nonnegative weights that add up to n. Then G has a set of O(x/m)
vertices whose removal leaves no connected component of weight more than n/2.

Proof. Theorem 1 says that G has a clique that separates the graph as required.
This clique has at most m edges and hence only O(x/) vertices.

COROLLARY 2. Let G be a chordal graph with n vertices and m edges. Then G
"has a set of O(x/-) vertices whose removal leaves no connected component with more
than n/2 vertices. ]

A k-tree [17] is a graph constructed by starting with a k-vertex clique and adding
vertices one at a time, making each new vertex adjacent to k mutually adjacent old
vertices. Thus a 1-tree is a tree. A k-tree is chordal, and its largest clique has k / 1
vertices unless the k-tree is a k-clique. Therefore k-trees have separators whose size
is independent of the size of the tree.

COROLLARY 3. Let T be a k-tree whose vertices have nonnegative weights that
add up to n. Then Thas a set of k vertices whose removal leaves no connected component
of weight more than n/2. [

4. An O(m) algorithm. Throughout this section G will be a connected chordal
graph with n vertices having nonnegative weights that add up to n, and with m edges.
We shall present an algorithm to find the separator of Theorem 1 in O(m) time.

The proof of Theorem 1 leads directly to the following algorithm.

procedure SLOW CHORDAL SEPARATOR (graph G);
begin
C-{};
while some component A of G- C has weight more than n/2 do

while some vertex x of C is adjacent to no vertex of A do
CC-{x}
od;

v some vertex of A adjacent to every vertex of C;
C-C{v}
od;

return C
end

Since a vertex is added to C at most once, the main loop is executed at most n
times. The whole algorithm is easily implemented to run in O(mn) time. To speed it
up, we need to make four observations.

First, a close examination of the proof of Theorem 1 reveals that vertices are
added to C in the reverse of a perfect elimination order. We can save searching by
precomputing this order.

Second, we do not really need to delete vertices from C as we go along. We can
just keep adding vertices to C until no component of G-C weighs more than n/2;
it then turns out that the desired separator is the last vertex added to C, plus all
vertices of C adjacent to that vertex. This observation is formalized and proved in
Lemma 8 below.
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Third, we can find "the last vertex added to C" by looking at the vertices in the
opposite order, that is, in perfect elimination order. We simply start with an empty
graph H and add vertices of G to it in perfect elimination order until some connected
component of H weighs more than n/2. Then the last (highest-numbered) vertex
added to H is the same as the last (lowest-numbered) vertex added to C by the slow
algorithm.

Finally, we do not have to represent the connected components of H explicitly.
The fast algorithm maintains an array w(1..n) indexed by vertex number. When the
ith vertex is added to H, the array entry w(i) is the weight of the connected component
containing that vertex. Because G is chordal, it turns out to be possible to maintain
w by doing only one operation per vertex. This observation is formalized and proved
in Lemma 7 below.

procedure FAST CHORDAL SEPARATOR (graph G);
begin
real array w (1..n);
find a perfect elimination ordering {v 1," , vn} of G;
for 1 to n do w(i) weight of vi od;
i1;
while w (i) <= n/ 2 do
comment w(i) is the weight of the connected component

of {vl,..., vi} that contains vi;

Vk lowest-numbered neighbor of vi with k > i;
w(k)w(k)+w(i);
ii+l
od;

comment is minimum such that some component
of {v,..., vi} weighs more than n/2;
C vi plus all of vi/,..., vn adjacent to v;
return C
end

We will now prove that this algorithm correctly finds the separator C mentioned
in Theorem 1. This requires two lemmas.

LEMMA 7. Consider the subgraph of G induced by vl," vi. At the beginning of
the ith iteration of the while loop, w( i) is the weight of the connected component of this
subgraph that includes vi. (That is, the comment in the while loop is correct.)

Proof. The lemma is immediate for 1. Suppose it is true for 1, 2,..., i- 1,
and consider the situation at the beginning of the ith iteration of the loop.

Originally w(i) was the weight of vi, and something was added to w(i) during
the kth iteration if and only if k < i, Vk is adjacent to vi, and vk is adjacent to no Vh
with k < h < i. We will show that each connected component of {vl, , vi-1} contain-
ing a vertex adjacent to vi had its weight added to w(i) exactly once.

Let A be a connected component of {v,..., v_}. If A has no vertex adjacent
to vi, nothing was added to w(i) during an iteration for any vertex in A.

Suppose A has a vertex vk adjacent to v, and suppose Vh is the highest-numbered
vertex of A. Thus k <-h < i. There is a path from vh to vi through vertices numbered
no higher than i, so by Lemma 4 there is a monotone path from Vh to Vi. Since Vh is
the highest-numbered vertex in A, the monotone path must be a single edge. Therefore
Vh is adjacent to vi and, by the inductive hypothesis, the weight of A was added to
w(i) during the hth iteration. If k < h then, again by Lemma 4, there is a monotone
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path from vk to Vh. This implies that vk is adjacent to a vertex numbered higher than
k but lower than i, so nothing was added to w(i) during the kth iteration.

This shows that each connected component of {vl,." ", vi-l} adjacent to vi has its
weight added to w (i), and nothing else is ever added to w (i). Thus w (i) is the weight
of the connected component of {vl, ", vi} that contains vi.

LEMMA 8. Consider the smallest such that some component ol {vl, , vi} weighs
more than n/2. Then C {vi}U{v: k > and v is adjacent to vi} is a clique whose
removal J:rom G leaves no component that weighs more than n/2.

Proof. Define the boundary of a set A of vertices, written OA, to be the set of
vertices of G-A that are adjacent to vertices of A. Let be as in the statement of
the lemma, and let A be the heaviest component of {v, , v}.

First, C is a clique, because vi is simplicial in {vi+l,’’’, vn} by the definition of
a perfect elimination ordering.

Second, v must be in A, because A; weighs more than n/2 but no component
of {va, , vi-} weighs more than n/2. Then vi is the last vertex of Ai in the perfect
elimination ordering, so the same argument as the proof of Fact 3 in Theorem 1 shows
that vi is adjacent to every vertex in OAi. Therefore C is OA U{vi}. Since A is the
only component of G OAi that weighs more than n/2, OA {v} is a set whose deletion
from G leaves no component that weighs more than n/2. 71

The correctness of the algorithm follows immediately from these two lemmas"
Lemma 7 implies that the while loop finds the smallest such that some component
of v,..., vi weighs more than n/2, and then Lemma 8 says that the algorithm finds
the desired separator.

It remains only to analyze the algorithm’s running time. Finding a perfect elimina-
tion ordering takes O(m) time by an algorithm of Rose, Tarjan, and Lueker [19].
The while loop is executed at most n times. Finding the lowest-numbered neighbor
of vi means looking at all its adjacent verticeS, for a total of O(m) over all vertices.
Finally, the computation of C takes O(m) time. Thus the total running time is O(m).

5. More separator theorems. We can generalize the separator theorem in 3 to
find separators that chop a chordal graph into fragments no larger than a specified
weight, or to separate a chordal graph according to two or more unrelated sets of
weights simultaneously.

These generalizations are suggested by similar results on planar graphs. Lipton,
Tarjan, and Gilbert [14, Thm. 2], [5, Thm. 1.3.2] used the v/-vertex separator
theorem for planar graphs quoted in 1 to derive analogues of the following two
theorems for planar graphs. (In the planar theorems the sizes depend only on n, the
number of vertices, and not on m, the number of edges.) The chordal versions follow
from our Theorem 1 by the same methods, so we omit the proofs.

THEOREM 2. Let G be a chordal graph with n vertices and m edges, with nonnega-
tire vertex weights that add up to 1. Let e > 0 be given. Then there is a set of x/m/e
vertices ofG whose removal leaves no component with weight more than e. The separator
can be found in O(m log n) time.

TrEOREM 3. Fix e > O. Let G be a chordal graph with n vertices and m edges,
with two sets of vertex weights that both add up to n. Then the vertices of G can be
partitioned into sets A, B, and C such that C separates A from B, C has
vertices, neither A nor B has weight of the first kind more than n/2, and neither A nor
B has weight of the second kind more than (1/2 + e)n. The separator can be found in
O(m time.

For example, we can take one kind of weight to be 1 for every vertex, and the
other kind to be proportional to the vertex degree. Then Theorem 3 allows us to
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divide a chordal graph into two pieces each with at most n/2 vertices and at most
(1/2 + e )m edges.

Theorem 3 can be applied recursively to obtain a /-vertex separator theorem
for any fixed number of sets of vertex weights. In general the separator divides the
graph into two pieces, each with at most half the first kind of weight and at most 1/2 + e
of each of the other kinds of weight. This quickly ceases to be practical, because the
constant factor grows double-exponentially with the number of kinds of weight.

6. Remarks. The algorithm in 4 finds a separator in O(m) time. No algorithm
faster than O(m) is possible if the input graph is represented by listing its edges or
by listing the vertices adjacent to each vertex. However, the graph might be more
compactly represented. For example, the chordal graph corresponding to an acyclic
hypergraph (as described below) is given as a union of cliques. The sum of the sizes
of the cliques can be much less than m. It might be possible to find a separator in time
linear in this sum.

Chordal graphs have applications in a number of areas, and we expect the
separator theorems above to be useful in some of them. One such area is solving
sparse linear systems by Gaussian elimination, where one wishes to find an elimination
ordering for a sparse matrix that causes relatively few zeros to become nonzero. If
the matrix is symmetric and only symmetric permutations are allowed, this corresponds
to finding a small set of edges whose addition makes a graph chordal. Finding the
smallest such set of edges is an NP-complete problem [20], but there are heuristics
that perform well in many cases. One heuristic, called nested dissection, uses separators
in planar graphs to give good orderings for systems that come from differential
equations on two-dimensional regions 13]. We are investigating the use of the chordal
separator theorem to show that any graph has some nested dissection ordering that
is close to optimum.

Chordal graphs and their separators also appear in database theory, and we
believe that our results might be applicable there. A database represents a relation
(called a universal relation) on a set of attributes. The universal relation can be
represented implicitly by storing its projections on some subsets of the attributes.
Consider the hypergraph whose vertices are attributes and whose hyperedges are the
subsets whose projections are explicitly stored. A separator in this hypergraph implies
an association (technically, a multivalued dependency) between each component and
the separator. This association often corresponds to some relationship in the real
world among the attributes involved.

The hypergraphs of database schemes from the real world are nearly all acyclic
[1]. Acyclic database schemes have a number of desirable properties; roughly, in an
acyclic scheme pairwise consistency between the projections implies that the universal
relation is consistent. A hypergraph is acyclic if and only if the graph formed by
replacing each hyperedge with a clique is chordal.

Acknowledgment. We thank Dale Skeen for several stimulating discussions, and
particularly for helping us understand acyclic database schemes.
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STABILITY OF BLOCK LU-DECOMPOSITIONS OF MATRICES
ARISING FROM BVP*

R. M. M. MATTHEIJ’I

Abstract. An analysis is made of the stability of block LU-decompositions of matrices arising from
boundary value problems of ODE. It is based on an investigation of the growth properties of the related
recursion (or ODE) solution spaces. It is shown how blocks in the upper right corner or the lower left
corner of the matrix may generate blocks in the decomposition that exhibit a growth like some of these
solutions, unstable ones not excluded. In particular, for partially separated boundary conditions the desire
to reduce memory space may thus conflict with that for actual stability of this decomposition.

AMS(MOS) subject .classifications. 65F05, 65L10

1. Introduction. An important part in the solution of boundary value problems
(BVP) is played by the question of how the linear systems that arise from discretization
and/or linearization have to be solved. Since these systems usually involve sparse
matrices, much of the attention has been focused on efficient and memory space saving
techniques. A particularly interesting class of methods is based on an appropriate
rearrangement of the rows of this matrix after which a block LU-decomposition is
performed in which pivoting is restricted somehow. These methods do quite well in
the case of so-called separated boundary conditions, where the initial conditions make
up for the first rows of the matrix and the terminal conditions for the last rows. For
some examples; see e.g. [1], [2], [3], [4], [12], [13]. In particular, if we are dealing
with a method that can be thought of as a one step recursion, the system matrix can
be repartitioned as a block tridiagonal system. In a previous paper [10], we showed
that in the last case a block LU-decomposition, where the L and the U are block
bidiagonal matrices, is stable, if it exists. It is a natural question to ask if a similar nice
result can be established for more general boundary conditions (BC), where the matrix
has a more complicated structure. An obvious generalization seems to be given by so
called partially separated boundary conditions, cf. [6, pp. 2tt], where an appropriate
rearrangement and a block partitioning give rise to a system which is block tridiagonal
and moreover has a nonzero block in the upper right or lower left corner. The advantage
of such an approach is obvious: by this we save memory space since either the upper
triangular matrix or the lower triangular matrix then is again block bidiagonal. Unfortu-
nately, however, it will turn out that these savings may have to be paid for by lack of
stability. Indeed we shall see that the proper rearrangement of the BC in the system
is not a matter of placement of more or less accidental zero rows in them, but rather
is dictated by inherent growth properties of the solutions of the difference and usually
also of the differential equations. In the separated case the nonzero rows in either the
initial or the terminal condition, in fact take care of the decreasing or increasing modes,
respectively; this is why utilization of zero rows to minimize the storage problem is
tightly connected with the proper rearrangement and partitioning in order to have
stability there.
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This paper is built up as follows. First, in 2 we give a number of notational
conventions that will be used in this paper. Then in 3 we derive the BVP matrices
and indicate how we may find an LU-decomposition. In 4 we show how important
it may be to have a proper splitting of the BC. Section 5 describes a special LU-
decomposition in which the incremental matrices of the one step recursion are trans-
formed onto upper triangular form; the L and U of this representation can be found
fairly easily and will be used for estimation purposes. In 6 we derive some useful
expressions for blocks of the inverse of the system matrix; this is used in 7, where
we give the actual stability estimates and the conclusions based on them. Finally, in

8, we derive a strategy for determining a proper splitting of the BC in practice.

2. Notational conventions. In the sequel we use some notation, which is summar-
ized here for convenience.

2.1. Partitioning of matrices. Open letters like A denote Nn Nn matrices. For
n n matrices A we use superscripts to denote a partitioning like

1 a12](2.1) A= A21 A22.],

where A is a k k matrix (k a generic constant). A single right superscript then
denotes the corresponding column partitioning

(2.2) a (a a2)
(i.e., A is an n k matrix).

A single left superscript denotes the corresponding row partitioning

(2.3) A=

(i.e., A is a k n matrix).
Wherever necessary we shall provide an identity matrix with an index in order to

indicate its order, e.g., I. For all other matrices such an index will never refer to order.

2.2. Norms. The norm I1" is the 2-H61der norm. For the associated matrix norm

(2.4)

2.3. Products and sums of matrices. We define

(2.5) 1-I Aj
Am’" A if m-> l,

; I if re<l,

(2.6) 2 A=
A,n+’"+A ifm>-l,

j=l 0 if m<l.

3. Block matrices arising from one step recursions. Quite a few discretization
methods for boundary value problems lead to a one step recursion, which, together
with the BC, give rise to a sparse linear system for the solution values at a certain
grid. Such methods are multiple shooting, where the grid consists of the shooting
points, one step difference methods, where the grid equals the grid of discretization
points, or collocation, where the grid is formed by the endpoints of the collocation
intervals (cf. [1], [5], [6], [11], [12]). Suppose the desired solution values are denoted
by xl,""", xN, then. in its most simple form this recursion reads

(3.1) xi+ Gixi ci, 1 <= <= N 1.
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Here the Gi are n x n matrices and the xi and ci are n-vectors. For such problems one
could just as well write down a similar recursive relation for decreasing index. Therefore,
we shall assume that the G are nonsingular. Although we often have a recursion like
Fx+ Gxi + d, where Fi is nonsingular, we restrict ourselves to the form (3.1) to
avoid complications in the notations later on. The more general case can be deduced
fairly straightforwardly from the results of the present discussion.

A general BC can be written as

(3.2) Mx + MNxv b,

where M and MN are n x n matrices and b is an n-vector.
Assumption 3.3. Let MI and Mu be normalized such that max (IIMII, IIMv II) 1.
The relations (3.1) and (3.2) lead to a linear system

(3.4) Ax=b,

where

(3.5)

G

= 0

M

-I 0

G2 -I

MN

X CI

CN--

.x_ b_
Of course we may associate many other linear systems with (3.1) and (3.2). As we
shall see later it might be advisable to split the BC into parts and write them as first
and last equations in the system in order to assure the stability of block LU-decomposi-
tions. Such a splitting can be described by premultiplying/ by an appropriate permuta-
tion matrix P. For notational reasons we adopt the convention that the last k rows
are written first. (In 5 this will appear to lead a more natural notation of the blocks.)

We can then write P as

(3.6)

In k i. 0

where P is a permutation matrix of order n. The resulting matrix P/ then reads

/ := I/(3.7)

2/

G -I

G2

0

-I
where Mj PMj, j 1,2.

By repartitioning/ into a matrix of n n blocks we obtain an almost tridiagonal block
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matrix. We shall use the notation

B1
Az

(3.8)

Hi

C1

Be Cz 0

0 AN-I BN-1

Apparently the Ci systematically have zeros in the first n- k rows and, similarly, the
Ai have zeros in the last k rows.

The aim of regrouping the BC and repartitioning it into the form (3.8), is that
we would like to obtain a representation that allows for a stable block LU-decomposi-
tion, which preserves as much of the sparsity structure as possible. It is not restrictive
to require then that the lower triangular matrix has identity diagonal blocks. Hence
we look for the decomposition

(3.9)

where

(3.10a)
_

and

, =_U,

L2

S1
LN-1

I

(3.10b) U

C1

PROPERTY 3.11. The Li, S and T have the same systematical zero rows as
HI and HN, respectively.

If we premultiply by a block diagonal matrix D,

(3.12) =diag (/3,...,/)N-l, I).

where the /)j are nth order nonsingular matrices, and premultiply this by a matrix
as in (3.6) with/ instead of P, and moreover if we postmultiply/ by

(3.13) -= diag (/1,’’’,/N),
where the Ej are nth order nonsingular matrices, then it can easily be seen that the
matrix , defined by

(3.14) / Ill
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systematically has zero rows in the same blocks as/ has. In this case a pivoting strategy
for a block LU-decomposition, as in [5], can be described by such P, D and :, where
these matrices are suitable permutation matrices (depending on the strategy and the
problem). Partitioning / as in (3.8) and using a similar notation for the blocks by
providing them with a cap, we obtain, from the decomposition,

(3.15) _1,

the following relations for the blocks of

_
and U"

(3.16) fi.i/.-_la, 2, , N 1;

(3.17) i=2,... ,N-l,

(3.18)

(a)

(b)

(c)

(3.19) (b) -/i_,, i=2,...,N-2,

(c)

We are interested in bounds for _-’ and I1- II, since they appear as stability constants
in error analyses of the solution of (3.4), cf. [14]. We shall use the following

PROPERTY 3.20. Let II-’ll <- K. If II_ll <- Ix, then II-lll <- KIx,. If I111 <= Ix2 then
I1-- -< 2.

Hence, if is not large and in addition Ix and Ix2 are not large, we may call the
LU-decomposition stable.

4. On proper splittings of the BC. An important question in forming the system
matrix A is how many and which rows of the BC are used to make up for the first k
rows in this matrix. Since B, (or /,) will act as the first pivotal block it is obvious
that 2Ar, has to have full rank. Since we can always premultiply the BC by a nonsingular
matrix P say, such that, if rank M, < n, PM, has zeros in its first (n- l) rows, it is
not restrictive to assume the following.

Assumption 4.1 If rank M, < n, then the first (n l) rows of M1 consist of zeros.
If the BC are separated, i.e., if the last rows of Ms only contain zeros, then it

is natural to try to utilize this fact by taking k n-l, i.e., A has a block tridiagonal
form. The stability of this case has been investigated in [10], [12]. It is also most
tempting to similarly utilize zero rows in so-called partially separated BC (cf. [6]),
where nonzero rows in the one matrix do not necessarily correspond to zero rows in
the other. If < n and we again take k n- then it follows that the S in

_
are zero.

(In a similar way we may utilize zeros in 2MN to obtain an LU-decomposition, where
all T, if N-2 are zero.) However, the stability of such an LU-decomposition is no
longer assured in general. To show this we consider the following example.
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Example 4.2. Let {xi} satisfy the recursion

(4.3) xi+ 0 3 x + 1 <- <- N- 1
0 0

and the BC

(4.4) 1 0 Xl"[" 0 1 0 XN
0 --1 0 0 0

It is simple to check that

Vi Xi I11
Apparently (4.4) is partially separated. Utilizing the zero row in MN we therefore
may choose for 3

(4.5) A

6-1 0 0

0-1 0

0 0-1

o
o
0 0

0 0 0

1 0 0

0 1 0

0-1

1 0

3 0

0 0 0

-1 0 0

0-1 0

0 0

0 0

0 0-1- 1 0

0 3 0

o o
0 0 0

0 0 0

0 0 0

-1 0 0

0-1 0

0 0 -1

1 0 0

0 1 0

From the theory in [9] it already follows that (4.2) and (4.3) is a well-conditioned
problem. This is also shown by Table 4.1.

TABLE 4.1

N 5 10 20 30

2.71 2.99 3.00 3.00
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We obtain the following and U"

1 0 0

(4.6)

where

0 1 0

0 0 1- o o
0 0 0

0 0 0

0 0 0

0
X

0

2 2]

1 0 0

0 1 0

0 0

0 0

xN-I

(4.7) U

0 0-1 0 0 0

1/2 1 0,-1 0 0

0 -I 00 3 0

1 0

0 3 0

0 0 0

-1 0 0

0-1 0

0 0 -1

0
xN-1

We see that the last block row in

_
has elements of the order of 2N-I and similarly

Ut contains an element of this order. We therefore have to conclude that this splitting
of the BC is not a desirable one. In Table 4.2 we have indicated the dramatic effects
of this; "max error" denotes the maximal error (in norm) of the xi, 1,..., N (NB
the machine constant is .2 10-16).

In all cases we obtained an accuracy of the order of the machine constant if we
solved the system by a Crout routine.

We see from Table 4.2 that the error in the solution is almost proportional to
2N-1. Obviously, this error growth factor is of the same order as 11-I1 or ]lUll (both
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TABLE 4.2

N

max erroF

2N-1

5 10 20 30

.5 -15 .6 -13 .5 -10 .6 -7

.2 +2 .5 +3 .5 +6 .5 +9

about IIxN-I]I). It seems plausible to relate this factor to the growth in the backward
direction of the solution (1/2)i(1, 0, 0)T (which satisfies the homogeneous part of (4.3)).
It is easily seen that backsolving via U allows errors to blow up by 2N-1 indeed. For
reasons that will become more transparent in the next sections we better, e.g., choose
2M1 (0 -0) and permute the first and second row in the Ai; what we can see already
is that this would lead to pivotal blocks with no eigenvalues smaller than one. From
this example we therefore conclude that we should look for splittings of the BC such
that in the resulting block LU-decomposition the back substitution does not generate
solutions that grow like the decaying solutions in the backward direction, and also
such that the forward substitution via IL does not generate solutions that grow like
increasing solutions. One should realize that such a stability argument may be in conflict
with memory space considerations.

5. A special decomposition. In order to investigate the stability of block LU-
decompositions it is useful to compare such decompositions to a special one, resulting
from a certain recursive transformation that brings the incremental matrices Gi onto
upper triangular form (cf. [8]). The initialization of this transformation is based on
the following"

PROPERTY 5.1. Let M1 be as in Assumption 4.1. Let P be a nonsingular matrix

of which the lower right block is also nonsingular. Then there exists an orthogonal
matrix Q1 such that MI := PM1 Q1 is upper triangular. Moreover, if (= rank M) < n
then the first (n-l) columns of Jll are zero and the lower right block of 111 is
nonsingular.

Proof Apparently the last rows of PM1, are linearly independent. By
orthogonalization of these (cf. Gram-Schmidt) we find the last columns of Q1, after
which Q1 can be completed by using a basis for the orthoplement as first (n-l)
columns.

The matrix P in Property 5.1 may, e.g., be the permutation matrix P in (3.6) or
any other "rearranging" matrix. Now calculate orthogonal matrices {Qi} and upper
triangular matrices { V} which satisfy the relation

(5.2) GiQi Qi+ Vi, 1," N- 1,

and finally a matrix MN, defined by

(5.3) ]/N := PMNQu.

Denote the global transformation matrices (cf. (3.12)) by

Q 0

(5.4) [
0
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Q1

(5.) f: .
0

Finally define a permutation as in (3.6). Then the matrix defined by

(5.6)
has the form (where the minus sign in the first row has been added for convenience)

vl

(5.7) /:=

21 22--MN -M

0 0

0 0

0 22 0 -I

0 0 VN_111 VN_112

0 22VN--

0 0

0 -I

~11 "12Ms N/s

We remark that if k =< n- I, then rl is zero (however note that k >= n- is necessary
to make B1 nonsingular). We now look for an LU-decomposition of , viz.,

(5.8)
By our construction 1’/122 must be nonsingular; moreover nonsingularity of Gi implies

11nonsingularity of Vi and hence of V It now turns out that all diagonal blocks in
(5.7) are actually equal to the pivotal blocks, except for the last one. By straightforward
calculations we obtain the following blocks of

_
and l (cf. [10]) (we use a similar

notation similar to (3.16) if, now with tildes)

(a) Ul--
(5.9)

11 i=2,’’’ ,N-l;(b) u= v

(5.10)

(a) 2--[ V122[/122]-1
0

(b) i__[-Vi221 0J0 0
i=3,’’" ,N-l;
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(a)

(5.11) (b)

(c)

(a)

(5.12) (b)

(c)

Finally we obtain

(5.3)

where

]’-[ N-- Ur221- t22-1-1
lj=l vj k.Va N

A,f 11 -l- A4r121-’f22-1--1 ’f21
N N

11 22 --1 21 N--1 11 1}1 -1 {O[M1 M+[H= V ]-

__/- ...1_ I-IN--1 W.221- "/t22-1-1 -21
lj vj LV N

A,’f 12 -1- A’fl2F Af22"1-1A,f22
N N

11 22 -1 22M [M Ms

(5.14) 12= Y’, V V2 H Wy2.
/=1 j=l j=l

Although these expressions look fairly complicated, they show directly that all elements
11]-1of

_
and are indeed "reasonably" bounded if both ]lH=l V21] and I][U--i V

are reasonably bounded. They also show that if either one of these grows exponentially
with l, (as in Example 4.2) we can expect instability. Therefore our attention in the
next sections will first focus on the problem of how to find estimates for them.

6. Green’s functions associated with/. As an intermezzo we give below explicit
expressions for blocks appearing in /-1, in terms of a fundamental solution of the
following recursion. Let the sequence of n n matrices {1,’", N} satisfy the
transformed homogeneous recursion (cf. (3.1) and (5.2))

(6.1) (I)i+ Villi, 1," N- 1,

and also the BC

(6.2) ]Q11fYP1"k" ]lN dPN L

Note that although the i are not necessarily upper triangular, we see that i-1
]+1

should be upper triangular for each and j. For j= 1,... ,N-1 define Green’s
functions {Zi,j} Y= satisfying

(6.3a) Zi+l,j ViZi,i + Ai,j,
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where

(6.3b)

and

(6.4)

It can easily be checked that

I if i=j,
Ai’j--

0 if ij

Jl Z1, + ]/INZN, O.

(a) Zi --dPiMNdPN
-1(I) j+ (I) (I) ;+11 .+. (I) iJ/1 (I) --1(I) j+ for j,

(6.5)
(b) Zi (iJ/ll () (-1 -1 ()iN()N

-1
j+l "--(i(j+l (I)j+ for i>-j+ 1.

If we formally define

(6.6) Zi,N ’= () i,

and denote by 7/the matrix with Zi, as the ij block; then

(6.7) /7/=I)-1

where p-1 is defined as in (3.6) and where P= L Hence we see that

(6.8) IIll- IIh,-ll.
7. Estimates for I1_-111 and IIU-111. In this section we shall show that there exists

at least one suitable arrangement of the BC such that a block LU-decomposition of
the resulting matrix A gives lower and upper triangular matrices the inverses of which
are bounded by a constant of the order of 11-111 (cf. the "exponential growth" in
Example 4.2).

A preliminary step consists of investigation of growth factors ("Floquet numbers")
in the matrix MIG-(... G_I. For this we use the singular value decomposition (cf.
[7])

(7.1) MI G-(1... GL Po,P1,

where Po and Pu are orthogonal matrices and Z is a (semi) positive diagonal matrix,
say
(7.2) Z diag (era,..., r,),

of which we assume O" :< 0"2 <:" :< O" If rank M1 < n then O" O’n- O.
The matrix P0 is used to premultiply the BC matrices M1 and Mv. According to

Property 5.1 there then exists an orthogonal matrix Q1 such that

(7.3) ]I := pIM1Q

is upper triangular. In order to be able to apply Property 5.1 we have to show that
the lower right block of P0 is nonsingular. For this we can use

PROPERTY 7.4. If the first n-l rows of M1 are zero, then. the matrix Po in the
singular value decomposition (7.1) has a block diagonal form, i.e., the upper left block
is an n- l) (n- l) matrix and the lower right block is an x matrix.

Proof. Write

(a) MI G-(1"’" GI-IpN PoE.
The matrix on the left in (a) has the first (n- l) rows equal to zero, whereas the matrix
on the right has the first (n-l) columns equal to zero. Hence the upper right block
of Po and therefore also the lower left block must be zero.
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We now use the matrix Q1 to generate {Qi}, {Vi} as in (5.2) and//v as in (5.3).
It is not restrictive to identify PN and Qn as may be deduced from"

PROPERTY 7.5. PnQv is block diagonal like P0; moreover the lower right block is
a diagonal matrix (therefore only containing + 1).

Proof. From (5.2), (7.1) and (7.3) we obtain

( 0) K an Ixl matrix.M1V-’’" vrl_, plON
K

Thus K is upper triangular and at the same time the product of a diagonal (nonsingu]ar)
matrix and an orthogonal matrix; hence the lower right block of P’O must be a
diagonal matrix.

In constructing the singular value decomposition (7.1) we have the freedom to
choose the first (n-l) rows of P; so we might as well take them equal to those of
O. Moreover, premultiplying P and P0 by a diagonal matrix consisting of l does
not affect E. Hence we may assume that P

The next lemma now shows how the choice of the partitioning and the growth of
the S and blocks can be related in terms of the singular values

LEMMA 7.6. Let k n-l (for k see (3.6) and for see Assumption 4.1). Let
-’11 . Then

(i) V I’ V’ n(1 + );
=1

(ii) V V [M,
j=l

m- V - XProo From the proof of Property 7.5 we see that M[H= ] Sinceefind from (6.2) that 1+and from (6.5b) that lZN,i=lli+l,
we thus have

I IO,O-li+l NZNi, +IO 0-2ZN, NZNi, + ZNi.,
j=l

By considering upper left (k x k) blocks in this relation and noting that [IZ, IIA-’
]A-’]], we immediately obtain (i).

In order to show that (ii) holds we first deduce from (6.2)

(a) oio;’ =i1+,;1.
Utilizing that OO;1, , and ONO’ are uppertriangular, we then find

(b) (,): :, [(;, ll]-, =_:, I’(,,I),,
Moreover, since (,O,O,)(ONOI)=, there holds

(c) ’(iI)"(;’)’: M1:

(note that ,1’ is a diagonal matrix).
We now substitute (b) and (c) in the following relation, which is obtained from

(a) by taking the lower right blocks on both sides

which gives us

(d) (i;i):: }+(i)::(;,)::.
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Finally it follows from (7.1) (cf. also proof of Property 7.5) that/122((I)71(I)N)22 ,__.22,
i.e.,

(e) iii-x=]-,ll
O’k+

Using II’,ll-<-I1/-111 II-’ll, IIll <- IIMII <-- 1 and (e) in (d) yields the required
estimate. S

Before givi.ng our final stability estimate, we would first like to note that the
expression for UN in (5.13) can be much simplified. Indeed we have"

PROPERTY 7.7. For ON there holds

22 22V [M1
j=l

t.j=l

N--1

-I+ H
]=1

IV"/2.2 ]/1122]-112N2

Proof. We only have to show that J’/ll’ __1,/2. This can be done as follows"
Define a fundamental solution {xFi} (i.e., i+1 V), which satisfies the BC 21-
(0’I) and IFN (I 0). We then have

V;1 _- I 0
L j=l

XI)’I XI/’N N--1

0 I 0 H V
]=1

Hence, we see

0 12 (/rl(i)l(i)Tql)12 (],/lXiJ, l,ti? 7,/1)12 27/11a[H V]]122- 12[H V22-1]
from which the assertion simply follows.

We can now prove the following:
THEOREM 7.8. Let k e n- 1. Let [[--lll K, V [[a, . Then

I1[11 s g a + 1 + [1 + (1 + )],
k+l

IlOIla(g-1) I+T+ 1+ +2+(3+q).

The proof follows from estimating [ by block columns and @ by block rows.
Estimates for these blocks, see (5.9), (5.10), (5.11), (5.12) and Property 7.7, can be
found using Property 7.6. (Note that a bound for ll[2]-ill also follows from Property
7.6.)

Remark 7.9. The factor N in the estimates in Theorem 7.8 might be a slight
overestimate since we used a very simple estimation technique for 1[] and II@]l. Of
much greater importance, however, is the fact that this result shows that an improper
splitting (i.e., a wrong choice of k) may result in a large ll[[I and II@ll. It should be

11 11 N 11noted that X (=[ V ]- as such appears at several places in [ and
N--1 22 22 --1 21 22whereas [22]--1 (=i=1 [M only appears postmulnphed by MN or MN.

Hence, if either " 21 22Mt or MN or MN S nonzero, then we can expect that at least the
q term or the -q+l term should appear in a realistic estimate thus making this estimate
qualitatively sharp.
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A special case occurs when ]’/I 1, ]’/121 and AT/ are zero. We then have"
PROPERTY 7.10. Let k n-l, so 2(4 1, M]2 are zero, and let 1, 2N2 be zero

too (i.e., the BC are separated). Then the estimates in Theorem 7.8 hold without the
O"k and O’k+ terms.

Proof. Apparently we have r rk =0. Substitution of 7/ =0 in (5.11)
and Property 7.7 therefore makes the blocks containing [I] V)]-1 disappear. A
similar result follows for blocks containing HyN__-

As was indicated in Property 3.20 we can given bounds for II _ and using
Theorem 7.8. We are, however, interested in bounds for II’-lll and II - ll, i.e., for
the stability constants that arise in an actual LU-decomposition of A, where a restricted
pivoting strategy is used (see (3.14)). Because of the special structure of M (see
Assumption 4.1) the permutation of rows in the BC, i.e., the premultiplication by/,
can be described by a block diagonal matrix of which the upper left (n-l) (n-l)
block is an identity matrix. From Property 7.4 we see that we may assume that the
matrix P0 has a similar block diagonal form as this matrix fi, so #-1=
diag (/,. ,/,/pl). Hence to any LU-decomposition (3.14) we can associate a special
LU-decomposition (5.6) for which there holds

(7.11) 6--1-1 =):= diag (It, D1, , DN-1, I,-t).

Comparing (3.14) and (5.6) now gives

(7.12) A --1#--1 A--I --1--1/7--1,

whence, using A _J and _J, we obtain

(7.13) --lj-1 _-16-1-1 -16"
In (7.13) the leftmost matrix is block upper triangularand the rightmost matrix is
"block" lower triangular, however with a structure like D. Simple computation shows
that the latter matrix can be repartitioned as

(7.14)

where Kj has a structure like

(K2 being an ll matrix) and F like

As was shown in [10], if we think of (3.14) as arisen from restricted pivoting in rows
s(n- 1)+l+ 1 through sn +l (s 1,..., N-1) we obtain the following estimate:

PROPERTY 7.15. Let k >= n-l and IIGll <- for all i. Then IIgll--<
1 + max (% g(l, n- l)) and IIF II <-- a. Here g(l, n- l) is the growth factor arising in
partial pivoting, which is bounded by l/n-12t.
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Estimates for blocks of f_, f_-, U and 0- can now be given easily using (7.13).
In particular we have"

THEOREM 7.16. Let k >= n- l, IIA-[I <- x and IIG, II--< for all i. Then

’i -< K(2 + max % g(l, n l))(1 + r+l1),

IILII-<- (2 +max (% g(l, n-/))(1 + crk).

From Theorem 7.16 we deduce that it is preferable for k to be such that both
rk=<1 and o’k/-I =<1. Moreover we need to require k=>n-l in order to have a
nonsingular first pivotal block. This leads to:

COROLLARY 7.17. In order to have stability one should choose k such that k
max n- l, n- m), where m is the largest integer such that r1, , rn_,, < 1.

Remark 7.18. Although we only gave upper bounds in Theorem 7.16, it follows
from what has been said in Remark 7.9 and Property 7.10 that these bounds are fairly
realistic. As a consequence the particular choice k n-l, which is recommended in
so-called partially separated BC may be very bad from a stability point of view. Another
consequence is a confirmation of a result already established in [10], viz., that the
restricted pivoting strategy for separated BC is stable.

As we already mentioned in 3, one might as well consider the BVP as a backward
problem. In that case a rank deficiency of MN might be utilized. Based on similar
considerations now for the singular values of MNGN-I’"" G1, an analysis could be
given to indicate how the stability is affected by the partitioning of the BC. Such an
analysis, however, is straightforward and will not be carried out.

8. A stable LU-decomposition technique. In the previous section we showed
that block LU-decomposition might be a hazardous undertaking if no information
about the singular values of M1G-1... G_I is available. However, this information
is not easy to obtain as some of these singular values may be very small and others
may be extremely large. Hence, apart from the fact that the calculation of the matrix
MG-{1... G_ would make a method less attractive regarding the computational
cost, it may also be practically impossible to compute the ri. In order to find a more
useful way to decide on the proper splitting of the BC, we first note that if we could
compute the matrices V, appearing in 5, in advance, we might be able to predict the
increments [HjN=- v/l-l]-1 and HjN=- 22V This would give reasonable bounds for

(8.1) 11 ]I1 vl and [._22]--1 H Vj22[M~22]-1.
[_j=l j=l

Indeed, if I1[/C/2]-111 is large, then the problem as such is ill-conditioned (cf. [9]), so

I]A-II is large; this also appearsthough indirectlyfrom Lemma 7.6(ii), where
(1 +O’-I+I)K should be a bound for 11[/2:]-111 for any choice of k. Moreover, I}Mlll
and so II]r is bounded by 1. Now assume that is not large; then we may expect

1]- V::II remainthat a proper splitting will assure that both II[H = v and IIH 
bounded by moderate constants (cf. Lemma 7.6). The actual role of Q is less important
in this. Indeed, one should realize that Q1 is in fact the initial value of some fundamental
solution (of which the ith iterate equals I]1 GQ1), so it is most likely that in an
arbitrary choice of Q the first few, say k, columns are initial values of unstable modes.
Now it was shown in [8] that the recursive computation of the V via (5.2) leads to
matrices of which the magnitudes of the diagonal elements reflect the increments of
the various growth classes that build up a fundamental solution of (3.1). In particular,
if these first k columns of Q define unstable modes then the larger increments will
approximately appear as the first k diagonal elements, whereas the smaller ones
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(corresponding to the stable modes) appear thereafter. Of course this also implies
lub (V22) < 1 and glb (V 1) > 1, which implies that the forward substitution and the
backward substitution recursion are expected to be stable. This then provides a simple
way to detect a proper splitting, i.e., a value for k. Only in special circumstances
therefore may we expect the choice of O1 as, e.g., induced by Property 5.1 to
be inappropriate. In those cases we will see a disorder of the diagonal elements
of the Vi, at least initially. Then we stop after a few steps and try another Ol, Ol
found, say, from permuting the columns of Q1 (since a disorder at the diagonal of
V1 apparently means that at least one of the first k columns of Q1 defines a stable
solution).

This matter is discussed in more detail in [11]; also there it is indicated how a
solution x of (3.4) may be computed without block LU-decomposition. Nevertheless
we like to show that this algorithm may also be viewed as a special block LU-solver.
We briefly describe the successive steps.

Step I. Compute Q1 as in Property 5.1 (with P I), and compute the first few
matrices Qi+l and V (say i= 1, 2, 3) via (5.2), and check whether these V or their
product are "ordered" (i.e., elements along the diagonals appear in decreasing modulus
going from above to below).

Step II. If these V are not ordered, choose a different matrix 01 by permuting
appropriate columns (see Remark 8.3), compute the thus induced upper triangular V
(via (5.2)) and check the ordering. Repeat till ordering is found satisfactory. Then
proceed to Step III.

Step III. Complete the computation of the {Qi} and { V}. Sum up the logarithms
of corresponding diagonal elements of the V, i= 1,..., N-1. Then define k as the
largest diagonal element index (counting diagonal elements from above to below) for
which this sum of logarithms is positive, under the restriction that k >-n- I.

Step IV. Compute an orthogonal matrix P such that PMIQ1 (or PM101) is
uppertriangular.

Remark 8.2. As is intuitively clear only the nonzero rows in M1 (in case < n)
can control solutions of the recursion and can only control the stable solutions in a
meaningful way (as these need initial conditions). Since the first (n- l) columns of Q1
are orthogonal to these nonzero row vectors, they are not controlled by initial conditions
and hence cannot induce stable modes (more formally this is also a consequence of
[10, Thm. 4.6]). This means that we should expect the first (n-l) diagonal elements
of the Vi to represent increments of unstable modes only.

Remark 8.3. From Remark 8.2 it follows that in case rank (M1)< n, no such
permutation of columns of Q1 is needed, where any of the first (n-l) columns is
involved. Therefore any 01, being the product of Q1 and such a permutation, will also
leave the zero column structure of MQ the same as in MQ. Once we have found
an acceptable matrix 01 (inducing the required splitting in the Vi), we can find an

orthogonal~block diaonal matrix P of which the upper left block is an identity matrix,
such that M1 PMIQ1 has the form as described in Property 5.1.

Remark 8.4. The computation of k as is indicated in Step III is much safer than
a computation based on information in the first few V. For instance the incremental
growth may be close to 1 for a few solutions (thinking of small discretization steps of
the ODE which gave rise to the problem). This might make a decision where to split
very hard.

To illustrate this strategy we shall apply it to Example 4.2. Since M1 is upper-
triangular, we could start with Q1 L Note that G1 is already uppertriangular, but
has a disordered diagonal, viz., (1/2, 3, 1/4). Hence, we have to permute columns of Q1.
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There is no restriction, as n, so we take the obvious choice

(8.5) 01 0
0

We then compute orthogonal {(i} and upper triangular { Vi} satisfying

(8.6) G,0, Oi+l Vi.

We obtain, e.g.,

02=-- 3 -1 V= 0 3x/10/20 0

o o ,/-i-6 o o -For large we obtain

(8.8) 0,+, - - _
v,= 0 5

0 0 429/2 0 0 .25

Obviously we should choose k 1. The matrix//1 becomes

.16

.48

0

(8.9)
Ml= 0 0 1 1 0 0 0 --1

0 0 0 0 0 1 0 0

Summarizing, we obtain the following system:

0 -1 0

0 0 -1

3.2 .16 0

0 .48 0

0 0 .25

0 0 0

0 0 0

0 0 0

-1 0 0

0 -1 0

0 0 -1

3.1 -.03 0

0 0 0

0 0 0

0 1 0

0 -1 0 0

0 0 -1 0

3 -1 0 -1

0 0

0 0 0

o 0 0

0 0

0 0

0 0

0 .5 0 0 -1 0

0 0 .25 0 0 -1

0 0 0 0 1 0

Apparently we have 0-1 (_)N-1, 0"2 2N-1 and 0"3 4N-l. From Table 4.1 we
deduce I1-111 3; finally we see that IIGll3. Now if we apply Theorem 7.8 or
Theorem 7.16, we find that the choice k 2 (cf. (4.5)) would give us estimates for
lira-all, I1-111-- 3N2-a, The choice k 1 just gives estimates of the order 3N.
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THE k-DOMINATION AND k-STABILITY PROBLEMS ON SUN-FREE
CHORDAL GRAPHS*

GERARD J. CHANG’ AND GEORGE L. NEMHAUSER"

Abstract. The k-domination problem is to find a minimum cardinality vertex set D of a graph such
that every vertex of the graph is within distance k from some vertex of D, where k is a positive integer.
The k-stability problem is to find a maximum cardinality vertex set S such that the distance between any
two distinct vertices of S is greater than k. For sun-free chordal graphs, 2k-stability and k-domination are
dual problems. In particular, a minimum cardinality set of vertices D such that every vertex is within distance
k of D has the same cardinality as a maximum cardinality set of vertices S such that the distance between
every pair of vertices in S is greater than 2k. To obtain this result we establish some theorems about the
powers and radius of chordal graphs. Efficient algorithms for both problems on sun-free chordal graphs are
obtained by transforming them to solvable cases of the clique covering and vertex packing problems. We
also prove the NP-completeness of both problems on bipartite and chordal graphs.

Key words, combinatorial optimization, graph theory, domination, stability, chordal graphs

AMS(MOS) subject classifications. 05C70, 90C10

1. Introduction. All graphs in this paper are simple, i.e. finite, undirected, loopless
and without multiple edges. The length of a path from a vertex x to a vertex y is the
number of edges in the path. The distance de(x, y) from vertex x to vertex y in a
graph G (V, E) is the length of a minimum length path from x to y; de(x, y)
if there is no path from x to y. If d(x, y) <= k for all y S, x is said to dominate S within
distance k. A k-dominating set (k-covering) is a vertex set D

___
V such that every

vertex in V is dominated within distance k by some vertex in D. A k-stable set
(k-packing, k-independent set) is a vertex set S___ V such that d(x, y)> k for every
distinct pair of vertices x and y in S. The k-domination problem is to find the
k-domination number 8k(G), which is the minimum cardinality of a k-dominating set
in G. The k-stability problem is to find the k-stability number ak(G), which is the
maximum cardinality of a k-stable set in G.

S is a 2k-stable set if and only if for every pair x and y in S there is no z V
such that d(z, x)<= k and d(z, y)<= k. Thus 8k(G)>= a2k(G), which establishes a weak
duality between the 2k-stability problem and the k-domination problem.

Suppose we assign each vertex v of the graph a real weight wv. The weighted
k-domination problem is to find a k-dominating set D such that vo wv is as small
as possible. Similarly, the weighted k-stability problem is to find a k-stable set S such
that os w is as large as possible.

Applications of domination and bounds on the 1-domination number have been
presented in several papers; see Liu [1968], Berge [1973], Cockayne [1978], and
Abbott and Liu [1979]. For trees, Meir and Moon [1975] have proved strong duality,
i.e. 6k(G) a2k(G) for all k >= 1. Recently, Farber [1981] has proved 31(G) ce2(G)
for a class of graphs that he called strongly chordal. In this paper, we use the more
descriptive termsun-free chordal These graphs will be defined in 2.

The k-domination and k-stability problems are NP-complete for general graphs.
The 1-domination problem is NP-complete for planar graphs with maximum vertex

* Received by the editors August 11, 1982, and in revised form May 27, 1983. This research was
supported by the National Science Foundation under grant ECS-8005350 to Cornell University. The results
given here also appear in Gerard Chang’s Ph.D. dissertation (Chang [1982]).

5" School of Operations Research and Industrial Engineering, College of Engineering, Cornell University,
Ithaca, New York 14853.

: Present address: Department of Mathematics, National Central University, Ching-li, Taiwan 320,
Republic of China.
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degree 3, planar graphs that are regular of degree 4 (Garey and Johnson [1979]),
chordal graphs (Booth [1980]) and undirected path graphs (Booth and Johnson [1982]).
For any fixed k, the k-domination problem is NP-complete for bipartite graphs and
chordal graphs of diameter 2k + 1 ( 5). Similar results for the k-stability problem are
also given in 5.

Although the 1-domination problem is NP-complete on chordal graphs, efficient
algorithms are known for certain subclasses of chordal graphs. In particular, linear
algorithms have been found for the 1-domination problem on trees (Cockayne, Good-
man and Hedetniemi [1975]), powers of forests (Slater [1976]), powers of block graphs
(Chang and Nemhauser [1982]), directed path graphs, which include interval graphs
(Booth and Johnson [1982]), and for the weighted 1-domination problem on trees
(Natarajam and White [1978], Kariv and Hakimi [1979]). Farber [1981] recently gave
a polynomial algorithm for the weighted 1-domination problem on sun-free chordal
graphs, which is a class that includes all of the above graphs for which polynomial
algorithms are known.

The main purpose of this paper is to establish strong duality and to give good
algorithms for the (unweighted) k-domination and k-stability problems on sun-free
chordal graphs. To obtain these results, we need some properties of the powers and
radii of sun-free chordal graphs. A main result here is that powers of sun-free chordal
graphs are chordal. When the original version of this paper was written in April of
1982, we knew that if powers of sun-free chordal graphs also were sun-free chordal,
then the duality and algorithmic results would generalize to the weighted k-domination
and k-stability problems. Using their very nice characterization of totally balanced
matrices, Edmonds and Lubiw (personal communication, April 1982) proved this
conjecture, see Lubiw [1982].

To motivate our approach, we now sketch a new proof of Meir and Moon’s duality
result for trees. The vertex packing (stability) problem is just the 1-stability problem
and we use a (G) for a (G). The clique coveringproblem is to find a minimum cardinality
collection of cliques of a graph G (V, E) whose union is V. The clique covering
number O(G) is the minimum cardinality of a clique covering of G. For every graph
G, we have the weak duality inequality O(G)>= a(G).

For a vertex set S of a graph G (V, E), the subgraph induced by S is defined
by Gs=(S, Es), where Es={(x, y)lx, yeS and (x, y) E}. A graph G is perfect if
O(Gs)- t(Gs) for all vertex induced subgraphs Gs of G. Examples of perfect graphs
are chordal graphs, comparability graphs and unimodular graphs; see Berge [1973]
and Golumbic [1980]. The kth power of a graph G V, E) is the graph G k V, E k)
with (x, y) Ek if and only if 1 <-de(x, y)-<_ k. G2 is called the square of G.

Suppose G is a tree; then the following three properties hold.
(P1) S is k-stable in G if and only if S is stable in G k.
(P2) G k is chordal for all positive integers k.
(P3) A vertex set S is dominated by some x within distance k if and only if S is

a clique in G2k.
Note that (P1) transforms the 2k-stability problem on G to the vertex packing problem
on G2k, i.e. a2k(G)-a(G2k). (P3) transforms the k-domination problem on G to
the clique covering problem on G2k, i.e. 6k(G) 0(G2k). (P2) guarantees the perfection
of G2k, so that a(G2k) O(G2k). Thus a2k(G) 6k(G) for any tree G.

This proof of Meir and Moon’s result motivates the study of graphs that satisfy
the above properties. (P1) and the "only if" statement of (P3) obviously are true for
all graphs.
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In 2, we study graphs satisfying (P2). Graphs that satisfy (P3) are hard to
characterize, so we will use a property that implies (P3). Let d(G) and r(G) be the
diameter and radius of G, respectively. Since r(G)>=d(G)/2 for all graphs, we say
that G has the minimum radius property if

(P4) r(H)= [d(H)/2] for any connected induced subgraph H of G.
(P4) is true for trees (Jordan [1869] and K6nig [1950]). In 3, we characterize graphs
that satisfy (P4) and prove that (P4) implies (P3). By putting together the results of
2 and 3, we obtain tk(H ceek(H for any subgraph H of G for sun-free chordal

graphs.

2. P-chordal graphs--Graphs whose powers are chordal. In a graph G V, E),
a hole is a simple cycle without a chord; i.e. no pair of nonconsecutive vertices of the
cycle is joined by an edge. A graph is chordal (triangulated) if it does not have a hole
of length greater than 3.

A vertex x of G=(V, E) is called simplicial if its neighborhood Nbd(x)=
{zl(z, x) E} is a clique. In general, the n-neighborhood of a vertex x is defined by
Nbd (x, n)={zld(z, x)= n}. If d(x,y)=k is finite and O<-n<-k, then the set of all
vertices of distance n from x and distance k- n from y will be denoted by Bet (x, n, y).

In a graph G- (V, E), an ordering [Vl, v2," , vn] of the vertex set V is called
a perfect vertex elimination scheme (or simply a perfect scheme) if each vi is a simplicial
vertex of the subgraph induced by {vi,’", vn}. In other words, each set Xi=
{ vje Nbd (vi)l] > i} is a clique.

A subset S of V is a vertex-separator of vertices x and y (or simply an x-y
separator) if x, y S, and x and y are joined by a path in G, but not joined by a path
in Gv-s. If no proper subset of S is an x-y separator, then S is a minimal x-y
separator.

We now give three characterizations of chordal graphs.
THEOREM 2.1. Each of the following conditions is necessary and sufficient for a

graph G to be chordal.
(1) (Fulkerson and Gross [1965]). G has a perfect vertex elimination scheme.
(2) (Dirac [1961]). Every minimal vertex separator is a clique in G.
(3) (Walter [1972], Gavril [1974], Buneman [1974]). G is the intersection graph of a
family of subtrees of a tree.

The main purpose of this section is to study graphs whose powers are chordal;
we call these graphs P-chordal (P stands for power). Balakrishnan and Paluraja [1982]
and Duchet [1982] (see Theorem 2.4) proved that odd powers of chordal graphs are
chordal. However, even powers of chordal graphs are not necessarily chordal.

An n-sun is a chordal graph G (V, E) whose vertex set V can be partitioned
into Y {Yl, Y2," Yn} and Z {Zl, z2,. Zn} satisfying the following three condi-
tions.

(S1) Y is a stable set in G.
($2) (Zl," ", z, zl) is a cycle in G.
($3) (Yi, Zj) e E if and only if j or j + 1 (mod n).
In the above definition, the z’s are called inner vertices of the n-sun and the y’s

outer vertices. We may call G an n-sun, an even sun, an odd sun, or only a sun depending
how much we specify about n. If Z is a clique, we call G a complete n-sun. Laskar

It is to be understood in the sequel that whenever xi is an arbitrary vertex on the cycle (xa," , Xn, Xl),
addition of indices is assumed to be modulo n.
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Yl

y. Y2 y.s
O Y2

Y3
Y4 );3 Y4

5-sun Complete 5-sun

FIG. 2.1. Examples of suns.

and Shier [1980], [1982] used the term sunflower for sun; Farber [1981] used the
terms incomplete trampoline for sun and trampoline for complete sun.

A chordal graph is called sun-free chordal if it does not have a sun as an induced
subgraph.
The main result of this section is the following theorem.

THEOREM 2.2. The following statements are equivalent for any graph G.
(1) G k is chordal for every positive integer k.
(2) G and G2 are both chordal.
(3) G is chordal and if G has an n-sun with n >-4 as an induced subgraph, where

the n-sun is defined on {Yl,""", yn, Zl," zn}, then d(yi, yj)= 2 for some
and j such that j

_
{ 1, i, + 1 }.

COROLLARY 2.3. The following statements are equivalent for any graph G.
(1) Hk is chordal for every induced subgraph H of G and every integer k >= 1.
(2) H and H2 are chordal for every induced subgraph H of G.
(3) G is n-sun-free chordal for n >- 4.
After the original version of this paper was completed, we learned that Laskar

and Shier [1982] had proved (2):>(3) of Theorem 2.2 and that Duchet [1982] had
proved:

THEOREM 2.4. If G k is chordal, then Gk+2 is chordal.
Observe that (1)<::>(2) because of Theorem 2.4. So Duchet and Laskar and Shier

independently proved parts of Theorem 2.2. In the rest of this section we will prove
Theorem 2.2 from (1)==>(2)=:>(3)=:>(1) by using Lemma 2.6 given below. Lemma 2.6
is also an important tool in a sequel to this paper (Chang and Nemhauser [1982a]).

LEMMA 2.5. Suppose C is a cycle of a chordal graph G. Then for every edge (u, v)
of the cycle there is a vertex w of the cycle that is adjacent to both u and v.

Proof. We will prove the lemma by induction on the length of C. The case of
length (C)= 3 is clear. Suppose the lemma holds for all cycles C’ of length<
length (C)-_> 4. Since G is chordal, C has a chord that decomposes C into two cycles
C1 and C2 whose lengths are less than length (C). Suppose C1 contains the edge (u, v).
By the induction hypothesis, there is a vertex w of C1 that is adjacent to both u and
v. Since w is also a vertex of C, the lemma holds.

LEMMA 2.6. Suppose G V, E) is a chordal graph and k >= 2 is a positive integer.

If G k has a hole H (xl,..., xn, xl) of length n >= 4 and Pi is a shortest path from
to Xi/l in G for 1 <- <- n, then the following three properties hold.

(1) k is even and d(xi, xi+l)=k for l<=i<=n.
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(2) Let Z be the vertex of Pi equidistant from X and Xi/ for l<-_i<-_n; then
(ZI," Zn, Z1) is a cycle in G.

(3) There exist Yl," ", Y such that {yl," ", Y,, z,. , z} induces an n-sun such
that d xi, yi) k2-1 for 1 <= <- n.

Proof. We will use the terminology j is near to if j { i-1, i, i+ 1}.
CalM 1. If j is not near to and there are u p and v pi such that d u, v) <- 1,

then u v, d(xi, u) d(x+i, v), d(Xi+l, U)= d(x, v) and d(x, xi/l)=
de(xj, Xj+l)= k.

ProofofClaim 1. Since j is not near to i, (xi, xj) E k and hence de (xi, xj) > k. Thus

de(x, v) + de(Xi/l, v) de(x, X+l) -< k < de(xi, xj)

<=de(xi, u)+de(u, v)+de(xi, v),

which implies de(x+l, v) < de(x, u)+ de(u, v). Similarly, de(xi, u) <
de(x+l, v)+ de(u, v) since ]+ 1 is not near to i+ 1. Hence de(x, u) de(x+, v) and
de(u, v)= 1. Similarly de(X+l, u)= de(x, v). These equalities imply that

k < de(xi, x) <= 1 + de(x, X/l) 1 + de(x, xj/a) <= 1 + k,

which implies de (xi, xi/a) de(x./a) k. So Claim 1 holds.
As a consequence of Claim 1, p intersects p if and only if j is near to i. Let C

be the closed path in G given by (pl, P2," ",Pn). Choose a common vertex
and p so that de(x, wi) is as large as possible.

CLAIM 2.

(2.1) de(x, w) + de(xi+a, wi+l) + 1 <= de(x,, Xi+l)

and de(x, w) < k/2 for 1 <-iN n. (Thus C can be drawn as in Fig. 2.2.)
Proof of Claim 2. Note that

de(xi_, wi) + de(xi, wi) d(xi+a, xi)

k < de xi- 1, xi+ <- de xi- 1, wi + de (xi+ 1, Wi )"

Thus

(2.2) 2de(x, wi) + 1 <- d(x, wi) + d(X+l, wi) d(xi, Xi+l) <= k.

Similarly,

(2.3) 2de(xi+, wg+) + 1 <- de(x, x+).

Together (2.2) and (2.3) imply (2.1), and (2.2) implies de(x, w)< k/2. So Claim 2
holds.

Now delete the subpaths from x to w and x+a to wi/a of p for all and consider
the cycle C’ (wl,..., w2,’", wn,..., wa) of length N-> n in G.

CLAIM 3. Suppose u, v) is a chord of C’ such that u pi and v pj, where j is not
near to i. Then k is even and de(xi, u) dG(Xi+l, u) d(x, v) d(x+a, v) k/2.

Proof of Claim 3. The chord (u, v) decomposes C’ into two cycles Ca
(u,. Wi/l," w,. v, u) and C2= (v, w/a," wi," u, v). By Lemma
2.5, there is a vertex w in Ca that is adjacent to both u and v. Assume w Pro. Since
j is not near to and w C1, m is not near to both and j + 1. Thus either

k + 1 -<- de(xm, Xi) dG(x,, w) + dG( w, u) + de(xi, u)
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FIG. 2.2

or

k + 1 <- do(xm,/j+l) -< de(x’, w) + de(w, v) + do(Xj+l, v).

By Claim 1, do(xi, u)= do(Xj+l, v), so we have

(2.4) k- do(xm, w) <- dG(Xi, U) do(x+, v)

in either case. Replace x" by x’/ in the above arguments, then

(2.5) k- do(x’+, w) <= dG(Xi, U) do(X+l, v).

Summing (2.4) and (2.5) and using do(x’, w) + do(x’/, w) do(x’, x’/l) <- k yields

(2.6) k12 = dG(xi, U) do(Xj+l, I.)).

Now choose w’ in C2 adjacent to both u and v, and repeat the above process to obtain

(2.7) k/2 <- do(Xi+l, u) do(x, v).

Claim 3 follows from (2.6) and (2.7).
Suppose u =Pi f"l Bet (wi, 1, wi+). By Lemma 2.5, there exists a vertex v in C’

that is adjacent to both wi and u. Assume v p and note that j i. Since (w, v) is a
chord of C’ such that vepj and wispi-1 f"lpi, and by Claim 2 dG(Wi, Xi)< k/2, Claim
3 implies that j is near to both i-1 and i. Then n _>-4 implies j e {i-1, i}. Since j i,
we have ] i- 1.

Choose Zi-l(Zi) between wi and Wi-- (Wi+l) such that (zi-1, zi)e E (such an edge
exists, e.g. (v, u)) and do(w, zi-1)+do(w, zi) is as large as possible. In the cycle
C"= (Wl," , W-l,’’’, zi-1, zi,’", W+l," , Wl), by Lemma 2.5, there is a vertex
w adjacent to zi-1 and z. Assume w e p,,. By the choice of Zi- and zi, m is neither
i- 1 nor i. Hence m is not near to both i- 1 and i. Assume, without loss of generality,
that m is not near to i. By Claim 3,

(2.8) do(xi, zi) do(xi+, zi)-- de(x’, w)= do(x’+l, w)-- k/2.

Thus dc(xi, X/l)= k and zi is equidistant from xi and Xi/l. By (2.8),

k + 1 <= do(x, x’) <= do(x, Z-l) + 1 + de(x,,, w) do(xi, zi-1) + 1 + k/2

which implies

(2.9) k/2 " dG(xi, Zi_I).

Also

k + 1 <= d(x_, Xi+l) =< d(x_, Zi_I) -" 1 + do(x+, z) dG(xi-, Zi--1) "t" 1 + k/2
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which implies

(2.10) k/2 <- dG(Xi-1, Zi-1).

Together (2.9) and (2.10) imply that d(xi_, xi) k and d(Xi_l, Z-l) d(xi, Zi--1)
k/2. Since this is true for all i, (1) and (2) of the lemma hold.

To prove (3), for each consider the cycle Ci=(z_,. along
P-I ", w,. along p. , z, Z-l). By Lemma 2.5, there is a vertex y of Ci that is
adjacent to both zi-1 and z. This implies that d(x, y)= k/2-1.

Now {Yl,""", Yn} is a stable set in G, since if not, then there are iS ] such that
(y, yj)e E, which would imply d(x, xj)<= k-1. Finally, yi is not adjacent to z if
]{i-l,i}, otherwise d(x,x)<=k and (x,xi) would be a chord of H. So
{y, ., yn, z,..., z,} induces an n-sun.

Proof of Theorem 2.2 from Lemma 2.6.
(1 :=> 2). This is clear.
(2:=>3). Suppose G and G2 are chordal. If G has an induced n-sun on

{Yl,’", Y, Zl,"’, z,}, then C=(yl,..., y,, Yl) is a cycle in G2. So C has a chord
(Yi, Y]), which implies that d(yi, y) 2 for some and ] that are not near to each other.

(3::>1). Suppose Gk has a hole H=(Xl,’" ,xn, xl) of length n->4. Then (1)
and (3) of Lemma 2.6 hold and there are and ] not near to each other such that
d(yi, yj) 2. Thus

dG(xi, Xj) <- d(x, yi) + d(y, y) + d(yi, x) <= k/2-1 + 2 + k/2-1 k.

This means (x, x) E k, which contradicts the fact that H is a hole in G k.

3. 3-sun-free chordal graphs---graphs with "minimum radius". The diameter of
a graph G is defined by d(G) =maxx.yvd(x, y). The radius of G is r(G) =minxve(x),
where e(x) maxy v d(x, y), and a center is a vertex x such that e(x) r(G). For any
connected graph G, d(G) and r(G) are finite and r(G) <= d(G) -< 2r(G). In this section,
we will prove that 3-sun-free chordal graphs are exactly those graphs that satisfy (P4)
and that (P4) implies (P3).

LEMMA 3.1. If G is chordal and d(x, y)= k, then Bet (x, n, y) is a clique for
O<=n<_k.

Proof. Since Bet (x, 0, y) {x} and Bet (x, k, y) {y} are cliques, we can assume
l<=n<=k-1. In this case, x and y are not adjacent. For any path pxy
(x x0, x,. , x,, y) from x to y, choose as large as possible such that d(xo, x) <= n.
Then d(xo, x) n, otherwise d(xo, xi) -< n 1 implies that d(xo, xi+) <- d(xo, x) + 1 <= n,
which contradicts the choice of i. So Pxy contains some vertex x in Nbd (x, n). This
proves that Nbd (x, n) is an x-y separator. For any z in Bet (x, n, y), a shortest path
from x to y intersects Nbd (x, n) only at z. So any sub-separator of Nbd (x, n), in
particular a minimal one, contains Bet (x, n, y). Hence, by Theorem 2.1, Bet (x, n, y)
is a clique.

The following lemma is a simple consequence of Laskar and Shier [1981, Lemma
l(d)].

LEMMA 3.2. In a chordal graph G, if C is a clique and x is a vertex not in C such
that d(x, y) k is a constant for all y C, then f) rc Bet (y, 1, x) is not empty.

LEMMA 3.3. Suppose G=(V,E) is a chordal graph on the six vertices
{Y, Y2, Y3, z, Z2, Z3}. If {z1, 22, Z3} is a clique and (Yi, Zj) E if and only if + 1
j (mod 3), then {Yl, Y2, Y3} is a stable set and hence G is a 3-sun.

Proof. If Yl were adjacent to Y2, then the cycle (ya, Y2, z2, z3, Yl) would be a hole,
which is a contradiction. Similarly, Y3 is not adjacent to Yl and Y2.
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LEMMA 3.4. Suppose G is connected and chordal. Ifx is a center, y Nbd (x, r(G)),
u e Bet (x, 1, y), and y’ is such that d(u, y’) > d(x, y’)_-> r(G)- 1, then d(y, y’)_->
2r(G)-2. Ifd(y, y’) 2r(G)- 2, then there exists u’ Bet (x, 1, y) such that d(x, y’)
d(u’, y’) r(G)- 1.

Proof. Choose a shortest path Pxy from x to y containing u. Next, choose a shortest
path Pyy’(Pxy’) from y(x) to y’ such that Pxy(Pxy,) intersects pyy, on a path from y to
w (from y’ to w’); see Fig. 3.1. Without loss of generality, we can assume d(w, w’) is
as small as possible. If either w or w’ is x, then d(y, y’) d(y, x) + d(x, y’) >-_ 2r(G) 1
and the lemma follows. Thus suppose that neither w nor w’ is x. Let v e
Bet (x, 1, y’)f-1Pxy’. (It is possible that v- w’.) u cannot be adjacent to v, otherwise
d(u, y’)<-d(u, v)+ d(v, y’)= 1 +d(v, y’)=d(x, y’), which contradicts the assumption
d(u, y’)> d(x, y’). In the cycle C-(x, v,..., w’,..., w,..., u, x), by Lemma 2.5,
there is a vertex u’ adjacent to both x and v. Since u is not adjacent to v, u’ u and
hence u’ is strictly between w and w’ as in Fig. 3.1. By the definition of p,,y, we have

(3.1) d(w, u’)+ 1 >_- d(w, x), i.e., d(y, u’)+ 1 _-> d(y, x).

W’ WSince d(u, )<d(x, would imply that we can take the shortest path
(x, u’,..., w’,..., y’) from x to y’ to shorten d(w, w’), we also have

(3.2) d(u )>d(x, w’), i.e d(u y’) >d(x, y’).

Together (3.1) and (3.2) imply that

(3.3) d(y, y’) >= d(y, x) + d(x, y’) 1 2r(G) 2.

This proves the first part of Lemma 3.4.
If d(y, y’)=2r(G)-2, then (3.1), (3.2), and (3.3) are equalities. Thus

Bet(x,l,y) and d(x, y’)=d(u’, y’)=d(y, y’)-d(y,u’)=r(G)-l. [3

FIG. 3.1

Laskar and Shier [1982] proved that d(G)>-_ 2r(G)-3 for any connected chordal
graph. We give the following stronger result.

THEOREM 3.5. d( G) >-_ 2r(G)-2 for any connected chordal graph G.
Proof. Choose a center x such that INbd (x, r(G))l is as small as possible. Let

yeNbd (x,r(G)) and ueBet (x, 1, y). Consider the set S of all vertices w such that
either d(x, w)<-r(G)-2 or d(x, w)>-d(u, w). Suppose S= V, then u isa center such
that INbd (u,r(G))l<lNbd (x,r(G))l, which is a contradiction. So there exists some
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y’ not in S. By the definition of S, d(u, y’)> d(x, y’)>-r(G)-1. Now Theorem 3.5
follows from Lemma 3.4. D

THEOREM 3.6. The following statements are equivalent for any graph G.
(1) r(H)= [d(H)/2 for every connected induced subgraph H of G.
(2) G is 3-sun-free chordal.
Proof. (1 :=> 2). Suppose G has a hole H of length n; then H induces a subgraph

with r(H)=d(H)= [n/2J. Thus (1) implies r(H)=d(H)=l and n=3, i.e. G is
chordal. G does not have a 3-sun as an induced subgraph since r(3-sun) d(3-sun) 2.

(2:=> 1). Let H (V, E) be a connected induced subgraph of G. We will prove
that d(H)>= 2r(H)-1 by a method similar to the one used to prove Theorem 3.5.

Choose a center x such that INbd (x, r(H)) is as small as possible. Let y
Nbd (x, r(H)) and choose u Bet (x, 1, y) such that the set S(u) { wld(u, w) <= d(x, w)
or d(x, w) <= r(H)- 2} is as large as possible. Suppose S(u)= V, then u is a center
such that INbd u, r(n))l < lNbd x, r(n))l, which is impossible. So there is some
y’ : S(u), i.e. d(u, y’) > d(x, y’) >= r(H)- 1. By Lemma 3.4., either d(y, y’) >= 2r(H)- 1
and hence d(H)>= 2r(H)-1 so that Theorem 3.6 is true, or else d(y, y’)= 2r(H)-2
and there exists some u’ e Bet (x, 1, y) such that d(x, y’) d(u’, y’) r(H)- 1. In the
later case, Lemma 3.1 implies (u,u’)eE. By Lemma 3.2, there is v e
Bet (u, 1, y)71 Bet (u’, 1, y) and v’ e Bet (x, 1, y’)(q Bet (u’, 1, y’) as in Fig. 3.2. Note
that (x, v)E; also (u, v’)C:E, since (u, v’)eE implies d(u, y’)<=d(x, y’), which
contradicts y’ S(u).

y" v" x v’ y’
0 . -O

U

FIG. 3.2

Next we prove that S(u’)
_

S(u). Suppose not; then there is some y" S(u)\S(u’).
Since d(u’, y") > d(x, y") >= r(H)- 1, by Lemma 3.4, either d(y, y") >- 2r(H)- 1 and
hence d(H)>= 2r(H)-1 so that Theorem 3.6 is true, or else d(y, y")= 2r(H)-2 and
there is some u"Bet (x, 1, y) such that d(u", y")=d(x, y")=r(H)-l. Note that
d(u’, y") > r(H)- 1 and (u, u’) E imply d(u, y") >= r(H)- 1. On the other hand,
y" S(u) implies that d(u, y") <- d(x, y") r(H)- 1. So d(u, y") d(x, y") r(H)- 1.
By Lemma 3.2, there is some v" Bet (x, 1, y") f-) Bet (u, 1, y"). But (v", u’) E, other-
wise d(u’, y")<= r(H)-1, which is impossible. So by Lemma 3.3, {x, u, u’, v", v, v’}
induces a 3-sun, which contradicts our assumption. This proves S(u’)_ S(u). But
y’ S(u’)\S(u), so that IS(u’)[ > IS(u)l, which contradicts the choice of u. So Theorem
3.6 holds. ?q
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LEMMA 3.7. If G is chordal and S is a maximal clique of Gk, then the induced
subgraph Gs is connected and d(x, y)= d(x, y) for all x, y S.

Proof. We will prove that i x and y are in S, then all the vertices on any shortest
path from x to y in G are in S, which implies the lemma. Suppose Pxr is a shortest
path from x to y that contains a vertex z not in S. For all other paths from x to y in
G, there exists at least one vertex not in Pxr Let T be the set of all such vertices plus
z, then T is an x-y separator. Choose a minimal x-y separator T’_ T, then T’ is a
clique of G by Theorem 2.1. Also, x T’ since Pxy has exactly one vertex in T. For
any vertex w in S suppose, without loss of generality, that w is not in the connected
component of G\ T’ containing x. Choose a path Pw (x, , u, , w) of length not
greater than k from x to w in G, where u T’ (it is possible that u= w). Now
(z, u, , w) is a path from z to w of length not greater than k, so de(z, w) -< k and
(z, w) E k. Thus S u {z} is a clique of G k, which contradicts the fact that S is a maximal
clique in G k. Thus all vertices ot Pxr are in S. l-i

THEOREM 3.8. Suppose G is 3-sun-free chordal and k a positive integer, then
S is a clique in G2k if and only if there is some x such that de(x, y)<= k for all
yinS.

Proof. Suppose S is a clique in G2k. Without loss of generality we can assume it
is maximal. By Lemma 3.7, S induces a connected subgraph H such that dH(X, y)=
de(x, y) for all x, y S. Hence d(H) <= 2k. Since G is 3-sun-free chordal, by Theorem
3.6, r(H)= [d(H)/2] <-_ k. Thus there is some x S such that de(x, y)= dH(X, y)<--k
for all y in S.

The converse is obvious.

4. Duality and algorithms tor sun-free chordal graphs. From Corollary 2.3 and
Theorem 3.8, we know that (P2) and (P3) of 1 hold for any induced subgraph of a
sun-free chordal graph. Thus we obtain the following duality between k-domination
and 2 k-stability.

THEOREM 4.1. If G is sun-free chordal, then tk(H a2k(H for any positive
integer k and any induced subgraph H of G.

Farber 1981] has proved Theorem 4.1 for k 1. He also gives several characteriz-
ations of sun-free chordal graphs. One of these yields a polynomial-time test to
determine if a graph is sun-free chordal.

Examples of sun-free chordal graphs are total graphs of trees, line graphs of trees,
directed path graphs, which include interval graphs, and powers o block graphs (Farber
[1981]).

Because of (P2) and (P3), the k-domination problem on a sun-free chordal graph
G is equivalent to the clique covering problem on the chordal graph G2k. Hence it
can be solved in polynomial time, by Gavril’s [1972] clique covering algorithm for
chordal graphs. The dominant step is the construction of G2k, which takes O(I VIa) time.

Farber [1981], Kolen [1982] and Lubiw [1982] have given polynomial-time
algorithms for the weighted 1-domination problem on sun-free chordal graphs. Chang
1982] observed that these algorithms could be used to solve the weighted k-domination
problem on sun-free chordal graphs if powers of sun-free chordal graphs are sun-free
chordal. Lubiw [1982] proved this result.

Because of (P1), the weighted k-stability problem on G can be reduced to the
1-stability problem on G k. If G k is chordal, we can use Frank’s linear algorithm [1975]
for the weighted 1-stability problem on chordal graphs to solve the weighted k-stability
problem on G. Examples of such graphs are sun-free chordal graphs for even k and
chordal graphs for odd k.
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5. NP-completeness oi the k-domination and k-stability problems. It is easy to
see that the k-domination and k-stability problem are NP-complete on general graphs;
see Garey and Johnson [1979] for the case of k 1. In this section, we will prove that
they are NP-complete for bipartite graphs (except for the 1-stability problem), and
for chordal graphs (except for the k-stability problem with odd k).

THEOREM 5.1. For any fixed positive integer k, the k-domination problem is NP-
complete for bipartite graphs.

Proof. We prove the theorem for k 1 by giving a polynomial time reduction of
the 1-domination problem on a general graph to one on a bipartite graph.

For any graph G=(V,E) and s V, construct the bipartite graph G’=
(VUV’,E’), where V’=VU{s},V={v’IvV}, and E’={(x,y’)lx, yV and
dc(x, y) -< }U {(v, s’)[ve V’}. An example of the transformation is given in Fig. 5.1.

b a a’

b b’

c

s s

FIG. 5.1

We will prove that 61(G)+ 1 61(G’). Suppose D is a 1-dominating set of G.
Then D{s’} is a 1-dominating set of G’ since s’ dominates V and D dominates
V. So 61(G)+ 1 >= 61(G’).

Suppose D’ is a minimum cardinality 1-dominating set of G’. D’ must contain s
or s’ since s is adjacent only to s’. Without loss of generality, we can assume s’ D’,
otherwise we can use D’t_J {s’}\{s} instead of D’. Then s’ D’ implies that if v’ D’
for some v V, then D’t.J {v}\{v’} is also a 1-dominating set of G’. Therefore we can
assume D’ D t3 { s’} with D

_
V. For every u V, there is a v D’ such that (v, u’)

E’. Since (s’, u’) E’, we have v D and hence de(u, v) -< 1. This proves that D is a
1-dominating set of G, hence 61(G)+ 1 <= 6(G’).

Since the 1-domination problem is NP-complete for general graphs, it is also
NP-complete for bipartite graphs.

For general k, attach a path of length k-1 to each vertex in {v’lv V}U{s} to
obtain the bipartite graph G". Then we can prove that 61(G)+ 1 6k(G") so that the
k-domination problem on bipartite graphs is NP-complete. [3

THEOREM 5.2. For any fixed positive integer k >-2, the k-stability problem is
NP-complete for bipartite graphs.

Proof. We will give a polynomial reduction of the 1-stability (vertex packing)
problem on a general graph to a k-stability problem on a bipartite graph.

For any graph G V, E), construct a graph G’ V’, E’) by replacing each edge
e (u, v) of G by the tree Te (see Fig. 5.2), in which m [k/2J >_- 1. Since every cycle
in G’ is of even length, G’ is bipartite.

We will prove that a(G) + IEI ak(G’). Suppose S is a stable set in G, then S t,J E
is a k-stable set in G’ since (i) for any x V’, d,(e, x)<= k implies x is a vertex of
Te\{U,/}, and (ii) d6,(u, v)->4m> k for any u, yeS. Thus a(G)+lEl<=ak(G’).
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rn edges rn edges

i
O- 0------0 v

k+l-m edges

FIG. 5.2. Tree Te with u, v, e as leaves.

Conversely, suppose S’ is a maximum cardinality k-stable set in G’. For each
e=(u, ) E, if S’ contains no vertex of T\{u, v}, then S’U{e} is a k-.stable set of
G’, which contradicts the optimality of S’. Furthermore, no two vertices of T\{u,
can be in a k-stable set. So S’ contains exactly one vertex of T\{u, v}. Without loss
of generality, we can assume it is e, i.e. S’-S tO E where S c_ V. Now S is stable in
G, otherwise there are u, v S and (u, v) E so that do,(u, v) 2m -<_ k, which contra-
dicts the k-stability of S’. So a(G)+IE[>= ak(G’).

Since the 1-stability problem is NP-complete on general graphs, the k-stability
problem is NP-complete for bipartite graphs.

Booth [1980] proved the NP-completeness of the 1-domination problem on
chordal graphs. In fact, his proof showed that the 1-domination problem is NP-complete
on the subclass of chordal graphs called split graphs. A graph is split if its vertex set
can be partitioned into a stable set and a clique. Booth and Johnson [1982] also proved
that the 1-domination problem is NP-complete on undirected path graphs, which is
another subclass of chordal graphs. More generally, we have"

THEOREM 5.3. The k-domination and 2k-stability problems are NP-complete for
chordal graphs of diameter 2k + 1.

Proof. We will give a polynomial reduction of the 1-domination problem on
general graphs to the k-domination problem on chordal graphs.

For any graph G =(V, E), consider the chordal, in fact split, graph G’-
(VU V’, E) with V’={v’[v V}andE’={(u, v)[u, v Vand u # v}U {(u, v’)lu, v V
with do(u, v) <-_ 1}. An example of the transformation is given in Fig. 5.3. Now attach
a path (v’-Vl, v2,’", Vk) of length k-1 to each vertex v’ in G’ to get the chordal
graph G". Note that d(G’) 3 and d(G") 2k + 1 unless d(G) -<_ 2.

b a a’

b ’c,
a c (3’

G

FIG. 5.3
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We will prove that 61(G) k(G’t) Any 1-dominating set D of G is a k-dominating
set of G" since for any u e V, there is some v e D such that de(u, v) -< 1 and so
d,,(u, v)<-I and d,,(ui, v)=i<-k for l<=i<=k. Hence 61(G)>=k(G").

If D" is a minimum cardinality k-dominating set of G", then D= {v e V[v or
vi e D"} is also a minimum cardinality k-dominating set of G" since v dominates every
vertex dominated by vi in G" and IDl-< [D"l. For any u e V, there is some v e D such
that d,,(Uk, v) <= k and so d(u, v) -< 1. Thus D is a 1-dominating set of G. This proves
6I(G)<= 3k(G") and completes the proof for the k-domination problem.

The proof for the 2k-stability problem is similar.

6. Conclusions. We have studied duality between the k-domination and 2k-
stability problems for graphs satisfying (P2) and (P4) of 1 and have characterized
these graphs. However, condition (P2) is unnecessarily restrictive since we only require
Gk to be perfect rather than chordal to obtain the duality of Theorem 4.1. In a sequel
to this paper (Chang and Nemhauser [1982a]), we will establish this duality for chordal
graphs without 3-suns and complements of 3-suns. We will also prove a2(G)= I(G)
for odd-sun-free chordal graphs and that the "strong perfect graph conjecture" implies
Theorem 4.1 for odd sun-free chordal graphs.

Acknowledgment. We are grateful to the referees for providing several helpful
suggestions.
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ON THE CONTROLLABILITY OF MATRIX PAIRS (A, K)
WITH K POSITIVE SEMIDEFINITE*

DAVID CARLSON, B. N. DATTA AND HANS SCHNEIDER

Dedicated to Emilie V. Haynsworth

Abstract. The controllability of matrix pairs (A, K) is studied when K is positive semi-definite, and in

particular when K is in the range of the Lyapunov map determined by A. This extends previous work of
Chen, Wimmer, Carlson and Loewy, and Coppel.

Key words, controllability, Lyapunov matrix maps

AMS 1975 subject classifications. 15A24, 15A18

1. Introduction. This note is devoted to the study of the controllability of (A, K),
where A Cn’n, K Hn (the set of hermitian matrices in C"’n), and K is positive
semidefinite (which we shall write as K >-0). A well-known result, proved indepen-
dently by Chen [5] and Wimmer [11], states:

THEOREM 1. Let A C’, and suppose that K AH+HA* >=0 for some H,
K H,. If (A, K) is controllable, then A has no eigenvalues on the imaginary axis and
H is nonsingular (and, in fact, the numbers of eigenvalues ofA with positive and negative
real parts equal respectively the numbers of positive and negative eigenvalues of H).

Using Theorem 1, Wimmer extended previous results in the damping of certain
quadratic differential equations involved in linear vibration problems.

An example [3, p. 240] shows that the converse of Theorem 1 is false. However,
working independently of Chen and Wimmer, Carlson and Loewy [3] established a
converse under an additional hypothesis:

THEOREM 2. LetA C’, such that , + 0 for all eigenvalues , tx ofA. Suppose
that K AH+HA* >- 0 for some H, K Hn. Then the following are equivalent:

(i) (A, K) is controllable.
(ii) H is nonsingular.
The question thus arose as to the role of the additional hypothesis of Theorem 2

in a more complete converse of Theorem 1. We answer this question by proving a
result (Theorem 4) which will yield, under K AH+HA* -> 0, a condition equivalent
to the controllability of (A, K) in terms of the spectrum of A and the nonsingularity
of a matrix H determined by A and H. The matrix/- is obtained from H via projections
associated with an A-modal decomposition of C; see 2 for definitions. Our proof
of this result will use Theorem 1 and a result in [3] preliminary to Theorem 2; the
result itself contains Theorem 2 as a special case.

As a consequence of Theorem 4 we will be able to discuss special cases (like that
in Theorem 2) in which may be replaced by H, that is, for which (i) and (ii) above
are equivalent. This clarifies (see also [7]) Coppel’s discussion in [6] of the relationship
between dichotomies for linear differential equations and Lyapunov functions in the
constant-coefficient case. Coppel’s work, along with that of Chen, Wimmer, and Carlson
and Loewy, has motivated our investigations.

* Received by the editors December 31, 1982, and in revised form June 8, 1983.- Mathematical Sciences Department, San Diego State University, San Diego, California 92182. Per-
manent address, Mathematics Department, Oregon State University, Corvallis, Oregon 97331.
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Mathematics Department, University of Wisconsin, Madison, Wisconsin 53706. The research of this

author was partly supported by the National Science Foundation under grant MCS 80-26132.

346



ON THE CONTROLLABILITY OF MATRIX PAIRS 347

2. Definitions. So that our decompositions depend only on the spaces involved
and not particular choices of bases for the spaces, we will set our results in an equivalent
but seemingly more abstract setting. Let V be a finite-dimensional inner product space,
and let L(V), H(V) be respectively the sets of linear operators and self-adjoint linear
operators on V. K H(V) is positive semi-definite iff (x, Kx)>= 0 for all x V.

Let A L(V) have spectrum r(A) {,. , An}; let (A) be the number of
eigenvalues which are imaginary, and let A(A) I].=a (,X + Xi). Evidently A(A) 0
is equivalent to tr(A)71 tr(-A*)=0, where A* is the adjoint of A, and 8(A)=0 is
equivalent to tr(A)fl iR =0. Thus A(A) 0 implies that 6(A)=0; the converse is
false. We denote the kernel- and image of A by Ker A and Im A respectively, and the
rank of A by p (A).

Let A, B e L( V); the control space of (A, B) is C(A, B) Yr0 Im AB, the
smallest A-invariant space containing Im B. Note that C(A, B) depends only on A
and Im B and that (because of the Cayley-Hamilton Theorem),

n-1

C(A, B)= Y Im ArB.
r-----O

The pair (A, B) is said to be controllable if C(A, B)= V.
For A e L(V), we may decompose V (generally in a number of ways) as V Va@.. Vp, so that each V is A-invariant, and so that the restrictions AIV of A to

distinct V. have disjoint spectra. Following Wonham [12, p. 18], we call such decomposi-
tions A-modal. In the finest A-modal decomposition of V the V. are the generalized
eigenspaces of the distinct eigenvalues of A. We call this the A-spectral decomposition
of V. Another natural A-modal decomposition is obtained by choosing V1 V+,
V2 V_, and V3 V0, the direct sums of the generalized eigenspaces of the eigenvalues
of A with, respectively, positive, negative, and zero real parts. We call this the A-inertial
decomposition of V.

If V VaO)’" "0) Vp is an A-modal decomposition of V, for j 1,..., p we let
denote the projection in L(V) onto V which annihilates Vi. It is well-known

that P--1 Ei I, that EEi =0, i j, and that each Ei is a polynomial in A, cf. [8, p.
221 ]. Also, V W10)" 0) Wu, where each W is the range in V of the corresponding
projection Ef in L(V). For j 1,. ., p, as V is A-invariant, we may set

(1) A EAE AEi EiA,
so that

p

(2) A= Y Aj,
j=l

and for K e H(V), we set

(3) Kj EKE
p

(4) / Y K#.

Note that P(/)=YiP=a p(K).
The restrictions of the linear operations A and Aj to Vj are equal, and the

restrictions to W of the Hermitian forms induced by K and Kii are equal: if x, y e W.,

(y, K#x) (y, EjKEfx) (Ely, KE]x) (y, Kx).



348 DAVID CARLSON, B. N. DATTA AND HANS SCHNEIDER

3. Results.
LEMMA 1. Let A L( V), and suppose that V V103" " Vp is an A-modal

decomposition. If K H(V), with K >- 0, then C(A, I) C(A, K).
Proof. We observe that

(5) C(A, I) C(A1, Kll)03" ") C(Ap, Kpp) j= 1,..., p,

since Ar/ P=1AK, and Im ArK , r=0,..., n-1; it follows that ImA
=1 ImAK. Thus to prove C(A,K)C(A,), it is sucient to show that
C(A, K) C(A, K), j 1,. , p. Since E is a polynomial in A, we have

Im (AK) Im (EAEKE) Im (EAEiK) C(A, K)

and the inclusion follows. (We have not used K 0 here.)
To prove C(A, K) C(A, ), we first note the easily-proved result that K 0

implies that Ker Ker K. It follows that Im K Im and hence Im AK Im A,
r= 1,. , n- 1. The result follows.

THEOREM 3. Let A L( V), and suppose that V VI" " Vp is an A-modal
decomposition of V. Suppose that K H(V), with K 0. Then the following are
equivalent:

(i) (A, K) is controllable.
(ii) C(A, K)= , j= 1,..., p.
(iii) (A) is controllable.
(iv) (x, Kx) > 0 for every eigenvector x of A*.
Proof The equivalence of (i), (ii), and (iii) follows immediately from (5) and

Lemma 1. The equivalence of (i) and (iv) is a special case of [2, Lemma 3]. fi
We remark that a related result which holds for all K L(V) is known, Cf. [12,

p. 45, Exercise 1.5].
The equivalence of (i) and (iv) was noted in [3] (under the unnecessary assumption

that AA 0); it is in fact merely a rephrasing of Hautus’ criterion for controllability
(cf. [11]) in the case that K 0. We cannot drop the condition K0 from either
Lemma 1 or Theorem 3: let V= C2= VI V2, where V1, V2 are the coordinate
subspaces, and let

A=( ) K=( 1).
then (A, K) is controllable, but C(A, K) {0} since 0.

In Theorem 3 we considered the controllability of pairs (A, K) where the only
restriction on K is K 0. We shall now assume that K =AH+HA*O, where
H H(V). We note that the mapping H AH+HA* of H(V) into itself is onto
H(V) if and only if A(A) 0.

Before stating Lemma-2, we must take care of a trivial but awkward technicality
which we require to relate our results to Theorems 1 and 2. If K AH+ HA*, note
that K A7+Af and indeed, for any c C, K B+-B, where B
A+c(E). Then (B)=(AIV){c}. Hence, if A(AV) 0, j= 1,...,p, we
may choosecR so that A(B) 0, j=l,...,p.

LEMMA 2. Let A L(V), and let V V1" Vp be an A-modal decomposition
with A A O, j l, p. Let H, K H with K AH+HA* O. Then
C(A,K)=Im.

Proof. For j=l,...,p, since A(AI)0, we choose cR so that B=
A+ c E has A(B) 0. Also C(B, K) C(A, K) and

BHi +B A+A K O.
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By Corollary 2 of [3], then,

Im H# C(Bj, K#) C(Aj, Kjj),

and the lemma follows by Lemma 1 and (5). 1-1
THEOREM 4. Let A L(V) with 6(A)= O. Suppose that V V1" "03 Vp is an

A-modal decomposition and that, for each j=l,..-,p, A(A[V)#0. Let K
AH/HA* >= 0 for H, K H(V). The following are equivalent"

(i) (AK) is controllable.
(ii) / is nonsingular.
(iii) (x, Hx) 0 for each eigenvector x of A*.
(iv) (x, I2Ix) 0 for each eigenvector x of A*.
(v) H is nonsingular and (A*, H-1K) is controllable.
Proof. We note first that 6(A)-0 guarantees that there exists an A-modal

decomposition V= V10)’’ "03 Vp for which A(AIV)# 0, j= 1,. ,p.
The equivalence of (i) and (ii) follows immediately from Lemma 2.
To show that (i) and (iii) are equivalent, note that for any x V for which A*x hx,

(x, Kx)=(x, (AH+HA*)x)=(A*x, Hx)+(x,H(A*x))=(.+A)(x, Hx),

and use condition (iv) from Theorem 3. To show that (iii) and (iv) are equivalent, we
observe that if A*x hx, then x W. for some ], 1 -< ]-< p, where W is defined in 2.
Hence (x, Hx) (x, Hjjx) (x, I2Ix).

To show that (i) and (v) are equivalent, suppose that H is nonsingular. Th.en

A*H-1 + H-IA H-1KH-1,

and the equivalence follows easily from [1, Thm. 4].
We state the special case of A-inertial decomposition as a
COROLLARY 1. LetA L(V) and let V V+O) V_ O) Vo be the A-inertial decompo-

sition of V. Suppose K AH+ HA* >= 0 for some H, K H(V). Then (A, K) is control-
lable if and only if 6(A)= 0 and II is nonsingular.

Proof. If 6(A)=0, then V-V+0)V_ is an A-modal decomposition with
A(A V+) 0, A(A V_) 0, and Theorem 4 applies.

If 6(A) O, then by Theorem 1, (A, K) is not controllable.
As an example, let V- C2 and let

(1 ) H=(10 01) K=AH+HA*=( 22)>0.A=
2

Here 6(A)= 6(H)=0, yet (A,/) is not controllable. We have

V+=((II)) V_=(()) E=(1 ) E2=( 0 )1 -1

and

I2I E HE + E2HE,2 (1 1)1 1

which is singular.
Finally, we observe that if V V1" "03 Vp is any A-modal decomposition and

each V is also H-invariant (in particular, this is true if p 1 or if A and H commute),
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then H commutes with all Ej (cf. [8, p. 221]) and

H .. E)HE H EjE
j=l j=l

It is easily shown that YP=I EiEf is nonsingular, so that H and /-it are singular or
nonsingular together, and we may replace/ by H in (ii) of Theorem 4. If, for example,
all eigenvalues of A are known to have negative real part, then (A, K) is controllable
if and only if H is nonsingular. This result is stated in [7].
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OPTICAL SPECTRA FROM CHEMICAL TITRATION:
AN ANALYSIS BY SVD*

RICHARD I. SHRAGERt

Abstract. Given an unknown chemical mixture to which a known substance is being added, a chemist

may wish to determine a) how many substances in the mixture are reacting, b) the physical (e.g. thermody-
namic) properties of each, and c) what each substance is, or at least some physical identifier of it (e.g. an

optical spectrum). We will describe a method using singular value decomposition (SVD) that has been

applied to a variety of such problems, ranging from the analysis of simple inorganic mixtures to the
examination of mitochondrial membranes of mammalian cells. A simulated chemical example will be used
to illustrate the method, and to test the effect of matrix condition on the results. Flexibility of the method
and techniques of noise detection will also be discussed.

AMS(MOS) subject classifications. 15A18, 15A90, 80A15

Introduction. Singular value decomposition (SVD) can be a powerful tool in the
detection and characterization of chemical transitions in titration experiments 1 ]. Such
experiments, fundamental to chemical practice, start with a substance or mixture to
which a control substance (titrant) is added step by step. Gradually, the substances in
the mixture change from some initial state through possible intermediate states to a
final state, with the fraction of each substance in each state being governed by the
concentration of titrant. After each addition of titrant, allowing sufficient time for the
mixture to equilibrate, a spectrum of the mixture is taken, e.g. optical absorbance
from 300 to 700 nanometers (nm) wavelength in steps of 2 nm. Other types of spectra
can also be used, separately or in combination. However, they must all behave linearly:
the spectrum of a mixture must be the sum of spectra of the individual species (a given
substance in a given state) and the amplitude of a spectrum of a species must be
proportional to the concentration of that species.

The object of our calculations is two fold:
1. Describe the law by which the titrant converts each species to its next state

(i.e., the transition curves, e.g. see next section).
2. Compute the difference spectrum between the species being converted and the

species being produced in each transition. Such differences of spectra help to identify
the substances involved.

In mathematical terms, the goal is a matrix decomposition. The measured optical
spectra are stored in successive columns of the matrix A, so that the matrix element
aij is the optical absorbance of the mixture at the ith wavelength in the jth spectrum.
The desired decomposition is:

A=DFT +E,

where each column of D is a difference spectrum associated with one of the transitions,
the corresponding column of F is the appropriate transition curve, and E is the matrix
of experimental errors. By convention, the final column D is the spectrum that would
appear before any transition occurred, i.e. a base spectrum, and the final column of
F is all one’s, indicating that the base spectrum is applied to all columns of A before

* Received by the editors July 29, 1983. This paper was presented as an invited paper at the Minisym-
posium on Numerical and Matrix Methods with Physical Applications held in conjunction with the 1983
SIAM National Meeting in Denver, Colorado.

f National Institutes of Health, Division of Computer Research and Technology, Bethesda, Maryland
20205.
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the difference spectra are imposed. The general decomposition is now completely
specified. In subsequent sections, the kth column of a matrix A will be denoted A col k.
The symbol H denotes a matrix, while the symbol [H+] denotes hydrogen ion concentra-
tion. This notation conforms with reference [1].

A chemical example. Before explaining how SVD is used to deduce D and F,
some examples may clarify the meaning that D and F hold for chemists. A pH indicator
is a substance with two states. A site on the molecule is either protonated (occupied
by a proton) or unprotonated, and transitions between the two states are observed
through marked changes in color. The concentration of protons or hydrogen ions,
denoted [H+], is related to pH by the definition [H+] 10-pH or pH =-loglo [H+].
That is, the higher pH is, the fewer protons there are per volume of solution, con-
sequently there are also fewer protonated sites. The transition curve for fraction of
sites unprotonated as a function of pH is:

f(pH; pK)= 1/(1 + 10p-p")

where pK is the value of pH at which half the sites of a given indicator are saturated.
Each pH indicator has its own pK. Curves of this form are known to chemists as
Henderson-Hasselbach (H-H) curves. If the experiment involves, say, three pH
indicators, with pK’s denoted pK1, pK2, and pK3, then the kth column of F is f(pH, pKk)
plotted for every pH in the experiment. The kth column of D is the difference between
spectra, pure unprotonated minus pure protonated, of the kth indicator in the mixture.

In this example, the base spectrum in the fourth column of D is the sum of the
three pure protonated spectra, which is uninformative, since the individual pure
protonated spectra cannot be deduced. In many examples, the base spectrum is further
complicated by extraneous materials which absorb light but which do not undergo
transitions. In other words, the base spectrum is a burden, which raises the effective
rank of A without adding available information. Since the work required of the user
(i.e. the curve-fitting described in the next section) is proportional to the effective rank
of A, it is current practice to subtract a reference spectrum from all the columns of
A. Usually this reference is the initial spectrum in A or the average of all spectra in
A. The effective rank of A is thus lowered by one, because D column 4 has now been
replaced by a linear combination of D columns 1, 2, and 3, neglecting noise.

SYD. The singular value decomposition (SVD) of A is given by A USVr, where
A is m by n, U is rn by n unitary, S is n by n diagonal, and V is n by n unitary. The
theory of this decomposition is discussed in [1], and an Algol program is given in [2].
A FORTRAN version is available from G. H. Golub, Computer Science Department,
Stanford University, Stanford, California. The fundamental relation for our purposes
is:

A DFT + E USVT

Without noise, the example of the previous section, having three transitions, would
produce A of rank 3, assuming that the three difference spectra are linearly indepen-
dent. Therefore, only the first three singular values on the main diagonal of S will be
positive, and we need retain only the first three columns of U and V, and the upper
left 3 by 3 of S. We denote the truncated matrices as U, S, and V, where

holds exactly.
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The columns of V are linear combinations of the columns of F. But F col K
f(pH; pKk), where only pKk is unknown. Therefore F can be deduced by a series of
curve-fitting operations:

3

V col i= hi,4(F col 4)+ Y’. hi,jf(pH; pKk)
j=l

where the h’s and pK’s are parameters to be estimated. The h’s form a matrix H
which satisfies the relation

VT HFT

from which it follows directly that:

D USH.

The curve-fitting phase of this procedure can sometimes require considerable time and
skill. Each column of V must be fitted, and there must be agreement as to which pK’s
appear in more than one column of V. Since the presence of noise will introduce errors
in pK estimates, especially in columns of V associated with small singular values, the
decision as to whether a pK from V col 2 is effectively equal to a pK from V col 3
may not always be easy. Sometimes techniques involving constrained fitting or simul-
taneous fitting of the columns of V in question will be required. In ambiguous cases,
when more than one hypothesis about the number of pK’s becomes workable, an
experiment of a different design is required to resolve the issue.

Flexibility. The matrix A can be augmented or pruned whenever an advantage
is perceived in resolving the required parameters. Several different kinds of spectrum
can be included. Extraneous ranges of wavelength or pH can be removed. If more
detail is required in certain regions of wavelength or pH, denser data for those regions
can be included. (Equal spacing of the independent variables is not required.) If the
curve-fits yield ambiguous results for some pK’s, but consistent results for others, the
spectra for the reliable pK’s can be extracted independently of the others by the relation:

D col j US(H col j).

Flexibility of input naturally leads to the question, "What is a workable experi-
mental design?." In an experiment with e.g. Gaussian absorbance peaks and Hender-
son-Hasselback transition curves, a rule of thumb is" several (10 or more) values of
wavelength (or pH) in the vicinity of each peak (or H-H transition). This type of
design produces A matrices with dimensions 10’s by 10’s. The size of A can sometimes
be limited by processing the data in readily distinguishable regions (i.e. a submatrix
at a time), thus reducing an experiment with hundreds of points in each direction to
manageable size.

Finally, there is also flexibility of the choice of model(s) for fitting the various
columns of V. These models can stem from any physically derivable relation between
the concentration of titrant and the concentrations of the various species. The Hender-
son-Hasselback model is only one such model. Regardless of the models chosen, each
transition will usually appear in more than one column of f’, thus requiring agreement
in all common parameters except the scale factors

Noise. While the matrix DFr is typically of low rank, the matrix DF + E is full
rank (full rank minus one if a reference spectrum has been subtracted from the columns
of A). Therefore, all the singular values will be positive, and the truncation of the
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matrices U, S, and V will involve some statistical decisions. Assume the variance of
each element of A to be tr2, and choose r such that

sums (r + 1) <_- mno"2 < sums (r) where sums (j) s

Then the matrix USVr, where only the first r columns of U, S, and V (and rows of
S) have been retained, differs from A by no more than is attributable to noise. The
theoretical justification for this choice given by [1, Thm. 2] and [3, formulas 14-17].
However, statistical variation alone would caution against trusting such a sharp thresh-
old. In addition, the assumption of uniform variance in A hardly ever holds. For
example, variance tends to increase with optical absorbance. If variance were uniform
within each row of A, a diagonal scaling matrix Z would be chosen such that ZA had
uniform variance, but it is quite common that contrast of variance within rows is as
great as contrast within columns. One hesitates to use scaling on the right, because
the resulting V would no longer exhibit the proper transition curves.

To avoid complete reliance on an estimate of noise level to determine the effective
rank of A, the first order autocorrelations of the columns of U and V are also used.
Since the columns of U and V are already normalized, the autocorrelations of U col
and V col j respectively are approximated by:

ac u(j)= E ui-,,jui,,, ac v(j)= l.)i_l,jVi,j.
=2 i--2

If the experiment is thorough, e.g. several wavelengths on each absorbance peak and
several pH’s on each transition, then sequential absorbance values in the signal will
be highly correlated in both the wavelength and the pH directions. Those columns of
U and V that represent signal should also exhibit high autocorrelation. In practice,
an autocorrelation below 0.6 seems sufficient to reject corresponding columns of U
and V as noise. Notice that no justification can be made for this test if the experiment
is not thorough.

In summary, U col fi V col j, and s,j are removed from the system if at least one
of these conditions holds"

sums (j) -<_ mncr2, ac u(j) < 0.6, ac v(j) < 0.6.

Tests. Three laboratory examples are given in [3]. Figure 1 in [3] with the
accompanying text is especially informative because the three pH indicators in that
example were known in advance, providing a standard for checking the results. The
example was not trivial, because the difference spectra of the three indicators were
similar, and two of the pK’s were close (about 0.5 pH units apart). Either of these
conditions is enough to produce singular values close to the noise level, and nearby
pK’s cause poor conditioning of the curve-fitting process.

In this section, we will create three sets of data from the same artificial model"
three indicators, each with a single Gaussian peak in its difference spectrum, and each
with an H-H transition. All Gaussians have half-widths of 50 nm, with midpoints
denoted mi"

format example example 2 example 3

m pk 400 4.5 425 5.5 450 6
m pk 500 7 500 7 500 7
m pk 600 9.5 575 8.5 550 8
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FIG. 1. Data of the first example, from pH 2 (zero-plus-noise) to pH 12 (three fully-developed peaks).
FIG. 2. The first five columns of Ufrom example 1. Each U col is raised by 0.5j units for visual clarity.
FIG. 3. The first five columns of Vfrom example 1. Each V col j is raised by 0.5/" units for visual clarity.
FIG. 4. Theoretical (noiseless) and reconstructed difference spectra for the three transitions of example

1. Spectra for the jth transition have been raised by ] units for visual clarity.

The noise level (standard deviation of each point) is 0.02 in all cases. With each
successive example, the peak midpoints and pK’s are moved closer to observe the
effects of deteriorating condition on the estimated difference spectra.

Example 1 is an ideal case with well-separated peaks and pK’s (Fig. 1). In fact,
the transition curves could be estimated quite well by plotting absorbance versus pH
at 400, 500, and 600 nm respectively, since, at those wavelengths, only one peak
dominates, and each peak undergoes only one transition. From the SVD of data in
Fig. 1, plots of U col j versus wavelength are shown in Fig. 2, with V col j versus pH
in Fig. 3. Notice the comparative smoothness of columns 1, 2, and 3 in both U and
V. The singular values and autocorrelations of the first five components are:

2 3 4 5

singular values
ac U col j)
ac V col ])

39.28 10.69 4.62 .323 .302
999 .997 .992 .026 127
976 .976 .971 -.045 -.233

Subsequent singular values decrease gradually, and subsequent autocorrelations are
all small. It is clear that the matrix A is effectively rank 3. Curve-fits of the first three
columns of V produce pK’s that are in error by at most .03 pH unit. Resulting estimated
spectra are shown in Fig. 4 with the true Gaussians superimposed.

In example 2 (Fig. 5), it is no longer possible for the chemist to separate peaks
visually, nor is it easy to select wavelengths that exhibit "separate" transitions. Absorb-
ance at 500 nm, for example, is influenced noticeably by all three transitions. There
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FIG. 5. Data of the second example, from pH 3 (zero-plus-noise) to pH 11.
FIG. 6. Vfrom example 2 as in Fig. 2.
FIG. 7. V from example 2 as in Fig. 3.
FIG. 8. Difference spectra from example 2 as in Fig. 4.

is no wavelength that isolates the transition at pK 7, and the best hope for isolating
the pK 5.5 and pK 8.5 transitions is at the tails of the data, where signal-to-noise ratio
is at its worst. Yet, for SVD, resolution is still quite good. The first five columns of
U col j and V col j are shown in Figs. 6 and 7. It is still visually obvious that only the
first three columns of U and V represent signal. The singular values and autocorrela-
tions are:

2 3 4 5

singular values
ac U col j)
ac V col j)

39.43 8.01 2.02 .271 .266
999 .996 .984 -.050 .003
970 .973 .954 -.132 111

When fitting each of the first three columns of V to the sum of three H-H curves,
the maximum error in any pK is about .064. It is not difficult to conclude that, of the
nine pK’s generated by the curve-fits, only three are distinct. Figure 8 shows good
agreement between the true and estimated spectra, but with noticeable increase in
noise level.

In example 3 (Fig. 9), the limits of resolution are being reached. In Figs. 10 and
11, the noise levels in U col 3 and V col 3 are. considerably higher than in the previous
examples, because they are now associated with a small singular value:

2 3 4 5

singular values
ac U col j)
ac V col j)

45.57 5.59 .676 .269 .266
999 .995 .917 -.170 .114
970 .974 .910 199 -.070
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FIG. 9. Data of the third example, from pH 2 (zero-plus-noise) to pH 11.
FIG. 10. Ufrom example 3 as in Fig. 2.
FIG. 11. V from example 3 as in Fig. 3.
FIG. 12. Difference spectra from example 3 as in Fig. 4. The generating amplitudes hi,j were accepted

regardless of discrepancies in the corresponding pK’s.
FIG. 13. As in Fig. 12, permitting no discrepancies in the pK’s. V col 2 and V col 3 were fit with pK’s

fixed at their values from V col 1.

Notice, however, that the autocorrelations of the third component clearly indicate
signal, as does our visual impression. The serious problem is the closeness of the pK’s,
only one unit apart, making the curve-fitting results sensitive to noise. The pK’s, which
should ideally be 6, 7, and 8 in the first three columns of V, come out like this:

pK1 pK2 pK3

V col
V col 2
V col 3

6.02 7.04 8.04
5.98 7.69 8.11
6.08 6.73 8.08

When the h’s from these fits are used to generate estimated spectra, the results are
qualitative at best (Fig. 12). It has actually become difficult to assert that the above
pK 2 results represent only one transition.
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Before giving up on Example 3, consider one further possibility: under the
hypothesis that there are only three transitions, it is reasonable to constrain the
corresponding pK’s to be exactly equal. For example, when the pK’s of V col 2 and
V col 3 were held fixed at the values generated in V col 1, allowing only the h’s to
vary, the resulting estimated spectra (Fig. 13) were once again convincing. However,
it is difficult to conceive of a reliable strategy for improving robustness. Certainly,
pK’s from less noisy columns of are not always the most reliable. Reliability also
depends, for example, on the amplitude of the transition in V col j. Ultimately, when
the pK’s get too close, any attempt at resolving all of them will be futile.
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CHARACTERS OF ELEMENTS OF FINITE ORDER IN LIE GROUPS*

R. V. MOODY" AND J. PATERA$

Abstract. In this paper we use the theory of elements of finite order (EFO) as a new and very effective
tool for discrete methods in simple Lie groups. The EFO provide a systematic way of discretely approximating
the group. Their character values allow us to systematically determine information about Lie groups and
their representations for groups well beyond the range of standard methods.

We discuss the theory of EFO, the use of algebraic number fields to single out finite classes of them,
and methods of explicitly determining such classes. We introduce an algorithm for effectively computing
their character values which utilizes double coset decompositions in the Weyl group and a fast algorithm
for determining weight space multiplicities which we developed earlier. The methods are uniform for all
simple Lie groups.

We briefly discuss a number of applications of this work and finish with a number of tables (including
some for /6) Of EFO and their character values.

AMS (MOS) subject classifications. Primary 22E46; secondary 17B20 22E40, 2004.

1. Introduction. The theory of simple Lie groups is of major importance in
mathematics and physics. The need for ever more subtle information about these groups
and their representations and the increasing importance of higher rank Lie groups in
physics (see for example the major report of Slansky [Sla]) has led us to look for new
and more effective discrete methods for handling such groups.

In practice a Lie group G always appears in connection with one or more
representations. One of the most valuable tools at our disposal is the character of the
representation. The character is an analytic function on G containing potentially all
the information about the representation. Unfortunately, it is not always easy to
compute with the characters. However, one rarely needs the complete information
about a representation for a specific task. The idea which motivates our approach is
to replace the character by a set of its values at suitably chosen discrete points. To
handle the characters discretely (for instance, from the point of view of computation)
we need an increasing system of finite sets F1 F2, of group elements containing
representatives of different conjugacy classes of G whose union is dense in G. For this
purpose the emerging theory [Ka], [Ko], [DJ], [CQ], IMPS] of elements of finite order
(EFO) turns out to be perfectly suited. We take Fn to be carefully selected EFO
representing the conjugacy classes of elements of G of order <-n. These classes are
quite easy to describe and are particularly suitable for applications in that their character
values are algebraic integers in cyclotomic fields and hence are exactly computable.

This paper is concerned with EFO and with effective methods for computing their
character values. The general applicability of character tables for finite groups is well
known and documented (e.g. [Mi]). The potential applicability of EFO and their
character values is probably equally great although largely unexplored. As a simple
illustration, consider the problem, which frequently occurs in applications, of determin-
ing the irreducible constituents of the tensor product of two irreducible representations
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tl and (2:tl()t2--oin-----3 (i- In principle this problem is solved by any of several
well-known formulas (Racah, Steinberg). In practice these formulas are hopelessly
inefficient and quite impossible to use for higher rank groups. On the other hand if si
is the character of $i then we have sis2 i=3 s. With some knowledge of the s which
are actually possible in the decomposition (usually readily available), the evaluation
of the characters of EFO reduces the problem to the solution of a system of linear
equations IMP2].

EFO are closely connected to the existence of finite subgroups of Lie groups. In
physics, for example, they are being used in Monte Carlo methods in lattice gauge
theories (see [Sta], for instance). For some purely mathematical developments see
[Me], IS1]. The characters give basic information about the ways in which such groups
lie in Lie groups. As an example in 9 we identify the conjugacy classes of EFO
belonging to PSL(2, 13) in G2. Section 9 contains in addition a number of other
applications of our work.

We turn now to a more explicit description of our methods.
Let G be a compact simply connected simple Lie group and 9 its Lie algebra. We

fix, once and for all, a maximal torus T of G with Lie algebra 1. Define t=/tic t
(here as elsewhere in the paper, the subscript C attached to the name of real vector
space indicates the complexification of that space). We have the exponential map

(1.1) exp 2,ri(’)" t- T.

Throughout the paper all representations of G will be assumed to be finite
dimensional and analytic. If ,n-" G - GL(V) is such a representtion, then V decomposes
into weight spaces relative to T:

(1.2) V @ V,
where f c t* is the weight system of V and the V, h e 1, are the corresponding
weight spaces. In particular the adjoint representation leads to the root space decompo-
sition

(1.3) c=tc@ @ g,

where A is the root system of g relative to T.
We choose a basis

(1.4) II { of 1, ", ofl}

of simple roots in A once and for all, and let A+ denote the corresponding system of
positive roots.

Let (.,.)" t* x t- R be the standard pairing and denote by (., )" t* x t*--> R the
transpose of the Killing form. The Cartan matrix A of G is then defined by Aij
2(of, ofj)/(of, ofi). The kernel of the exponential mapping in (1.1) is the coroot lattice
Q Its Z-dual in t* is the weight lattice P in which all weight systems of representations
of G must lie. In particular the root lattice Q, which is by definition the Z-span of the
roots, is a sublattice of P. The index of Q in P is the finite number det(A), also called
the index of connection. It is a well-known fact that the weight system of any irreducible
representation of G lies entirely in one coset of P Q. This results in the partitioning
of the irreducible representations into [P: Q] classes called congruence classes [LP].
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The Z-dual of Q in is the coweight lattice, P. The coweight and coroot lattices
may be considered as the weight and root lattices for the "dual" group G defined by
the transpose of the Cartan matrix A.

Let a/’,. , a" be the simple coroots defined by (b, a’)= 2(b, ai)/(ol,i, Oli) for all

b t*. Then {al, , a ’} is a Z-basis of Q The basis {tOl, , tOl} of P dual to this

consists of the fundamental weights in P (relative to l-I).
Let (V, 7r) be a representation of G. The character of G afforded by V is the

mapping denoted chv

(1.5) x-trv (Tr(x)).

Every element of G is conjugate to an element of T, and for x exp 27fix T, x

(1.6) chv (x) dim Vx e2i(x’x),

where h runs over the weight system l) of V.
Our primary aim is to present the methods we have evolved for computing such

character values when x is an EFO. All the simple Lie groups are put on an equal
footing and we do not exploit the special properties of any particular group in the
computation of its characters. Indeed the theory of simple Lie groups is now extremely
uniform and there is no reason why the algorithms should not be equally so. Apart
from the aesthetic principle involved, there is a considerable economy in programming
in such an approach. The only other extensive computation of Lie group characters
we are aware of is that of J. Conway and L. Queen for E8 [CO]. This work, which
we found very useful, was never intended for anything other than than E8.

An important point in our work is the full exploitation of the Weyl group
W := N! T (:= means that the right-hand side defines the left-hand side), where N is
the normalizer of T in G. As is well known, weight systems and weight space
multiplicities are W-invariant and vast amounts of computing can be dispensed with by
utilizing this inherent symmetry. This is absolutely essential as size is a dominating
consideration when computing in any but the lowest rank Lie algebras. For example,
/6 is relatively modest and yet [W[ 51,840 and there are only 9 irreducible representa-
tions of dimension < 10,000 in congruence class 0 and only 6 in each of the remaining
two classes. The E6 character tables at the end of this paper were computed in a total
of 434 seconds (excluding the computation of the multiplicities, which was a small
fraction of this by comparison (see Table 2)). Actually we find that the complexity of
our algorithm depends more on the structures.of the stabilizers in W of the weights and
the EFO than the dimensions of the representations.

To explain this in more detail, recall that W acts naturally on where it stabilizes
the sets P^and O . By transpose action it acts on t* where it stabilizes the sets P, Q, A,
and every weight system . For each a A there is a coroot a" such that the
symmetry in a

(1.7) r" ck--ck-(ck, a^)a, b t*,

is in W. Furthermore, W is generated by the symmetries ri := ri, i= 1,.., l, in the
simple roots (each a " being the coroot defined before). An element A of P (respectively
xeP) is called dominant if (A, a’)_>-0 (respectively (ai, x)_>-0) for each i= 1,..., 1.
Every W-orbit in P or P^ has a unique dominant element.

CDC Cyber 835, Centre de Calcul, Universit6 de Montr6al. All programs are written in Pascal.
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Let S := {1,..., I} and for each subset Y of S let Wj be the group generated by
the rj, j e J. Such subgroups are called parabolic subgroups of W. For dominant A e t*
(respectively x t) the stabilizer Stabw (A) of X (respectively, Stabw (x) of x) in W is
Wj, where J S I(, ’) 0} (respectively, J { S I( ci, x) 0}) [Bo].

Let (V, 7r) be an irreducible representation of G and let f be the weight system
of V relative to T. Let 1,’", k be the dominant weights in V and D1,"’, Dk
their multiplicities: Dj dim VXJ. Then for x exp 27rix, x e t, we have

k

(1.8) chv(x)
j=l

where WA={wAiI we W}. Let Wj) denote Stabw (Aj). Each left coset wW) has a
unique element of minimal length (with respect to the generators rl,..., rt). Denote
the set of these minimal respresentatives by W). Then

k

(1.9) chv(x)- E Dj E
.)

e2i(w’i’x).
j=l W

The advantage of (1.8) or (1.9) is that it is possible to determine A, , A; D,. , D
efficiently without having to compute the entire weight system.

Let W: Stabw (x). Then, since (wA, x)= (Aj, w-x), elements W) in the same
right coset W: determine the same exponent in (1.9). Let nWj) denote the set of
unique [Bo, Chap. IV, Ex. 3] minimal coset representatives for Wn W/W. For each
w :W denote by n(w, K, (j)) the number of left cosets of Wi) which are covered
by WKwWj). Then

k

(1.10) chv (x)= Y D Y n(w,K, (j)) e2i(w’j’x).
j=l wKw(y)

For a regular element (one whose stabilizer in W is trivial), (1.10) offers nothing
over (1.9). However, in higher rank groups elements with nontrivial stabilizers are
abundant and for them the computation in (1.9) is reduced by a factor comparable
with the order of the stabilizer. A simple example will illustrate the point.

Consider the E6 representation whose highest weight label is o o of dimension
650. There are three dominant weights in the system heading orbits of size 270, 72,
and 1 according to Table 1.

If we now compute the character of the element

0
0

s [00100] of order 3

(see 4 for notation) then the number of double cosets in (1.10) is given by the last
column of the table. Thus the sum of (1.9) with 343 terms is reduced to one with 29

TABLE

dominant weight multiplicity left cosets double cosets

o 1 270 19o o o

o o ) o o 5 72 9
o 20o o o o o
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terms. As we will see, the calculation of double coset representatives is actually very
fast once the single coset representatives are known. In 5 of 9 we discuss some
additional collapsing of (1.10) which occurs when the 0th component of the coordinate
of the EFO vanishes.

Using either (1.9) or (1.10) we are faced with three problems:
(I) Compute hi, , hk; D1, , Dk.

(II) Compute the minimal single or double coset representatives for parabolic
subgroups of W.

(III) Determine suitable elements of finite order at which to compute the character
values.

We have already dealt with (I) in IMP1]. For completeness and because it is
central to our work, we briefly describe it in 2. We deal with (II) in 3. In this paper
we have taken (III) to mean that the character values should appear in some uncompli-
cated algebraic number field, usually the rational numbers Q.

The theory of elements of finite order is less well known than other parts of the
theory and we found it necessary to fill in several gaps before we could undertake any
computation. In 4, 5, 6 we sketch out this theory, including a number of results
which we discovered in the process of our computations. This includes a discussion of
rationalilty questions and some results about regular EFO.

The natural inclusions between simple Lie groups lead to identification between
elements in various groups. In the case of rational elements some of these relations
are at first sight quite amazing. In 7 we show how identifications are made and give
a number of examples.

Section 8 is a brief description of the computational plan for computing characters
and 9 consists of some additional remarks on various aspects of characters and their
applications. Finally there is a set of Tables with information and some sample
computations of characters. This includes a G2 character table including the relevant
information about PSL (2, 13) in G2 and two tables of /6 characters on the rational
elements of order -<8.

As a final remark let us point out that a different approach to the determination
of character values has been given in IMPS], where for the Lie groups of types
A2, A3, B2, G2 we have constructed the explicit character generating functions and
determined their specializations at all the rational EFO of these groups. This approach
gives the character information in a complete and very compact form but appears to
be impractical for much higher ranks.

Some results of this paper were already announced in IMPS].
Note added in proof In IMP2] we indicate a more efficient method for computing

characters of EFO. This is based on techniques discussed here but in addition exploits
the existence of various finite subgroups of T.

2. Determination of the dominant weights and their multiplicities. (Details of
the mathematics of this section appear in IMP1]. The tables of [BMP] should provide
the multiplicities for most of the cases of practical interest.)

Let (V, 7r) be the irreducible representation with highest weight A. Then A lies
in the set P// of dominant elements in the weight lattice. Let f be the weight system
of V and ++ f f’l P++.

Define L, k =0, 1, 2,..., inductively by L0 {A},

(2.1) L ={7p++- LilT=h-,h ELk_I,E A+
i=1
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Then

(2.2) tl++= U Lk.
k=0

This provides an effective simple procedure for inductively constructing II++.
To compute multiplicities Dx =dim Vx, h ell++, we use the following modified
Freudenthal formula: Let Stabw (h)= W, where

J ={i[(h, a’)= O} {il (h, ai) 0}.

Let j =(Wj,-1 v) be the group generated by W and -1 v. J decomposes A into
orbits O, i= 1,.. , n, and each orbit has a unique representative n, where
nq 0 for all j Z In terms of these

(2.3) IO,[ E (h +pC,, ,)D,+pe,=(CA-C)D,
i=1 p=l

where for z e P

C :=(tz+p, la,+p)-(p,p),

In practice after its computation, f++ is ordered according to the level; that is
according to (,X, pA), ,X f/+, where (ai, p^)= 1 for all i. Then the Da are computed
by (2.3) in decreasing level. This is an example of the situation mentioned before: for
increasing rank, the weights most usually encountered have large stabilizers and
considerable savings result by using (2.3). For example, in E6 the "first" dominant
weight with a nontrivial stabilizer is given by p and the corresponding irreducible
representation is of dimension 236.

In general , + p: is not dominant and has to be reflected (by at most IA/I reflections
in the r, i S) before its multiplicity can be looked up. Even with this, the algorithm
appears to be quite fast. Table 2 lists some timings. In each case the times are total
times in seconds for the first (by level) 60 irreducible representations of a single
congruence class. More precisely, since timings between different congruence classes
of the same algebra are within 12% of the average, we have listed the average times
(Table 2).

TABLE 2

Rank type A B C D E

64.8 120.9 132.1 89.2
75.7 145.6 149.3 110.7 121.4
89.0 167.1 197.4 134.9 155.4
94.0 194.6 202.4 156.6 240.7

If one wishes to use (2.3) for a hand computation of multiplicities, the determina-
tion of the :i becomes tiresome. There are, however, only finitely many of for any
group. Tables of them for all the rank <-8 simple Lie groups appear in [BMP]. For
the machine computation of weight multiplicities these tables are sufficiently large that
it is more efficient to simply compute the : as they are needed.

3. The Weyl group. In this section we describe an algorithm which can be used
for determining the elements of W, the minimal left coset representatives for a parabolic
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subgroup Ws, or the minimal double coset representatives for a pair of parabolic
subgroups Wt<, Wj. We are grateful to N. Iwahori for suggesting this beautiful and
simple procedure. For our purposes its important virtue is that one is not required to
compute the entire Weyl group (which is generally out of the question for reasons of
size) in order to compute single or double cosets.

For A P write A =Y di(A)oi, where Ol,’", O)l are the fundamental weights
(<(.Oi, Olj’-"Cij). Let AP++ and let J={jSldj(A)=O}. Then Ws=Stabw (A) and
W/W is in 1-1 correspondence with WA by wAwW. We construct WA as the
nodes of the coset graph 5:(A) with edges "coloured" by the set S, where distinct nodes
wA and w’A are joined by an/-edge if and only if riwA w’A. Note that 5: is connected
by assumption and has 15:[ nodes where

(3.1) I1-[wl/IWl.

Define the depth of a node A to be the number of edges in a minimal path from
the head node, A. We use the adjective "up" and "down" in the obvious sense with
respect to the depth. The depth of A is the minimum value of the length l(w) of w as
w runs over all elements in W such that A wA.

LEMMA 3.1. For A E dj(A )o wA w reduced) and S
(i) di(X)>O===> l(riw)> l(w),
(ii) di(A)<O==> l( riw) < l( w),
(iii) di A 0 ===> riA A.
Proof.

l(riw)> l(w)= w-la’eA+ =(o, w-la’)>O forsome k.

Thus

di(A) > 0 => (A, a’) > 0

(A, w-a?) > 0

<..Ok, W-Io> > 0 for some k since A is dominant

=> l(riw) > l(w).

The argument for di(A)< 0 is similar. The last statement is obvious.
We construct E by increasing depth starting from A. The lemma tells us how to

determine the nodes adjacent to, and of greater depth than A. The edges of any minimal
path from A to wA give a reduced expression for the minimal coset representative of
wWj. The implementation of the coset graph construction is by an array, indexed by
the depth, of linked records. Each record corresponds to a node wA of the graph and
basically contains the vector wA and the sequence of edges from A by which it was
formed. The latter is, of course, equivalent to a reduced expression for the minimal
word in the coset wWj. During execution the vector A in each constructed node is
searched for possible descendants (di(A)>0) and any new ones inserted. For the
purpose of computing characters it is in fact unnecessary to know the Weyl group
elements, the node weights being sufficient. However, we do need the node weights,
and it is not sufficient to construct the "simpler" coset graph E(A’) based on A’=
"dj(X)#O O)j.

Now suppose that Ic S and we wish to determine the minimal double coset
representatives of Wz\W/W We have:

PROPOSITION 3.2. A node of 5: represents a minimal double coset representative
of W WW if and only if it has no i-edges I) upward from it.
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Proof. Let A be a node of X of depth d > 0. If there is an/-edge (ie I) upwards
from A then there is a minimal path from A through riA and then through defining
Weyl group elements 5w and w respectively with l(sw)<l(w). Thus does not
represent a minimal double coset of WI\W Wj.

Now suppose that -w0A and there is no /-edge (i e I) upwards from A. Then
by Lemma 3.1, d(A) _-> 0 for all e I. Let VI ii Nai and let r: V VI be orthogonal
projection. The mapping r is W/-equivariant and V f’l ker r 0, so r is injective on
V/-cosets, and hence on Wi-orbits. Thus there is in the W-orbit of A a unique element

’ which projects onto a dominant weight of V relative to {alieI}. Seeing as
(-(v), a)= (v, c) for e I, this tells us that there is in the W-orbit of a unique
element M with (A’, ai)_-> 0 for e I; that is, with no /-edges up from it. This is then

itself and shows that it represents the unique minimal double coset representative.
Thus a simple search through the graph enables one to pick out the minimal

double coset representatives. If Y dj(A)wj has no /-edge upward from it then the
corresponding double coset has

(3.2) W, Wlll W,ol
elements, where I0 {i e I di(h) 0}, and consists of

(3.3) n(,I,J)--IW, I/IW,ol
left Wj-cosets. An example of the single and double coset graphs appears in Fig. 1.

B Cartan matrix

J ={1, 3}" A (0, 1,0)

2 -1 0 /-1 2 -2

0 -1 2

(o o)

(1

(i 0 2) (1

(i 2 "i) (2 i 0)

21
(1 2 2) (2 0)

(1 0 ff) (1 2)

(i ’1)

(o i o)

(0 O)

(1 lff)

(1 Off.)

W{1 2}\ W/W{1 3}

J={1,3}; I={1,2}
double coset representatives

1,32,32132

FIG. 1. An example of single and double coset graphs of the representation A (0, 1, 0) of dimension
21 of the group B3.
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4. Elements of finite order. The extended Coxeter-Dynkin diagram associated
with the simply connected simple Lie group G is the standard Coxeter-Dynkin diagram
F of G extended by a single node associated with the highest long root :-i=1 niai.
Thus there are nodes associated with the simple system of roots H and a 0th node
attached to F according to the geometry of -: relative to the elements of II [Bo]. We
call no := 1, n1,..., nl the numerical marks of F. For convenience of the reader and
to pin down the labelling (which is based on that of Dynkin [Dy, Table 26]) we have
included a list of extended Coxeter-Dynkin diagrams in Table 6 (at the end of the
article). Following J. Conway we call the nodes whose marks are 1 the tips of ’.

There are numerous interpretations of [’, the one concerning us being probably
the earliest which states that it describes the geometry of the fundamental region F
of the affine Weyl group acting on t. We define as the semi-direct product
W < Q where the action of W on Q is given by restriction of its action on t. acts
on according to

(4.1) (w, q)" x-- wx+q.

Then

(4.2) F {x (ai, x) >= 0, S, (:, x) -< 1}

which is simplex in t. W is generated by the Euclidean reflections in the faces of F.
For future reference we record these reflections.

r x>x ogi, X o S
(4.3)

r0" xx- ((-:, x)+

where aff is defined by

(4.4) (ai, aft)= -2(ai, :)/(:, :), S.

For every element x G there is a unique xF for which x is conjugate to
exp 27fix. In particular each element x of finite order N is represented by a point s
in F. Following V. Kac [Kal] we assign s a set of weighted barycentric coordinates
[So, sl,’", Sl] of nonnegative integers with gcd (So, Sl,"" ", Sl) 1 according to the
prescription" Let the order of x in Ad (G) (the Ad-order) be M. Then

(4.5) (ai, s) si/M, S, m
i=0

The exact order N of x is related to M in the following way. Define w’ by
(aj, w’)= 6ji so that Wl,’", w" is a basis for the dual weight lattice P Then s=
(l/M) i=1 siooi and Ms clearly lies in P If C is the order of Ms modulo O then
N MC. Column C of Table 6, which was derived from the results of [LP], gives
these values explicitly. As an example consider the elements [So, s, s2, s3] [1, 1, 2, 1 ],
[1, 1, 1, 2], [2, 1, 1, 1], and [1, 2, 1, 1] respectively in A3. The values g of Y4=o
modulo 4(=/+ 1) determine the coweight class modulo the coroot lattice to which
these elements belong. These are 0, 1, 2 and 3 respectively. The full orders of the
corresponding EFO are (Y nisi)C 5C where C 4/gcd(4, g) 1, 4, 2, 4 respectively.
As a matter of notation, if qo, ",ql is an (l + 1)-tuple of nonnegative rational numbers
(not all zeros), we shall write [q0," ",ql]’ to indicate the EFO whose coordinates are
the qi so scaled that they are nonnegative integers without common factors.

In the sequel we will often refer to a point s of F being an EFO by which we
mean that exp 27ris is such. For instance a point s of F is in the center Z of G (meaning
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that exp2ris is) if and only if s is at a vertex of F whose weight is 1--that is
s [0, , 1,..., 0] corresponding to a tip of [’. This follows directly from noting that
s is in the center if and only (ai, s) Z for i S.

The center also may be identified with P A/Q by z P A--> exp 2riz. This gives rise
to an action of Z on F, and hence on ’, through

induced through

(4.6) (z,x)-+z+x, zP, xt.

This action is clearly simply transitive on the tips (since z Psends 0 to z) and
determines the decomposition

Aut (’) Z Aut (F).

Two EFO, s and s’, are conjugate in Ad (G) if and only if their entries differ by a
permutation induced by an element of Z. A set of generators for Z as a permutation
group on the tips is also given in Table 4. Thus for example in C3, [1 1 3 2] and
[2 3 1 1] are Ad-conjugate and their orders in G are 11 and 22 respectively.

In this regard we mention a formula of D. Djokovi6 [Dj]: for positive integers k
with gcd (k, WI) 1 the number of conjugacy classes of EFO in G with order dividing
k is

m + k(4.7)
i=111 mi + l

where m1,"" ", ml are the exponents of W.
On the other hand we can determine the generating function of the number g(k)

of conjugacy classes of EFO in G with order dividing k, for all k. Except in the cases
D2, r 2, 3,. , let Co," , ct be determined as the coefficients of the si in the linear
expression Y cisi appearing in the definition of C in Table 4. In the cases Es, F4, B2,
the values of the ci have not been defined and are irrelevant. Let X and be two
variables with XIzl 1. Define

(4.8) F(t)= H (1-Xqt"’)-’= E a(X)t,
=0 k =0

where a(X) EIz]-I J)xy.
i=o a In the case Dt D2r we introduce three variables X, Y,

with X2--- y2_. 1. Define

(4.9)
F(t) =(1-t)-’(1-Xt)-l(1 t2)l-r(1-Xt2)a-r(1-XYt)-l(1- Yt)-1

Z ak(X, Y)t,
k=O

where

PROPOSITION 4.1.

a,(X, Y)=

g(k) { a(k)
a (k’)

Z a(i’y)XiYy.
O<=i,j<=l

if G is not of type D2r
if G is of type D2r.
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Proof. Suppose that G is not of type D2r. The coefficient of Xt in f(t) is the
number of (l/ 1)-tuples (So,’", Sl) such that

(4.10) nisi n, E cisi 0 mod IzI.
For each such (l/l)-tuple let g=gcd (So,"’, Sl) and let ti si/g. Then [to,’", tl]
labels an EFO whose exact order is m (Y niti)C where C is the order of Y ct mod ]Z[.
Then C Ig and m In.

Conversely suppose [to,’", h] is the label of an EFO x satisfying xn= 1 and
exact order m=(Ynt)C, where C is the order of YctmodlZI. Then
[toCn/ m, , rich m] satisfies (4.10).

The argument for D2r is similar. El
Exact formulas for g(k) are easy to work out. For example for Cl

(4.11) g(k)=(l+ [k/2j)[k/2]

where [. is the greatest integer function. For others see [Dj2].
Although the Djokovi6 formula is of limited applicability because of the restriction

on k, its striking form suggests searching for a deeper relationship between the marks

n and mi.
An explicit generating function for the terms a) and a’) can be deduced by

using the character group Z of Z. Namely,

E g(k) tk 1
E H (1 x(oo’)t"’)-1

where o ’ is considered as an element of Z by reduction modulo O "‘and the isomorphism
of P"/O "and Z. In this form the formula is due to D. Djokovi6 [Dj2] which he derived
after seeing Proposition 4.1.

5. K-rationality. If x G is of finite order N then for all representations V, or),
chv (x) lies in the cyclotomic field Lu generated by the Nth roots of 1. Suppose that
K is a number field (finite extension of Q). We say that x is K-rational (resp. real) if
chv (X) K (resp. R) for all representations (V, or).

Let Gal (Lu/Q) be the Galois group of Lu over Q and let H be the subgroup
Gal (Lu/K fq Lu). Let o be a primitive Nth root of 1 and let

(5.1) O’k’OO--tO k, gcd (k, N) 1

be a typical element of H. We let H act on G by

(5.2) o-" x--> x.
For x and y e G (resp. x, y e T) let x--- y (resp. x "w Y) denote that x and y are
G-conjugate (resp. W-conjugate). The following is the Lie group version of a well-
known theorem of finite group theory.

kPROPOSITION 5.1. An EFO x G of order N is K-rational if and only if x x
for all k such that trk e H.

Proof. We may assume that x e T. Let (V, or) be a representation of G. If the
eigenvalues of or(x) are el,’", e, then those of or(x k) are elk, eke. If X’Xk

whenever rkeH then ei=chv (x)=chv (xk)=Y ek, whence chv (x)eK. Con-
versely, chv (x) =chv (x)->chv (x k) =chv (x). However the characters are well
known to generate the entire ring C[T]w of W-invariant polynomial functions on T
[St]. Since C[T]w separates different W-orbits, x k

X
k

"wX, G X. El
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Let us say that the degree of an EFO x is the degree over of the field {x}
which is generated by the set of all its character values.

PROPOSITION 5.2. For each positive integer k, the number of conjugacy classes
of EFO of degree k is finite.

Proof. Let V, -) be a faithful finite dimensional representation of G and let x e G
be EFO of order N and degree k. Let K- {x}. We show that N is bounded by an
integer depending on k =dim (K/) and dim V.

The Galois group of Ls/K f3 Ls is naturally isomorphic to a subgroup S of the
group Us of units of Z/NZ. Let ks =dimo (K I"l LN) SO that d(N)/[SI ks, where
4 is the Euler function. Let M be a divisor of N. Under reduction mod M, Us is
mapped onto UM and S onto some subgroup SM of UM with

(5.3) kN - U,l/ISl 4(M)/ISMI.

In particular SM has at least (M)/kN elements. Let e be an eigenvalue of zr(x) and
let the order of e be M, M IN. Since x x for ] S, we obtain at least [SMI eigenvalues
from the powers of e and 4(M)/ks <-- dim V. Thus 4(M) <- k dim V and this bounds
M, and then N, which is the least common multiple of such M. [3

As far as K-rationality is concerned we need only consider subfields of cyclotomic
fields, that is to say abelian extensions of . If Ls is a cyclotomic field containing K
then determination Gal (Ls/K) is sufficient to determine whether or not a given
s [So, , st] is K-rational. The most straightforward procedure is to use Proposition
5.1. The "powers" of s (that is the points ks=[kso,..’, kst], k-1,2, 3,... are
brought back to F by a sequence of reflections. Specifically, if x is the result of some
intermediate step and x F then one of the inequalities

(5.4) (a,, x)_-> 0, i=l,..-,l, (:,x)_-<1

fails, and the corresponding reflection brings x closer to F. In the case that K -(x/),
d a square free integer, K c Ls if and only if d N or 4dl N according as d 1 or
d 1 mod 4. Thus for example, only Q(x/-3), Q(x/---T), and (x/) occur as quadratic
subfields of L2. H :=Gal (LI2/)-1, 5, 7, 11 mod 12. With to eei/l and trk H
defined by (5.1), k 1, 5, 7, 11, the fixing subgroups of the quadratic fields are (tr7),
(trs), (tr) respectively. For x G of order 12

x is: Q-rational => x--- x5--- x7--- x1

(x/--)-rational :> x- x7

Q(x/---1)-rational :> x x5

Q(x/3)-rational :> x x

It is natural to prefer EFO with the simplest properties whenever one has the
choice. Most often these are the rational EFO because their character values are
integers. However, for groups with complex valued characters, i.e., Ak, DEt+, k _-> 2,
and E6, the character values of rational elements do not distinguish pairs of con-
tragredient representations. Then, in addition to the rational EFO, the preference
should be given to the Gaussian ones.We say that an EFO is Gaussian if its character
values are Gaussian integers (7/[x/-1]). An EFO is Gaussian if and only if x---x k

whenever gcd(k, N)= 1 and k-= 1 mod 4. The order N of a Gaussian EFO satisfies
always N-= 0 mod 4. Properly Gaussian exist, of course, only when G admits non-
selfcontragradient representations. The Gaussian EFO in A and A3 together with all
their characters are found in IMPS].
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As the order of x increases the number of reflections required to transfer the
powers of x to F becomes prohibitive. For example

1

[000101011

required 716 reflections to determine that it was rational, a fairly typical number for
EFO of order 12 in E8. A more efficient way to compute this type of information is
to calculate the character values chi(s) of s=exp (27ris) on the set of fundamental
representations corresponding to the "ends" of the Coxeter-Dynkin diagram [MP2].
Thus in EG, for example, s is rational if and only if chi (s) 7/ for i= 1, 6 (since
ch5 (s)=chl (s)).

The irreducible G-representation with highest weight h is real if and only if
-w0h A where Wo is the opposite involution. Correspondingly:

PROPOSITION 5.3. The EFO s is real if and only if -w0s s.

Proof. Let (V, r) be a representation of G and let

ch v (s) dim V" exp 27ri(/z, s),

where V =) V’ is the weight space decomposition of V and s=exp (27ris). Then
the reality of chv (s) is equivalent to

dim V’ exp (-27ri(/z, s)) Y dim V" exp (27ri(/x, s)),

which in turn is equivalent to

dim V’ exp (27ri(/x,-w0s)) =Y dim V" exp (27ri(/z, s))

since dim Vwo" =dim V’. This is true for all representations of G if and only if
s w -w0s which, since both are in the fundamental region F, is equivalent to s -WoS.

This condition makes it obvious from the label whether or not the element is real.
For example, in type At, s [So, Sl," , s] is real if and only if si st-i, 1, 2,. , I.
On the other hand for types Bt, Ct, D2n,/7,/8, F4, and G2 all representations, and
in particular all elements of finite order, are real.

The generating reflections rl,’", rl of W "appear" in G as elements of order 4
defined by

Ri exp e-s, exp-e, exp

where {ei, e-s,, [e,e_,]} is a standard I2-triplet for the root pair +ai, i= 1,...,/.
The Ri are rational and fall into 1 or 2 conjugacy classes depending on whether or
not there are 1 or 2 root lengths. Table 3 identifies these classes for the algebras of
type A, B, C, and G2.

6. Regular elements. An element x G is called regular if the centralizer of
Ad (x) in Ad (G) has dimension l( =rank G). Now s=exp 27ris is regular if and only
if s is off every hyperplane (a, x)= n, n 7/, a A. If s [So, sl,..., st] this is simply
equivalent to having si 0 for each i. It is then obvious that there is a unique class of
elements of minimal Ad-order, namely the Kostant principal elements [1,. , 1] with
Ad-order the Coxeter number h =I=0 ni. Since (ai, [1,’", 11)= l/h, i= 1,..., l,
h[1,..., 1] is the half sum p of the positive dual roots and hence the full order of
the Kostant elements is h or 2h according as p ^ O ^or not.

Similarly the only regular elements of Ad-order h + 1 are the extended principal
elements [Ka2] formed by permuting the labels of [2, 1,. , 1], where 2 is over a tip.
These are clearly all Ad-conjugate. Since gcd (h + 1, IzI)- 1 in all cases, there are
always extended principal elements of full order h + 1.
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TABLE 3
Conjugacy classes of the elements Ri of 5.

A1 [1 11

R
long

R
Otshor

At 1>-2 [210... 01]

B 1>=3 [2010.. "0l 1110.. "00l

C 1>-2 I210... 0l I2010... 0l

G2 I2 10l 11 0 11

From the condition for rationality given in 5 it is clear that the Kostant elements
and extended elements of order h + 1 are rational. In fact as was shown by Kostant
and Kac respectively, they only have character values 0, + 1 [Ko], [Ka2]. Strangely
enough no one seems to have noted the following elementary result.

PROPOSITION 6.1. For x G of finite order the set of character values chv (x), as
(V, 7r) runs through all irreducible representations, is finite if and only if x is regular.

Proof. If x exp 2 7fix is regular of finite order N then by Weyl’s character formula
the character values of x on the irreducible representation of highest weight A is

(6.1) (-1) w> e2i<wA+’>’">/D(x),
wW

where D(x) 0. Since the exponential summands are Nth roots of 1 there are obviously
only finitely many values for the numerator.

The converse is proved by Kac [Ka2] where it is only applied to an argument
involving elements with character values 0, + 1.

7. Relations between subgroups. 1. The various inclusions of simple Lie groups
amongst each other naturally allow one to consider the relationship between the
conjugacy class of a given EFO in one group with its class as seen in an over-group.

In principle, explicit relationships between EF0 of a group G and those of a
subgroup t can be built using the projection matrices discussed in [NP]. For maximal
G in G these are available in [McPS]. Relative to suitable maximal tori T and T, the
inclusion

(7.1) i: ( G

determines

(7.2)

i’TT,

di" __t,

di[o.. O^Q ".

The transpose of the last mapping

(7.3) (di)" P- P
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is the projection mapping whose matrix relative to suitable choices of fundamental
weights is the projection matrix. If the matrix of di is written relative to the bases of
fundamental coweights for t_" and ! respectively, then one obtains an explicit label
transformation for EFO. In general the resulting EFO is not in the fundamental region
and has to be transformed there by a sequence of reflections which depends on the
labels themselves. For this reason the method is not particularly suitable for human
computation.

At least for the classical groups, it is easier to use specific standard matrix
representations where the EFO are easy to write down and their labels easy to read.
The proof of Proposition 7.1 and the subsequent remarks illustrate the method.

Table 4 lists some specific relationships of this type for A2t-1 c A2l, A2 A2t+,
Cl c Aal BI-1 BI, Cl-1 ft. As an example of this we can follow the rational elements
of A1 through Aa, A3, Ca and C3, as shown in Table 5.

TABLE 4

Identification of EFO in various group-subgroup pairs.

A21 (real EFO) A21_

[So S S2"" "1/2S 1/2Sl’’" S Sl]’-’)ISoS S2.’. St’’. S SII"

A2/+ (real EFO) A2!

IsO s s 0 Sl+ s21] [So s1 s21]

A21-1 Cl

[SO SI’’’ SI- SiSl_l’’" $11<’-)IS0 SI’’" Sll

[SO S Sl- 1/2(S/- 1) 0l’oIs0 sl s_l]

B Bl_

[So S1 Sl_ 0]<’-) Is0 S Sl_l]

TABLE 5

order A A A C C

[10] [1 00] I10001 [100] [10001
[0 1] I0 11 I0 10 II I0 101 [0 1001
[1 2] [1 1] [1 10 1] [1 10] [1 00]
[1 1] [2 1] [2 0 1] [2 0] [2 0 0l
[21] [411] [4101] [410] [4100]
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PROPOSITION 7.1. Consider the inclusions

Cl c A21-1 A2I
determined by the natural representations of

USp(21) SU(21) sU(21 + 1).

These inclusions determine bijective mappings between the conjugacy classes of rational
resp. real) EFO of each order in each of these groups.

Proof. Suppose that (V, r) is an irreducible representation of G. An element
x e G of finite order N is rational if and only if x x k for all k such that gcd (k, N) 1.
This is equivalent to saying that primitive ruth roots of unity amongst the eigenvalues
of r(x) occur in complete sets. Except for m 1, 2, the value of Euler function 4 (rn)
is even and the primitive mth roots of unity partition into distinct pairs e, e -1. Given
that r(x) has determinant 1, the number of eigenvalues -1 must be even.

Now take G SU(n) and (V, 7r) the natural n-dimensional representation. By
the usual conjugacy of SU(n), one has

(7.4)
r(x) diag {exp 27rikl/N,"’, exp 27rik,/N},

ki=O, k>-’">=k, k-k<=N.
i---1

According to the remarks above, if x is also rational, then

(7.5) k + k ,+
_

0.

We call the above diagonal matrix the canonical form of zr(x). It is indeed uniquely
specified by the conjugacy class, as is seen by the way in which it determines the Kac
coordinates below. If n 2p + 1 is odd then kp+ is 0 and we have a direct identification
with an element of SU(2p). Since rr is faithful this explains the bijection between the
rational elements of these two groups.

In the case when n 21 is even, the canonical form is symplectic (relative to a
symplectic basis ’1," ",/}2l with (,i, /’2/+l--j) ij)" Symplectic elements of finite order
(rational or not) may be conjugated to the canonical form (7.4), (7.5). Since the natural
symplectic representation of compact Cl is faithful we have the second bijection of
rational elements of Proposition 7.1.

The weight system of the natural n-dimensional representation of SU(n) is

O)1 (-D O1 (-O1 O On.

For an element s of order N written in the canonical form (7.4) define

s,:= (k- k+,)/N, i= 1, 2,..., n- 1.

The least positive integer M such that s := Ms ’ for each is the Ad-order of s and

s= Is0, s,,’’’, s.-l,

where So M-E7_ si.

8. Computations of character tables. The previous sections have described the
algorithms involved in the various tasks of selecting elements of finite order and
evaluating the sums (1.9), (1.10). Supposing that sl, s2," , sp is a list of the elements
of finite order for which the characters are to be evaluated, there remains the question
of an efficient way in which to compute a character table. Of the various ways in which
one can order the irreducible representations (or what is equivalent, their highest
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weights) the best for our purposes is the one which arises naturally out of the weight
space multiplicity algorithm, that is, by increasing level. If 1,."", ,q is the complete
set of dominant weights in increasing level up to a certain point then the dominant
weights which occur in the weight space decomposition of Xk always lie amongst
,1,..., Xk, k 1, 2,..., q. In addition the weight system of any irreducible module
always lies in a single congruence class P modulo (9 and hence we normally take
X,..., Xq to be in a single class. The weight space multiplicities for the irreducible
representations with these highest weights are then computed.

For a given pair (j, s) we take Wj)=Stabw (,) and W Stabw (s) and use
the double coset algorithm to determine a list consisting of the pairs

{(( wA, Sk), n( w, k, (J))) w kw()}
(see 3 for notation). Notice that the graph nodes selected by the double coset
algorithm are the weights wA. Hence it is not necessary to carry the actual Weyl group
elements w W(i) in this process. Summing over the list we obtain the orbit sums

Z (, s) := ., n w, k, (j)) e2i< wa,’sk>.
These orbit sums Y (,i, sk) are the primary constituents of the sums (1.10) which

can now be computed all together. Note that by [Bo, Chap. VI, 3.4] the s is K-rational
if and only if all orbit sums Y. (, s) lie in K. Examples of character tables are found
in Tables 7-10. For further methods in computing characters see IMP2].

9. Remarks.
1. Using the method of character generators on the low rank simple Lie groups,

we have found, with R. T. Sharp, that the elements whose character values are restricted
to 0 and + 1 are quite abundant among the regular rational elements. More precisely,
the following is true IMPS].

Among the elements of finite order in the simple Lie groups of types Aa, A2, A3,
B2, and G2 each of the regular rational elements has only three distinct character
values, 0 and + 1, on irreducible representations of the Lie groups, with the exception
of the following ones:

[4111 in A2
[61411, [41611 in A3
11121, I6411, I461] in B2
[141] in G2

character values + 3, +/-2, + 1,0
character values +4, +/-3, +2, +/-1, 0
character values +2, + 1, 0
character values +/-2, + 1, 0.

2. Signatures. In the case where one of the fundamental representations of G
carries an invariant symmetric or hermitian bilinear form for some real form G’ of
Gc the characters can be used to determine the signatures of the induced forms on
the various representations of G’. For example consider the groups SU(p, q) which
are defined as subgroups of SLn(C) by

{X SL,(C)]axa-1 X*},

where X* is the inverse conjugate transpose of X and

p-times

A =diag{1, 1,..., 1,-1,...,-1}.

By definition, in its natural representation, each of these groups leave invariant a
hermitian form of signature

p-q =tr A.
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TABLE 8
All rational EFO of order <-8 in E6, Conway notation (cf. Table 7 ), and characters in the 12 lowest

representations of the congruence class O.

CHARACTERS OF ALL RATIONAL ELEMENTS OF ORDER OF E6
12345

RATIONAL REPRESENTATIONS OF E6 CLASS
ELEMENTS (000001) (100010) (001000) (000002) (000110) (000030) (100011) (010100) (200100) (001001) (200020) (000003)

1) -1 -1 -1

2) -2 -3 -3 -3 -10

81: 1) 16 64 111 64 160 73 449 432 487 320 495 64

8E I) -I -I -I

8D 2) -17 19 -19 63

8C 2) 18 16 21 29 -34 25 -32 61 22

88 O) 22 -16 -19 29 -34 -15 32 61 38

8A O) -2 -3

78 I) 27 20 35 28 64 71 -37 117

7A O) -I -I -2 -2

8 6K 1) 10 30 -18 -19 24 -38 -24 72 81 67

CA 6,1 O) 10 -2 13 -8 -6

AA 6I O) 38 217 681 507 1112 463 4869 7630 7419 9712 6912 3459

811 6H I) -8 II -8 27

AB 68 (00 1) -2 -1 -3 -2 -5

CB 6F O) 25 118 289 192 432 170 1536 2041 1920 2160 1728 598

AA 6E O) -3 -4 -5 -2 -8

BB 6D 1) 55 385 1450 1134 2646 1253 13608 24346 25920 33480 26433 12643

AB 6C 1) 10 25 37 27 36 81 46 27 72 43

CB 61 O) -2 -2

BA 6A 2) -I -6 I0 -12 -8

5A 1) -I -1 -5 -7

4E O) -6 -3 -6

4D O) -2 -3 -1 -3 -3 -10

4C 1) 34 190 545 386 896 399 3709 5474 5615 6400 5481 2050

41 1) -2 -1 -3 -1

4A O) 14 34 77 70 64 189 182 27 384 -83 246

3C O) -3 -8 -24 18

38 1) 15 65 90 54 154 105 432 266 540 120 729 99

3A O) -7 27 -8 15 -27 14 27 48 99

28 1) -2 10 -35 30 35 -3 70 -105 189 -50

2A O) 14 10 45 126 -64 -101 189 -266 -225 640 621 750

1A O) 78 650 2925 2430 5824 3003 34749 70070 78975 105600 85293 43758

If either p or q is even they can be interchanged without harm if necessary so that q
is even and A SU(n). Assuming q S0 the canonical form (7.4) of the element A
leads to the coordinates

[0 0 0 1 0 0 1 0 O]

where the two l’s are in the q/2 and l-q+ 1 positions. Here + 1 n. The character
of A in the natural representation is the signature p-q and it follows that its character
on every representation is the corresponding signature.

If p and q are odd the situation is more complicated. Let : e =i/, so that det :A 1.
Then :A has the canonical form (7.4)

A diag {exp rikl/n,..., exp rik,/n},
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TABLE 9
All rational EFO of order <-8 in E6, Conway notation (cf. Table 7), and characters in the 12 lowest

representations of the congruence class 2 (and also class through diagram symmetry).

CHARTERS OF ALL RATIONAL ELEtlTS OF ORDER OF E6
12345

RATIONAL REPRESENTATIONS OF E6 CLASS
ELEHENTS (000010) (010000) (200000) (000011) (100100) (100020) (010001) (200001) (001010) (000012) (000200) (110010) (000120) (300010)

(0110111)

(0010102)

8F(3001001)

DE(lI01011)

8D(1001002)

8C(2100012)

88(0210120)

(2110110)

78(2001001)

7A(1110110)

88 (0200021)

CA 6d(2010100)

AA 6I(4100010)

88 (1001001)

B 6G(0010101)

CB (3001000)

(0110110)

88 68(4000001)

AB (2100011)

C8 68(1101010)

BA 6A(0100012)

5A(1100011)

4E(IO01000)

4D(0010100)

4C(2000001)

48(0100011)

4A(2100010)

3C(0001000)

38(1000001)

(llO0010)

28(0000001)

2A(0100010)

IA(IO00000)

-1 -1 -1

-3 -1 -5 -5 -2

39 33 96 207 192 240 249 417 240 192 672 336 375

-1 -1 -1

-3 -9 24 -39 24 24 45

11 16 15 34 -2 31 -13 16 -10 16 38 63

-3 11 -16 15 -14 -2 39 -13 -48 38 -16 38

-1 -1 -2 -1 -1

15 15 27 42 57 15 48 21 75 63

-1 -1 -1 -1 -2

-3 12 -18 21 -15 -12 51 -21 -60 54 -18 33 -6

12 -4 -12 -4 -8

16 128 112 464 1440 1312 2704 2576 6160 4944 3584 10832 4832 4720

-3 15 -6 -15 24

12 72 60 216 564 492 876 804 1740 1212 936 2808 1236 1176

=2 -4 =2 -6 -4

21 216 204 918 3381 3345 7140 7419 18795 15756 11718 37206 17409 18690

18 12 36 48 30 60 42 60 66 18 36 24 12

-4 -3 -t -5 14 -7 -2

-4 -3 -2 -5

-6 -3 -12 -6 -6

-1 -1 -5 -2 -4 -10 -3

15 111 99 384 1155 1086 2010 2001 4515 3396 2562 8064 3738 3885

-1 -1 -2 -6 -6 -3

27 15 64 91 34 174 77 183 252 70 64 -43

36 36 90 189 225 180 279 315 216 126 666 441 630

-9 15 -21 42 30 -15 -105 60 126 -42 105

-5 -1 31 -64 75 -86 -50 329 -185 -516 350 -64 230 145

27 351 351 1728 7371 7722 17550 19305 51975 46332 34398 112320 54054 61425

where

(kl,""", kn)=(+ 1,...,,, n+1,,, l-n, -_.,., 1- n,).
q-1 q+l

P2 2

The corresponding element of t is

p-1
2 2

The element :1 lies in SU+I(n) (unitary matrices of determinant :el) where it is
central. Its square, so21 SU(n), has coordinates [0,. , 0, 1]. If V, 7r) is any irreduc-
ible representation of SU(n) then :21 acts as a scalar (phase factor) y on V and the
representation can be extended to one of SU+(n) by choosing : to act as one of the
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TABLE 10
List of all rational EFO in G2, corresponding Conway notation (cf. Table 7 ), and characters in the lowest

representations. Characters of the two conjugacy classes ofquadratic elements of PSL(2, 13) of order 13 in G2.

CHARACTERS OF ALL R6TION6L ELENENTS OF FINITE ORDER OF 62

RATIONAL REPRESENTATIONS OF 62 CLASS
ELEHENTS (00) (01) (10) (02) (11) (03) (20) (12) (04) (21) (13) (30) (05) (22) (14) (06) (31) (23) (15) (40)

16 O) 14 27 64 77 77 189 182 286 448 273 378 729 924 714 896 1547 1728 748

2A O) -1 -2 -3 -3 -2 -7 -6 -4 10 -5 12

36 O) -1 -2 -1 -2 3 -3 -I -2

31 I) -2 -8 14 -7 -20 16 30 -21 12 -40 35 55

46 O) -3 -3 -6 -3 -3 -1

4B I) -1 -1 -3 -2 -3 -2 -1

AA 6/ O) 12 18 18 11 24 18 13 18 -1 12 -18 -17 -18

BA 61 1) -3 -3 -1 -,5

AA 6C 1) -1 -1 -1 -1

7 1) 0 -1 0 -1 -1 -I

86 1) -1 -1 -I -1

OR 1) -1 -1 -1 -1

IL4 126 1) 0 -1 0 -1 -1

AB 12B 1) -I -1 -2 -1 -2 -1 -2

136 2) -1 -1 -1 -a -1 -1 -1

13B 3) -1 -1 -1 -a -1 -1 -1

square roots y/2 of 3’. The signature of the invariant hermitian form on V (if any)
induced from the canonical form associated with SU(p, q) is, up to sign, try (A)=
try (A)/y1/2 =chv (A)/y1/2. Thus the signature is expressed entirely in terms of
the characters of the EFO [1, 0,. , 0], [0,- , 0, 1], and s:

signature =chv (A)/(chv (:21)/chv (1)) 1/2.

Explicit formulas have been established for SU(p, q) signatures in [PS].
3. Congruence classes. The weight system of an irreducible module V always lies

in a single coset of the weight lattice P modulo the root lattice Q. This is the congruence
class [LP] of V. If z exp 27riz is a central element of G then it acts on V by e2ri(A’z)

where A is the highest weight of V and this value appears as chv (z)/chv (1). Since
Z P ^/Q "via z z mod Q ", Z separates the various congruence classes and one may
read the congruence class from the character values ch (z), z Z. Of course, except
in the cases D2,, a single generator of P ^/Q ^will suffice. Recall that in 4 the central
elements of G were identified.

4. Gradings and EFO. Let M be a positive integer. A mod M grading on a
complex Lie algebra 9 is a decompositions

(9.1) fl= 0 i with [9 i, J] i+j.
i7/M.

Here it is often convenient to view as an integer rather than a congruence class
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modulo M. If is a primitive Mth root of unity then the linear mapping

is an automorphism of 9 and is of order M if gcd {il9 0} 1. In [Kal] V. Kac gave
a beautiful classification of all such gradings on semi-simple Lie algebras. The part of
this that is relevant here is the classification of the gradings on a simple Lie algebra 9
for which b is an inner automorphism. In this case 4, is clearly induced by an EFO
of the corresponding simply connected compact group G. Precisely, such a b always
point-wise fixes a Cartan subalgebra and there is a choice II {a,. , at} of the base
of the corresponding root system A such that the root space 9’ lies in 9s’ where
0<=si < M. Furthermore letting no, nl,’" ", nt be the numerical marks, the equation
ns M defines So and s [So, s,..., st] is an EFO. This element induces d.
The element s induces on any g-module V a grading compatible with that on 9:

(9.2) V= W, 9. VjCV+j

j2/N’

by using the eigenspaces of s exp 2ris as it acts on V. Here N is the full order of s.
If s induces a grading on V then specific information like the dimensions of the

homogeneous subspaces of V of a given degree are evidently computable from the
character value of s and its powers. Indeed

N-1

(9.3) chv (s)= dim V e2"ij/N, dim Vk 1IN Y chv (s) e-2’k/N
j=0

5. Additional Weyl group symmetry. In computing an orbit sum Y (A, s) we take
into account the repetition of terms due to the presence of the stabilizing group WK
(see 1). If s=[0, sl,’", stl then it is easy to see that (st, s) =1 and (r.wA, s)=
(wA, s) modT for all we W. Here s is the highest root of A/. This determines

"linking" of various WK-orbits of the coset graph F. In principle it is easy to detect
when linking occurs. Indeed, let sc" denote the highest short root of the dual root

system, so that r"/x -->/z -(tz, sc ):. Let A- denote the deepest element in some W-orbit
of F and let , be another element of the same orbit. Then links to a higher element
if and only if (,, sc )< 0. When this happens (,-, sr^) < 0 and - links to a higher
element. Furthermore, r,-= --(,-, sc^)sr cannot be in the same W-orbit as A-
since s ’a. Thus simply determining the sign of (-, is sufficient to detect
that an orbit is linked to at least one other orbit (in general more than one). However,
from the point of view of computing, the time required to locate the elements - and
to keep track of the various linkings seems to offset the savings which otherwise would
be afforded. For this reason we have not utilized this symmetry in our work.

6. The finite group PSL (2, 13) can be embedded in G2 [Me]. Using our Table 10
and a character table PSL (2, 13) (e.g. [McK]) it is easy to identify the G2-conjugacy
classes of PSL(2, 13):

order
of conjugacy

class

PSL (2, 13) Gz

2 [0 10l
3 [1101
6 11111
7 [2111

13 I6 21, !1 2 31
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The three conjugacy classes of elements of order 7 in PSL(2, 13) are G2-conjugate.
There are exactly two embeddings of PSL (2, 13) in G2 (we are grateful to A. Meurman
for showing us a proof of this fact) which are related by the outer automorphism of
PSL (2, 13). These interchange the two elements of order 13.
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ON OPERATOR AND FORMAL SUM METHODS FOR
GRAPH ENUMERATION PROBLEMS*
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Abstract. This article investigates some computational aspects of the operator approaches recently
introduced by the authors for graph enumeration problems involving forests, subgraphs with fixed cyclomatic
numbers and matchings.

AMS(MOS) subject classifications. Primary 05C05, 05C30" secondary 05A15

Introduction. "Trees", i.e. a connected graph without any cycle, have to be
considered to be one of the most important concepts in graph theory. Besides its pure
graph-theoretical aspect, its usefulness in applications ranges from electric network
theory in engineering to particle and solid-state theory in physics. The first natural
question about "trees" is undoubtedly that of how many spanning trees are there, as
subgraphs, in a given graph (labelled, say). This elementary question was, as well-
known, answered long ago (in 1847) by G. Kirchhott. The next questions one may
ask, for a (labelled) graph G, are:

(i) What is the number of spanning m-forests in G?
(ii) What is the number of spanning subgraphs, with a given cyclomatic number,

in G?
By an m-forest in G we mean a spanning subgraph consisting of rn connected

components each being a tree. By the cyclomatic number, for a connected linear graph,
we mean the number

IE(G)I-IV(G)I/I

where E(G) and V(G) are, respectively, the sets of all edges and vertices in G.
denotes the cardinality of the set S.

Recently we have introduced an operator approach to the two questions raised
above. Indeed, the operator method has successfully resolved the first question above.
The m-forest enumeration, for any graph and any m, can now be carried out by a
straightforward computation [1]. As to the second question, it was recently resolved
too by the operator approach, for ,any planar graph [2]. In both references [1] and
[2], however, the formalisms and the results were formally presented without due
concern for the computational aspect of the problems. The purpose of this article is
to pursue this particular phase of our operator methods. In particular, we want to
show the graph-theoretical meanings at different stages of the operator manipulations
and also the possibility of reducing the computational complexity through the recurrent
use of certain functions we introduced.

Before going into the details of the planned exposition we shall give an example
showing directly the advantage of the use of operators. Consider the long-standing
enumeration problem of "Hamilton cycles." Let K kil] be the Kirchhoff matrix of

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee,
Wisconsin 53233.

t Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201. The research of this
author was partially supported by the Graduate School, University of Wisconsin.
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a connected graph. Define operators xl,"’", x, (n V(G)J) satisfying

xixj xjxi, x2i O, ], i= 1,..., n.

Let ki=’kixj and ki =-Yi k. Then the total number of Hamiltonian cycles H is
given by the relation

ii
j=l k’ det (i) i=l n

where K’(i) is the ith principal minor of K’= IIkIll. One can be easily convinced by
going through some examples that the above operator expression usually cuts down
drastically the computation that would otherwise be involved in the ordinary (operator-
free) formalism, e.g.

1
H - aiplapp2" apn-li 1," n

where P=(Pl,’" ",Pn-) is a permutation of {1,...,i-1, i+1,... ,n} and ai are
the entries of the adjacency matrix A of the graph.

Our operator method, often considered to be rather abstract by some graph
theorists, was originally developed entirely from a problem-solving viewpoint: in
tackling the problems in a particular way we found certain steps and abstractions to
be indispensable in order to make progress. It is, therefore, a fact that the operator
method, though it requires certain abstraction, was not artificially created for the sake
of abstraction itself. It should also be mentioned that though we found it necessary to
introduce certain operators in tackling the problems, yet the final formal solutions can
nevertheless be expressed in a form free of any operator.

To define these operators it is necessary to define the vector space on which they
operate. In fact, these vector spaces are spaces of formal sums, with real coefficients,
over certain sets related to the given graph. It also turns out that the operators possess
very simple commutation relations that effectively simplify the explicit calculations.
The final stage of the operator method involves a real-valued linear function on the
formal vector space. This linear function plays an important role in the whole approach;
whether the operator method is applicable to a particular problem may depend on
the successful search of such a function in each case.

Our discussions in this article will be divided into six parts. In the first section we
lay down the necessary definitions and notions related to the problems with some
examples. In the second section we concentrate on the "matrix-forest" theorem, i.e.
the theorem leading to any m-forest enumeration [1]. The main task here is to show
how the rather abstract method works by analyzing some actual computations. In the
third section we concentrate specifically on the complete graphs, bipartite complete
graphs and tripartite complete graphs in forest enumerations. The fourth section deals
with the enumeration of subgraphs with a preassigned cyclomatic number, in a planar
graph. The fifth section explores some further extensions and alternatives to the
operator approaches. In the last section we introduce a useful function (no operators
involved) which handles efficiently the enumerations of (i) m-forests, (ii) spanning
subgraphs with a preassigned cyclomatic number of a planar graph, and (iii) r-matchings
(i.e. a collection of r independent edges in the graph).

1. Kirchhoff matrix and cycle-adjacency matrix. For convenience, we assume
that the given graphs are connected, labelled and undirected. The adjacency matrix
of a given graph is denoted by A with entries ai. Labelling of all the vertices in the
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graph, i.e. V(G) { V1," , V,}, establishes a 1 1 correspondence between V(G)
and the set n {1,..., n} and also fixed aij.

As a computational example, we shall use exclusively the graph of Fig. 1, to be
hereafter referred to as the "kite" graph.

FIG. 1. "kite" graph.

(1)

Its corresponding adjacency and Kirchhoff matrices are

0 1 0 1 1 3 -1 0 -1 -1

100101 -103-10-1A= 1 0 1 1 K= -1 3 -1 -1
0 00 0

1 1 0 0 -1 -1 0 3

These types of matrices will be the starting point of m-forest enumerations. For the
enumeration of the spanning subgraphs with a specific cyclomatic number, of a given
planar graph G, we introduce the so-called cycle-adjacency matrix (this is a terminology
we coined [2]), in the following way. First we note that, for a given graph, the notion
of cyclomatic number simply means the maximum number of "independent" cycles
(i.e. no cycle is covered by the union of the other cycles). Let N be the cyclomatic
number of G. Consider a set of independent cycles, S, in G over the field 72, with

s={c,,. C}

where Ci are cycles in S and r <-N is called the degree of S written sI r. When S is
maximal then r is just the cyclomatic number of G. The cycle-adjacency matrix of G
relative to S, is defined by an r x r matrix

(2) Es=IIE,
with Eij -{total number of edges common to C and C} for j. E, +{total number
of edges belonging to C}. It is further required that no edge can belong to more than
two cycles of S.

As an example, we again take up the "kite" graph (Fig. 1) and indicate a set of
independent cycles C1, C2, C3 by dotted lines (Fig. 2).

c.
Cl_ C

FIG. 2
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Let S {C1, C2, C3}. Then the cycle-adjacency matrix E relative to S is

Es -1 3
-1 -1

If we consider S’ {C1, C2}, then E relative to S’ is

Or alternatively (see Fig. 3) consider S" ={C1, C4}. Then

4 -)Es,,= (_2
From now on we shall drop the subscript of E since it is usually clear from the context.

FIG. 3

The following notations will be used for submatrices: for a Kirchhoff matrix K,
the ith principal submatrix (i.e. the deletion of ith row and column from K) is written
K(i). Similarly, we denote by K(i, j) the submatrix obtained from K by deleting the
ith row and column as well as the jth ones. We also introduce the following convention
for Kirchhott matrices:

(3) K(,... ,n)=

and

(4) K(i,,- , i,) 0 if ik for some j k,

where 1 and 0 are just numbers (i.e. 1 x 1 matrices). Exactly similar notations and
conventions can be set up for cycle-adjacency matrices except we have now

(5) E(1,...,N) 1,

and

(6) E(ii,. ip) --0 if ij ik for some ] k.

We recall that N is the cyclomatic number of G.

2. Forest enumeration: general exposition and an example. The approach we
present here involves, first of all, a formal vector space. Denote n* { 1, 2, , n 1 }.
Let (n*) be the power set of n*, i.e. the collection of all subsets in n*. Construct the
space W of formal sums generated by N(n*) with coefficients in R. Define a real-valued
linear function/x, to be called an evaluation map, on the space W by

(7) /x S-det K(n U cS)

where S c n* and cS is the complement of S in n*. For instance, take the kite graph
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and label the vertices as in Fig. 1. The Kirchhott matrix is given by (1). Consider
S {1, 4}. Then under the evaluation map,

(8) /x {1, 4}-- det K(2, 3, 5)

For convenience, we shall use the expression that the set S generates the number T
w.r.t. /x if T =/x(S). For the example of (8) we say that {1, 4} generates the number
5. Let T’) be the total number of spanning m-forest of G. Then, by the celebrated
Kirchhott’s matrix-tree theorem [5], we have the fact that n* generates T1) since
/z(n*) T1). It is also trivial to see that (the empty set) generates 1 since/z() 1.

Our next step is to introduce the following R-linear operator, to be called the
"annihilation operator at the ith vertex", on the vector space W:

(9) ai" S-> S-{i} if S,

(10) S->O if S

where S (n*) and the 0 in (10) is the zero formal sum in W. It is important to note

that the empty set is not zero and must be retained in formal sums, e.g., 5{} + 2{4}-
6{1, 3}. It is understood that the above definition of the operators extends R-linearly
and also w.r.t, the addition in W. It is obvious by the nature of the definition that the

operators aj and ai always commute.
The following theorem proved in [1] achieves a generalization of Kirchhott’s

matrix-tree theorem to the case of any forest (hence we may perhaps call this theorem
the matrix-forest, theorem!).

MATRIX-FOREST THEOREM. Define the operator:

1
(11) a-= E a,- E aija,a

in* i,jn*

and denote

(12) To) 1
m_in,

(m-l)!

Then T’) generates T<’’), the total number of m-forests in the graph.
Since the theorem was proved in [1] we shall not repeat the details of the

mathematical induction. We shall instead use the example of the kite graph to illustrate
the application of the theorem. Let the vertices be labelled as in Fig. 1. Then the
corresponding adjacency matrix is given by (1). The Kirchhoff matrix is then, by
definition,

(13) K=

3 -1 0 -1 -1
-1 3 -1 0 -1
o -1 3 -1 -1

-110-120-1 -1 0 3

The set n* is in this case simply

(14) n* {1, 2, 3, 4}.
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First, we compute the total number of spanning 1-forests, i.e. spanning trees, by
the matrix-forest theorem:

T(1)=/z(T(1)) tz (cn*) =/(n*)=det K(n)=det K(5)

3 -1 0 -1
-1 3 -1 0

=24,(15) 0 -1 3 -1
-1 0 -1 2

i.e. there are 24 spanning trees in the kite graph. They are the graphs shown in Fig. 4.

FIG. 4. Trees (1-forests).

Next, let us compute the total number of spanning 2-forests"

(16) ’1.‘(2)
(2-1)!

an* Ol aqoio
i=1

(17)

(18)
={2, 3, 4}+{1, 3, 4}+{1,2, 4}+{1,2, 3}

-{3, 4}-{2, 3}-{1, 4}-{1, 2}.

Then under the evaluation map z,

tz(T(2)) z{2, 3, 4}+ {1, 3, 4}+ {1, 2, 4}+ x{1, 2, 3}
(19)

-{3, 4}-/x{2, 3}-/x{1, 4}-/z{1, 2}.

=(O -1" O2 -’[" O3 -[’- O4 O102 O104 O203 Of304)I1"

3 0
0 3

-1 -1

But

{2, 3,4}=
3 -1 0

-1 3 -1
0 -1 2

=13, /x{1, 3, 4}=
-1
-1 =12,
2

/x{1, 2, 4}
3 -1 -1

-1 3 0
-1 0 2

=13, /z{1, 2, 3}=
3 -1 0

-1 3 -1
0 -1 3

=21,

/x{3, 4} (2, 3}=

/.{1, 4} /x{1, 2}
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Therefore

(20) T(2)--/z(T(2)) 13 + 12 + 13 + 21- 5-8-5-8 33,

i.e. there are 33 2-forests in the kite graph. They are shown in Fig. 5.

FIG. 5. 2-forests.

To evaluate the total number of 3-forests, i.e. T(3), we notice that the resulting
expression from T(2) can be used to cut down the unnecessary repetition. In other
words, the relation, which follows trivially from (12),

(21) T(m+l) laT(m)
m

is computationally very useful. By (17) and (18) we have

rr(3) 1/2(0 + O2 "4- O3 -t- O4 OlOf2 O104 O2a3 O304)
(22)

[{2, 3, 4}+{1, 3, 4}+{1, 2, 4}+{1, 2, 3}-{3, 4}-{2, 3}-{1, 4}-{1, 2}].

The computations involved in (22) are:

(23) c 1[(18)] {3, 4} + {2, 4} + {2, 3}- {4} {2},

(24) a2[(18)] {3, 4}+ {1, 4}+{1, 3}- {3}- {1},

(25) a3[(18)] {2, 4}+ {1, 4}+ {1, 2}- {4}- {2},

(26) a4[(18)] {2, 3}+ {1, 3}+ {1, 2}- {3}- {1},

(27) -ala2[(18)] -{4}-{3} + {},

(28) -al o4[( 18)] -{3}- {2} + {},

(29) a2a3[(18)] -{4}- { 1 } + {},

(30) c3a4[(18)] -{2} { 1 } + {},

where the empty sets in (27) to (30) are the result of operations ala2{1, 2}-’-{}, etc.
It cannot be overemphasized that by definition (9) and (10), we have alC2{3, 4}=0
not ! Hence

T(3)= {1, 2}+{1, 3}+{1, 4}+{2, 3}+{2, 4}+{3, 4}
(31)

2{1}- 2{2}- 2{3}- 2{4} + 2{}.
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Therefore, by T(3)--/x(T(3)), we have

(32)
3

+
0

0 3

-6-6-6-4+2=21

i.e. there are 21 3-forests in the kite graph. They are drawn in Fig. 6.

FIG. 6. 3-forests.

To compute the total number of 4-forests T(4) we now use (21) for m 3, i.e.

(33) T(4)

From (22), we can write down by inspection

teaT(3)= {2} + {3} + {4}- 2{},

(34)
c2T(3= {1} + {3} + {4}- 2{},

o3T(3)= { 1} + {2} + {4}- 2{},

O4T(3) { 1 } + {2} + {3}- 2{},

and

(35)
2T(3)--al --{},

--C23T(3) --{},

4T(3)-c -{},

--ff3ff4T(3) --{Q}.

Therefore,

(36) T(4)-- {1}+ {2} + {3} + {4}-4{},

(37) T(4) =/T(4) 3+ 3+ 3+ 2-4 7,

i.e. there are seven 4-forests in the kite graph. They are given in Fig. 7.

FIG. 7. The 4-forests.
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It is trivial that there is only one 5-forest since n 5; it needs no calculation. But
this can also be concluded formally from our computation. Take (36) and use (21)
for m 4, i.e.

(38) T(5) 41-aT(4).

We get

(39) T(5)=[+++-0] {}.

Hence

(40) T(5)=/xT(=/x() 1

which is expected trivially.

3. Forest enumeration: complete graphs, complete bipartite graphs and complete
tripartite graphs. We shall take up the complete graphs, complete bipartite graphs
and complete tripartite graphs. On the historical account, Cayley [6] first solved the
T1) case of complete graphs in 1889 and, in 1959, Renyi published [7] the solutions
of T’ for any positive integer m. As to the bipartite complete graphs, the solution
first appeared in the monograph of John W. Moon [8]. We shall give alternative
operator-approach derivations of these classic results but in simpler representations.
It is important to note that the derivations given here do not require any detailed
combinatorial argument.

For a complete graph, all the off-diagonal entries in the adjacency matrix are
equal to one. This reduces the operator a to

(41)

Hence

E c,cj= a, 1- cj.Ce i=IE Oli i,j=l i=1 j=l

,-=(1 )m-a( -1a,,)’-=l(m(42) a
i=1

ai 1
j=] r=0 r j=l

Then by the matrix-forest theorem (12), we have

r 1 n--1

(43) T<m)= Y
r!(m r 1)(--1/2)r (ai,’’" Cei a)n*

r=0 il,’",im+r_ =1

where r is the minima of m- 1 and n- m. The prime over the second summation of
2(43) indicates that il,... ,lm+r-1 are all distinct due to the fact that ai =0 and

OliOl OljOl i. (43) gives immediately

T< =/z (T(’’)
(44)

1
=r!(m_r_l)!(-1/2)r’ det K(i,... ,im+r_l, rt).

It is easy to find that

(45)

Thus (44) becomes

det K(i, , im+r_l, n) n"-m-r-l(m + r).

(46) T<m)= (n- 1)! n "-"-1 Y (-2n)-r(m + r)/{r! (m- r- 1)! (n- m- r)! }.
r=0
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Due to the increasing complexity, we list below only the first five cases: m 1,
2,3,4,5.

T(1) n n-2,

T(2) =l__ (n- 1)! nn_4( n +6)
2 (n-2)!

1 (n-l)!
T(3)

(!) (n-3)!

1 (n-l)!
T(4)

23(3!) (n-4)!

1 (n-l)!
T(5)

24(4!) (n--5)!

(47) nn-6(n2+ 13n + 60),

n"-S(n 3 + 21nz + 202n + 840),

n"-l(n4 + 30n3+ 451n2 + 3846n + 15120).

A bipartite graph G is characterized by the division of V(G) into two subsets
such that no two vertices are adjacent in the same subset. Thus for a complete bipartite
graph, its adjacency matrix is fixed by the graph’s 2-partition of vertices, say, n Pl + P2.
We have

1, if i<-pl<jorj<-pl<i,
(48) aij=

0, otherwise.

To compute T(m) we have to evaluate O m-1 From c2 0 and iaj aai it follows

m--1
m-1

where runs from 1 to Pl and ] runs from Pl + 1 to n-1. Thus

ml )r(m 1)(,/)m-r-l(/ )r( )rm--1
jc (-1 Oi "+’Z aj O

r=0 r
(49)

m--1

’ (-- 1)r(m-1)(m- r-1)(i oli)ql+r(j olj) q2+r.
r=O ql+q2=m--r--1 r ql, q2

Then

(50)

1
TTM) /x{c’-an*}

(m-l)!
L- 1

(-1)rdetK(I,J,n)
r=O ql+q2=m--r--1 q! q2! r!

where each of the sets I (il,. ira-l-k) and J (jl," Yk+r) has distinct elements
(i.e. il i2 ’", etc.); the ranges of summation over I and J are, respectively, from
1 top andpl+l to n-1.

A calculation similar to that of complete graphs yields the following combinatorial
formula:

m-- (Pl)r(P2--1)T(m)__p2-1ptl-l (__l)r
r=O r!PlP2 ql+q2=m--r--1 ql ql

(51) x p;q2-’p]q,[p P2- (Pl q r) (p2- q2- r- 1)3.
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As an example, we find immediately

and

T(2) pp2-Zp,-2( p2 +p+ p, + P2- PlP2- 2).

For a complete tripartite graph, its adjacency matrix A is fixed by the graph’s
3-partition of vertices, say, n Pl + P2 + P3 with

10 ifi<=p<L J<=Pa<i,
aq

otherwise.
Pl <i<--Pl +P2<j or Pl <j<--Pl +P2 < i,

A multinomial expansion similar to that of complete bipartite graphs yields

,n-1 1
(52) T(m)- Y’. Y. (-1)’ det K(I, Y, L, n)

r=00=rn--r--1 R=r q q2! q3 r r2! r3! x J L

where

Q ql + q2 + q3, R rl + r2 + r3,

I (il," ", t+r_r), J (jl," ", Jq2+r--r2), L (/1," ", lq3+,’--r2)

and the range of summation over/, J and L are, respectively, from 1 to p, pl + 1 to

P + P2 and p + P2 + 1 to n- 1. It is readily seen that

where

(53)

with

Y Z Z det K(I, J, L, n) (Pl)q+r--rl(P2)q2+r--r2(P3--1)q3+r--r3 det R
J L

(P2 + p3)1 1" \ }bl
+

R Pl + P3) 1 }b2
--1" (Pl + p2)lT}b3

b p q r + rl, b2 P2- q2- r + r2, b3 ]33- q3 r + r3- 1

and -1" are matrices with -1 for every entry (not just for the diagonals). A detailed
calculation leads to

(54) det R ab-a2
b2-1 a 3b3-[ala2a3 a b2b3 a2b3bl a3bl b2 2bl b2b3]

where al P2 + P3, a2 P3 + P, a3 Pl -t- P2.
When (53) and (54) are substituted into (52) we get

m-m 1T()= Z 2 2 (-1)
r=O O--m--r--I R=r q q2! q3! r re! r3!

(Pl)p-t,,(P2)a-b2(P3-- 1)p3-b3-1

(55)
x a hi-1 ab22-1a b33-1[alaza3 al b2b3- a2b3bl a3bl b2- 2blb2b3].

For m 1, 2 we find

(56) T(l)=(p +pz+p3)(pz+p3)P-(p3+p,)P2-(p +p2)p3-I
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and

T(2) (Pl "t- p2)P3-3(p -t-- p3)P2-Z(p. + p3)p,-2

X { Pl Pl + P2)( P, + P3)[( Pl + P2 + P3) 2 + Pl + P2 + P3)( P2-- 1) P2]

(57)
+(P3--1)(p, +Pz)(Pz+P3)(P3+Pl)(Pl +P2 +P3)

-PI(Pl + P3) (P3 1)[(p + P2 + P3)2 + (Pl + P2 + P3) (Pl + 2p2-- 2)-- 2p2]

P,P2( P, + Pz)(P, + P2 + P3 1)2}
+ (the same terms with Pl and P2 exchanged).

4. Enumeration of spanning subgraphs having a fixed cyclomatic number (planar
graphs only). Our consideration is restricted to planar graphs. For convenience we
shall assume that the given graphs are connected. For a given graph, the cyclomatic
number simply means the number of "independent" cycles in the graph. It is therefore
reasonable to expect the use of "cycle" may be more effective for this problem. It is,
however, not obvious to us how such an approach can be pursued. Rather, we find
the notion of "duality," i.e. to each planar graph there is a dual graph, most helpful
in formulating our approach: since the m-forest problem is now completely solved
(though without planary restriction!) by our operator technique one may expect that
duality may carry the burden of solution, for the planar graphs, of the above-mentioned
enumeration problems. This turns out to be correct though not in a trivial manner.
The key idea is the use of the so-called cycle-adjacency matrix (this is not a standard
terminology as we mentioned in the definition in 1 here) in the framework of our
operator approach. The rationale is the following: in s)lving the m-forest problem
the Kirchhoff matrix is used though the rows and columns are labelled according to
the vertices. Duality carries "vertices" to "cycles" (or "faces") for planar graphs. So
we may devise a Kirchhoff-like matrix but somehow to be labelled by the cycles instead
of vertices. This is the way how the term cycle-adjacency matrix was coined (clearly,
it should perhaps be better called cycle-Kirchhoff matrix but a Kirchhoff matrix is
essentially an adjacency matrix).

In what follows, we shall formulate our operator method for enumeration of
spanning subgraphs, with a fixed cyclomatic number, in a.n alternative setting than the
one that is used for the forest enumeration. However, the two different formalisms
are actually equivalent in the sense that the formalism to be discussed below can be
cast into a form that bears direct resemblance to that of 2 with the correspondence
of cycles with vertices and vice versa. Our motivation to present a different setting
below is the visualization of graphic meaning in different stages of computation.

Following the notation we set in 1, we shall first of all construct a real vector
space U of formal sums. Let M be real square matrices not necessarily of the same
dimension, i= 1,..., r for some finite integer r. Then U is the real vector space
consisting of formal sums

al * M+. .+a. M
where a are real numbers and the symbol now prohibits the usual multiplication of
the number a into the matrix M, i.e. a are only the "coefficients" of a formal sum.
The symbol defines the following rules of addition and scalar multiplication to make
U a real vector space:

a’(a, M)=(a’a),M=(aa’),M,
(a+a’),M=a,M+a’ ,M,
a"(a,M+a’ ,M’)=(a"a),M+(a"a’),M’,
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where a, a’, a" are real numbers and M, M’ are square matrices of generally different
dimensions. It cannot be overemphasized that an operation like a,(a’M)- (aa’),M
is illegal though either side is well defined. So is a (M + M’) a M+ a M’ prohibited
here. To simplify notation we shall write hereafter

(58) M* -= 1 M.

Furthermore we shall continue to use the notation M(i) to denote the matrix obtained
from M by deleting the ith row and column with M(i, j) to be understood as successive
deletions referred to the original labelling of entries in M; M(i, j) yields the zero matrix
if i-j, i.e. if the same row and column are deleted more than once.

The ith cycle-annihilation operator yi on the vector space U is a linear operator
defined by

(59) "yi(a * M) a M(i),

for a and a square matrix M. Formally /i is similar to a of (9) and (10); the
former is defined on the space U and the latter on W. Despite the similarity, there
is an important difference in their graphic implication: in the case of a, under the
consideration of n*, the operator identifies the ith vertex with the nth vertex in
the original graph (regardless of whether ith and nth vertices are adjacent or not)
while ’)/i simply "ignores" the ith cycle in the computation without any modification
of the original graph (i.e. the ith cycle does not enter into consideration any more
after the operation). The evaluation map/x needed here is

(60) /z:U

with

(61) (a,M) a det M.

The operator 3’ introduced below is in analogy to the operator a of (11) though they
operate on different spaces:

1
(62) Y-= Z Y,+ E

iN i,jN

where Eq are the entries of the cycle-adjacency matrix defined earlier in the first
section. N-= {1, 2,..., N}, with N being the cyclomatic number of the given graph
G. Let S be a set of N independent cycles of G. Denote by % the number of ways of
deleting (N- j) edges, each from a different cycle in S, such that the resulting subgraph
remains connected. Obviously tr0 T<). Similar to the terminology used for forests,
we shall say that O’ generates tri to mean

The following theorem (for proof see [2]) is essential to the enumeration problem
considered.

THEOREM. Denote

1
(63) Om ---7 (1 *E).

ml

Then trm generates O"

By means of (61) and (62) one can now obtain from (63) an expression for
involving multiple summations and entries of the cycle-adjacency matrix [2]:

1
(64) tr,,, E Y Eili2"’" Ei2r_i2r det E(il,..., ira+r).

r=0 il<i i2r-l<i2r i2r+l<Z’"<im+r
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Though this expression no longer involves any operator and gives an answer to the
question, yet computationally it is more efficient to use formula (131) of 6 for efficient
recurrent reduction.

To show the graphic imPlications of (61), (62), and (63) we again consider the
example of "kite" graph of Fig. 1 with S chosen as in Fig. 2. The corresponding
cycle-adjacency matrix is

(65) E= 3
-1

We have

(66) or0 det E 24 (spanning trees).

To find the total number cr of spanning subgraphs each containing one cycle first
write down the general expression for rl from (64):

N N

(67) or1 det E(i) + Eij det E(i, j).
i=1 i<j=l

For the magic-kite graph,

(68) E(1, 2) 3,

E(1)=(3-1 -13)’ E(2)=(4-1 -13)’ E(3)=(4-1
E(1, 3)= 3, E(2, 3) 4,

E12 El3 E23 =-1.

Hence

(69) o (8+ 11 + 11)- (3+3+4)

i.e.

(70) cr 20 (i.e. there are 20 such subgraphs).

To see what happens graphically we analyze the expression (69) for r. Let us

The third term is again 11, corresponding to

So the 30 graphs of the first bracket in (69) are given by (71), (72) and (73). One

(72)

consider the first bracket of (69).Its first term is 8, corresponding to the following
subgraphs:

The second term is 11, corresponding to
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immediately realizes that there are repetitions among these graphs and they must be
removed:

(i) Compare (71) with (72). Remove the following 3 graphs: first, second, fourth
from (72). Note that there is still a repetition left, i.e. the third graph in (72) but this
is a job for the next step.

(ii) Compare (72) with (73). Remove the following 4 graphs: second, third, fifth,
sixth from (73).

(iii) Compare (71) with (73). Remove the following 3 graphs: first, third, fourth.
Therefore 10 graphs are removed from (71), (72), (73) so there is no repetition among
them. This is the graphic meaning of the second bracket -(3 + 3 + 4) in expression (69).

We next compute r2. The general expression for r2 is

o"2= E detE(i,j)+ E EidetE(i,],k)
,j ,j,k

(i<j) (i<j)

(74) 1
+- Y
2 i,,,t

(i<j;k<l)

For the example of the kite graph, we have

EqEkl det E(i, j, k, l).

r2 det E(1, 2) +det E(2, 3) +det E(3, 1)

(75) + El2 det E(1, 2, 3)+ E23 det E(2, 3, 1)+ E31 det E(3, 1, 2)

(3+4+3)-(1+1+1),

i.e. there are 7 spanning subgraphs with two loops. The graphic meaning of the last
line of (75) is"

(a) The first term, 3, corresponds to the graphs

(b) The second term, 4, corresponds to

(77)

(c) The third term, 3, corresponds to

To remove the repetition among (76), (77) and (78) we should throw away the
following 3 graphs from the graphs:

(79)

corresponding to the last bracket of (75).
3 for the kite graph is just itself. This completes the analysis for this case.

5. Alternative ormalisms in the operator approach. In this section, we give a
different formalism than the one discussed in 2 to show that the operator approach
considered here is qHite flexible and capable of some generalization. In fact, we show
that "creation" operators for vertices and edges can be defined as well as the "annihila-
tion" operators we discussed earlier.
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Denote

(80) n--{1,2,... ,n}.

The real vector space X of formal sum is now defined as follows: let (n n) be the
power set of the Cartesian product n n, then X is the vector space of formal sums
generated by (n n) with coefficients in R. We shall write a typical element as

(81) E rss, (S; S’), rss,R.
S,S’

On X, the ith vertex-annihilation operator vi is a linear operator defined by

vi :(S; S’)-(S; S’-{i}) if S’,
(82)

--0 otherwise.

Graphically, n is identified with the set V(G) under a fixed labelling of vertices
in G. Similarly, on X, the ijth edge-annihilation operator eij is a linear operator defined
by

(83)
eij (S; S’),(S-{i,]}; S’)

0 otherwise.

if {i, j} S,

Denote further

(84) v E Vi, e aqeij and X v- e.
i=1 i,j=l

(i<j)

Obviously v and e have, respectively, the meaning of total vertex and edge annihilation
operators. X is the "Euler" annihilation operator, corresponding to the nonoperator
relation for a linear graph:

(85) Euler characteristic=lV(G)l-lg(G)l.

For first enumeration problems we define an evaluation map oo as a real-valued
linear function on the vector space X(corresponding to /x in (7) in a different
formalism):

w’(S;S’)-detK(c{S71S’}) ifSUS’=n,
(86)

0 otherwise.

We shall again say that Fgenerates (w.r.t. w) the number T if w(F) T. Corresponding
to (12), we have the following theorem (reference [3]):

THEOREM I. The formal sum (1/m!)xm(n; n) generates (w.r.t. w) the number of
m-forests in G.

Before we go on with any further exploration, let us again use the kite graph
example to illustrate the computations involved. We shall compute first T(1), the
number of trees, by this theorem. By putting m 1, we have

(87) x(n;n)=(v-e)(n;n)=( i___l vi-(e12+e14+e15+e23t-e25+e34+e35)) (n;n)"

To simplify notation we shall write

(88) (n; s)-- {s), (s; n)-= (st.
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Then

X(n; n) [{2345) + {1345) + {1245) + {1235) + {1234)]
(89)

-[(345} + (235} + (234} + (145} +(134} + (125} +(124}].
Under the evaluation map w,

(90) T(1)= w[g(n; n)].
Since the determinants of submatrices of order (n- 1) of a Kirchhoff matrix are equal
we see that each term in the first bracket of (89) is equal to:

w{2345) det K(1) 24.

So the first bracket is equal to 120. Next, we find:

(91)

w(345} det K(1, 2)= 13,

w(234} det K(1, 5)= 13,

w(134} det K(2, 5)= 12,

o(124} det K(3, 5)= 13

w(235} det K(1, 4) 16,

w(145} det K(2, 3)= 13,

w(125} det K(3, 4)= 16,

which gives a value 96 to the second bracket of (89). Thus

(92) TI) w[x(n, n)] 120-96=24 (trees).

The reader will obviously question the wisdom of such a computational process
since by Kirchhoff’s method it is simply the single term det K(1)= 24. The point
is that we want to pave a way to show the possibility of introducing the so-called
"Euler" operators. Such a generalization shows the beautiful further symmetry of the
approach [3].

We next compute X2:
(93) X2(n; n) X(X(n; n)).

Then typical terms are, for instance,

v1{2345) =0, v1{1345) {345), etc.,

(94)
e12{2345) (345; 2345), etc.,

v(345} (345; 2345), etc.,

e12(234} 0, ea2(125} (5}, etc.

The result under the evaluation map o is, after some straightforward computation,

(95) T2)= 33 (2-forests in the "kite" graph).

Let us now define the ith vertex creation operator v*’i
S’ S’ S’,v,’(S; )-(S; kJ{i}) if i

(96)
--0 otherwise.

Similarly we define the ijth edge creation operator

S’ S’
(97)

e (S; )(S3(i,j; if(i,j)S,

-0 otherwise.
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For forest enumeration we define the evaluation map as a real-valued function
on X by

(98)
oo*’(S; S’) --det K(SU cS’)

0 otherwise.

if SFqS’=,

Then we have the following theorem [3]:
THEOREM II. The formal sum

(99)
1
--x (;)
m!

generates w. r.t. oo*) the number of (n rn) -forests in G.
A comparison between Theorems I and II shows the amazing symmetry, or rather,

"duality," between sets, operators and evaluation maps:

(100) versus n, X* versusx, w* versus w and (n-m) versus m.

We shall illustrate the typical computations by the kite graph. For m 1, Theorem II
gives T(4), i.e. the number of 4-forests in G. The computation would be tedious by
Theorem I yet it is very simple by Theorem II.

(101_) X*(; )= (v*-e*)(; )= Y v*- aije} (; ).
i=1

To simplify notation we write

(102)

Then

(103)

(i,...]-=(i,...;) and [i,...)--(;i,...).

5

X*(; ) Y [i)-(1, 2]-(1, 4]-(1, 5]-(2, 3]-(2, 5]-(3, 4]-(3, 5]
i=1

or

(104) T(4)= o9’{X*(; )}
(105) =3+3+3+2+3-1-1-1-1-1-1-1 =7

corresponding to the total seven 4-forests in the kite graph:

(106) .’---" "", N,,. /’. I
We carry out here one more computation, Tt3, by Theorem II"

(X*)2(; ) xf(RHS of (103)).(107)

First,

(108)
vI(RHS of (103))=[1, 2)+[1, 3)+[1, 4)+[1, 5)-(1; 2, 3)

-(1; 2, 5)-(1; 3, 4)-(1; 3, 5)

which leads to under the evaluation map w* the contribution"

(109) 8+9+5+8-3-3-3-3=30-12= 18.

They correspond to the 18 graphs shown on the lower side of Fig. 8.
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FIG. 8

It is obvious that there are repetitions among the graphs in Fig. 8. Similarly, one finds

V*z(RHS of (103))=[1, 2)+[2, 3)+[2, 4)+[2, 5)-(2; 1, 4)
(110)

-(2; 1, 5)-(2; 3, 4)-(2; 3, 5)

which contributes, under w*,
(111) 8+8+6+8-3-3-3-3= 30-12= 18.

They correspond to the 18 graphs shown in the lower half of Fig. 9.

e,

Next,

(112)

FIG. 9

v3*(RHS of (103))=[1,3)+[2,3)+[3,4)+[3,5)-(3; 1,2)

-(3; 1, 4)-(3; 15)-(3; 25)
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which yields under

(113) 9+8+5+8-3-3-3-3=30-12 18

corresponding to the graphs shown in the lower half of Fig. 10.

FIG. 10

Next,

V*n(RHS of (103))=[1, 4)+[2, 4)+[3, 4)+[4,5)-(4; 1,2)

-(4; 1, 5)-(4; 2, 3)-(4; 2, 5)-(4; 3, 5)

which yields under

(114) 5+6+5+6-2-2-2-2-2=22-10=12

corresponding to the graphs in the lower half of Fig. 11.
For v5 we have

v*5(RHS of (103))=[1,5)+[2,5)+[3,5)+[4,5)-(5; 1,2)
(115)

-(5; 1, 4)-(5; 2, 3)-(5; 3,

FIG. 11
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which yields under 0’

(116) 8+8+8+6-3-3-3-3=30-12 18

corresponding to the graphs in the lower half of Fig. 12.

FIG. 12

Next, we evaluate the contribution due to the edge-creation operator, i.e. due to
the terms in e*x*(; ). The edge-creation operators to be considered, for the kite
graph, are:

(117) e*e, e1*4, e1*5, e*23, e*25, e*34, e’35.
First, for e*le, we have

(118) e(RHSof(103))=(1,2;3)+(l,2;4)+(1,2;5)-(l,2,3,4]-(l,2,3,5]
which yields under o9’

(119) 3+2+3-1-1 =6.

For e4, e*15,""", e35, we have the following contributions:

e14"(1,4; 2)+(1, 4; 3)+(1, 4; 5)-(1, 2, 3, 4]-(1, 3, 4, 5]-(1, 2, 4, 5]- 3+3+3-1-1-1 =6.

e5" (1, 5; 2)+(1, 5; 3)+(1, 5; 4)-(1, 2, 3, 5]-(1, 2, 3, 4]

3+3+2-1-1=6.

e’23" (2, 3; 1)+(2, 3; 4)+(2, 3; 5)-(1, 2, 3, 4]-(1, 2, 3, 5]

3+2+3-1-1 =6.

e’25" (2, 5; 1)+(2, 5; 3)+(2, 5; 4)-(1, 2, 4, 5]-(2, 3, 4, 5]

3+3+2-1-1 =6.

e*34" (3, 4; 1)+(3, 4; 2)+(3, 4; 5)--(1, 2, 3, 4]--(1, 2, 3, 5]--(2, 3, 4, 5]

3+3+3--1--1--1=6.

e;5" (3, 5; 1)+(3, 5; 2)+(3, 5; 4)--(1, 2, 3, 5]--(1, 3, 4, 5]

3+3+2-1-1 =6.
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Hence the total contribution due to the edge operator is

(120) -6-6-6-6-6-6-6 -42.

Summing up the contributions due to both vertex operator and edge operator,
i.e. from (109), (111), (113), (114), (116) and (120), we have

18+ 18+ 18+ 12+ 18-42=84-42=42.(121)

Hence
1 1

(122) w*’(x*)z(G; ) (42) 21

which checks the answer of (32) that was obtained in a very simple and direct manner.
The point is, as we again emphasize here, that the formalism discussed in this section
is used to show the beautiful symmetry of the so-called Euler operator. This also serves
to illustrate that a formal simplicity in mathematics does not necessarily imply a
computational simplification and, ironically, it could sometimes mean the contrary.

6. A useful function that leads to recurrence relations. In the enumeration of
T") and tr,,, all the formal operator-free expressions of [1] and [2] involve multiple
summations. They are actually too complicated for practical evaluation. One way to
resolve this computational difficulty is to find either a function that can be expanded
reductively or some recurrent relations that relate the relevant quantities involved.
Furthermore, it would be even better if we need only one such function to compute
both T") and trm. This section deals with this function; it is a real-valued function, on
symmetric matrices, that can be reduced recurrently. Its application is such that if a
Kirchhott matrix is substituted into the argument it yields T’). If, instead, the
cycle-adjacency matrix is substituted then one finds tr,,. Furthermore, when the
adjacency matrix is used one finds the enumeration of matchings [4].

We now proceed to define this function. Let X be an n n symmetric matrix.
Denote by xij the entries of X and by X(i, ,...) the principal submatrix obtained
from X after a simultaneous deletion of the ith row and column, the }th row and
column, etc. Denote

(123) n-={1,2,... ,n},

(124) X(1, 2,..., n)= 1,

and also, for ij n

(125) X(il,. , i,,) 0 if i ik for some j k.

The sought after function is defined by

(126) X)q;r__
1

2 Xjlhl Xjrhr det X(Iq U Jr U Hr),
q[ r! il,....q h<h, jr<hr

if not both q and r are zero, and

(127) (X(q, , tm))0;0 det X(tl, , tm),

where

(128) Iq {il,’’’, iq}, Jr = {jl,’", jr} and Hr =- {hi,

with the understanding that (125) is in force, i.e. X)q;r
mutually disjoint sets.

,hr}

0 if I, Jr and H are not
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The following recurrent properties can be directly verified:
THEOREM.

(X>q;r---1 (X(i)>q_l;
(129)

q i=1

(X>q;r ! Xjh(X(j, h))q;r-1.

The matrix-forest theorem, i.e. (12), leads to

m--1

(130) r(m)= ] (K(n))m-r-l.r
r=0

which is an alternative to expression (16) of [1]. It is also easy to see that (64) can be
written into"

(131) r.,= ’ <E>rn-r;r.
r---O

We now consider the enumeration of matchings (a matching is a collection of
independent edges) in a graph. Denote by m(r{A} the total number of matchings,
each consisting of r edges, for a graph with adjacency matrix A. Theoretically,
may be written into

1
ajlhl"’’ajrhr"(132) m(r{A} . jl<hl r<h

It follows from (131) that

(133) m(r){A}=(A,)n_2r;r
In summary, we have just shown the useful role the function

X I’-- <X)q ;r

plays in securing recurrence relations and also the "unifying" nature of this function
in that a substitution of Kirchhoff, cycle-adjacency and adjacency matrices leads to,
respectively, the enumeration of m-forest, spanning subgraphs with given cyclomatic
number and r-matchings.
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THE MIDDLE-CUT TRIANGULATIONS OF THE n-CUBE*

JOHN F. SALLEE?

Abstract. This paper is concerned with the asymptotic behavior of q(n), the minimum number of
simplices required to triangulate the n-cube. Such triangulations are of special interest in connection with
algorithms for approximating fixed points of continuous mappings. The standard triangulations of I" use
n! simplices. Let H(n, m)={x Rn: xi m}. Then H(n, m) divides I" into two polytopes which are then
triangulated in a certain fashion. If K n, m) is the cardinality of this triangulation, then lim K n, n/ 2)/ n! 0.
Hence 0(n) is o(n!). Another measure of the efficiency of a triangulation is the diameter of the dual graph
and it is shown that this is O(n2) for the above triangulation. Finally, a pivoting algorithm for the middle-cut
triangulations of the n-cube is also presented.

1. Introduction. In 1967, H. Scarf developed a finite algorithm for approximating
a fixed point of a continuous mapping of a simplex into itself [11]. This algorithm was
refined and extended by H. Kuhn, B. C. Eaves, and O. Merrill, among others. (See
Todd [14], Karamardian [5], and Talman and van der Laan [13], [15] for these and
other references.) Several algorithms use a technique of pivoting among simplices
which triangulate an n-cube. Current triangulations of the n-cube all have n! simplices
and there is an exercise in a well-known text [3] which asserts that this is the minimum.
However, in 1970, Mara [7], [8] produced triangulations of the 3, 4 and 5 cubes having
5, 16 and 68 simplices respectively. Recently, Cottle [1], Lee [6] and Sallee [9], [10]
have shown that 16 is the minimum for the 4-cube. Lee and Sallee independently
found generalizations of Mara’s triangulation, showing that the 5-cube can be triangu-
lated with 67 simplices and that if Pn is the cardinality of this triangulation of the cube,
then lim Pn/n! (e2-2e 1)/2 .4762.

In this paper a new family of triangulations of the cube is presented. Let I [0, 1 ]"
and

H(n, m) {x R": xi m}.

The hyperplane H(n, m) divides I into two polytopes if 1 _-< m <_-n-1. Let K(n, m)
be the cardinality of this triangulation. It will be shown that lim K(2m, m)/(2m)! =0.
If q(n) is the minimum number of simplices required to triangulate the n-cube, it
follows that q(n) is o(n!).

Another measure of the efficiency of a triangulation is the diameter of the dual
graph whose vertices are the simplices and two vertices will be joined by an edge if
the corresponding simplices have a facet in common. A pivoting algorithm is produced
and it is shown that the diameter is O(n2).

2. The middle-cut triangulation of the n-cube. Without specific reference, a
number of basic properties of (convex) polytopes will be used. They can all be found
in the book of Griinbaum [2]. In particular, an n-polytope is an n-dimensional, compact,
convex set with a finite number of extreme points (vertices). An n-simplex is an
n-polytope with n + 1 vertices. An affine set is a translate of a linear set. For A c_c_ R n,
aft A (con A) is the intersection of all affine (convex) sets which contain A. A hyperplane
is an (n 1)-dimensional affine set.

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

Department of Mathematics, University of Washington, Seattle, Washington, 98195.
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An n-complex is a finite set C of n-polytopes such that P Q is a face of both P
and Q for all P, Q C. A triangulation of C is a complex S of n-simplices such that
if P C, there is a subset Sp of S for which P- U Sp. If C-{P}, S will be called a
triangulation of P. If P- U C, and S is a triangulation of C, then S is a triangulation
of P.

A face F of a polytope P is said to be opposite a vertex v if v F. Let F be the
set of pyramids which have the common vertex v and whose bases are the facets of
P opposite v. Then the elements of F have disjoint interiors and P U F. If each of
these pyramids is similarly decomposed by choosing a distinguished vertex in each
base, the resulting set of pyramids will have relatively disjoint interiors. A little effort
will show that if this process is continued, the result will be a set of simplices with
disjoint interiors whose union is P. In general, this is not a triangulation of P since
there is no guarantee that the intersection of a pair of simplices is a face of both.

For the following, see also Hudson [4]. Let V be an ordering of the vertices of
the complex C. For each face F of a polytope P C, let VF be the first vertex of F in
the ordering V. Each chain

P=FnDFn_DFn_aD FIFo
with v/, v for 1 -< - n has an associated simplex S =con ({v, v,,_,, , Vo}). Let
$(C, V) be the set of all simplices generated by sequences as above. Then Lemma 1
follows.

LEMMA 1. S( C, V) is a triangulation of the complex C.
Proof. See [9].
The n-cube I has many nice properties, one of which is the following:
LEMMA 2. vert (H(n, m) In) c_ vert I n.
Proof. For any hyperplane H and polytope P, the vertices of H f3 P are the vertices

of P or the intersection of H with edges of P. Two vertices of I form an edge iff
they differ in exactly one coordinate. It is clear that any two vertices of I on opposite
sides of H(n, m) must differ in at least two coordinates, and the result follows.

Define H_(n, m) {x Rn: xi <= m}, H+(n, m) {x Rn: xi >- m}, A(n, m)
H_(n, m) f"l I and B(n, m) H/(n, m) f"l I n. The complex of interest in this paper is

C(n, m) {A(n, m), B(n, m)}

for 1 _-< m _-< n- 1. For completeness, let C(n, 0) {B(n, 0)} and C(n, n) {A(n, n)}.
Note that A(n, m) is the part of I lying on the origin side of H(n, m) and B(n, m)
is the part lying on the side of H(n, m) away from the origin.

In order to apply Lemma 1 to the complex C(n, m), an ordering of the vertices
of I is required.

An ordering V of vert I will be called an m-ordering if it has the following
properties"

(i) ifYvi<m andZui=m, then v<u;
(ii) if Z vi < m and Y v < Y ui, then v < u;
(iii) if m < v < Y. ui, then u < v.
The important property of an m-ordering is that a vertex farther away from

H(n, m) preceeds a vertex which is closer to H(n, m) and on the same side of the
hyperplane. Lemma 1 guarantees that S(C(n, m), V) is a triangulation of C(n, m) and
hence a triangulation of I n.

An n-cube has 2 vertices and 2n facets, each facet being congruent to In-1. The
facets of I are defined by

Fij {x In xi j}, l<-i<=n, j=O, 1.
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The maps f defined by

f/(x) "-(Xl,""" ,Xi_l, Xi+l,"

map the Fij onto In-1. It is clear that the m-ordering V induces an m-ordering on
the Fio since vi =0 if v Fio. A little effort similarly will show that V induces an
(m- 1)-ordering on the Fil for if xFil, then x= 1 and Y xi-1 = fl(X). Thus the
ith coordinate can be ignored when considering the ordering of the vertices of the Fij.

LEMMA 3. Let V and W be any two m-orderings of vert In; then ]S(C(n, m), V)]
Is(c(n, m),

Proof. By induction, assume that the lemma holds for k < n. The first vertex in
A(n, m) is Vo= (0, 0,..., 0). The facets opposite v0 are the FI (’lH_(n, m) and the
facet M(n, m) H(n, m) CI I n. Fil f’l H_(n, m) A(n-1, m-l) and by induction, the
cardinality of the triangulations is the same under either ordering.

Let X be an m-ordering of vert In-1 and Y be an (m-1)-ordering. If v is any
vertex of In, the facets of I opposite v are F, where j 1- v for 1 <- <- n. Therefore,
if v M(n, m), m coordinates of v are 1 and the other n- m coordinates are 0. Hence
m of the opposite facets are Fo’S and n-m are Fil’S. Next

and

fo(H(n, m) Fo) H(n- 1, m) 711n-1 M(n- 1, m)

f,(H(n, m) (3 F,) H(n- 1, m- 1) CI In-1 M(n- 1, m- 1).

Therefore

(a) IS(M(n,m), V)l=mlS(M(n-l,m),X)l+(n-m)lS(M(n-l,m-1),
and the same formula holds for W. It follows by induction that

I$(M(n, m), V) ]$(M(n, m), W) I.
For either V or W, it follows that

(b) IS(A(n, m), V)[ nlS(A(n- , m- 1), Y)I+lS(M(n, m), V)[.
The vertex Vl --(1, 1,..., 1) is the first vertex in B(n m) with any m-ordering.

The facets opposite vl are the Fiof’lH+(n, m) and M(n, m). Hence

(c) [S(B(n, m), V)[ n]S(B(n- 1, m), X)I+IS(M(n, m), V)].

This proves the lemma.
From formulas (a), (b) and (c) above, it is possible to derive recursive relations

which allow the calculation of IS(C(n, m), V)[. Define g(n, m) IS(M(n, m), V) I,
h(n, m)= IS(A(n, m), V)I and K(n, m)= IS(C(n, m), V) I.

THEOREM 1.
(i) g(n, O) 0 and g(n, 1) 1 for all n >= 2.
(ii) g(n, m) g(n, n- m).
(iii) g(n,m)=mg(n-l,m)+(n-m)g(n-l,m-1).
(iv) h(n,m)=g(n,m)+nh(n-l,m-1)

Y g(n-i, m-i).
i=0 (n- i)!

(v) K(n,m)=K(n,n-m)=h(n,m)+h(n,n-m).
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Proof. (i) follows from the fact that M(n, 0) is a point and M(n, 1) is a simplex.
(ii) results from the fact that the cube is symmetric with respect to its centroid.
(iii) is just the definition of g(n, rn) and formula (a) of Lemma 3.
(iv) is formula (b) of Lemma 3.
(v) follows from the fact that B(n, m) A(n, n- m). [3

LEMMA 4.

g(n, m)<- m-1

Proof. By induction, assume that the result holds for n. By Theorem 1 (iii)

g(n+ 1, rn)= mg(n, m)+(n+ 1-m)g(n, rn- 1)

n+l
(g(n,m)+g(n,m-1))

forif m<=n/2, theng(n,m)>=g(n,m-1)andn+l-m>=m. If m> n/2, theng(n,m-
1) => g(n, m) and m _>- n + 1 m. The result then follows from the addition of binomial
coefficients. [3

The definition of g(n, m), for n >= 2, can be extended to include all integers m by
setting g(n,m)=g(n,n-m)=0if m=>n or m-<0. If m_->n, then m-l=>n-1 and
Theorem l(iii) holds for the extended function g. Hence the theorem holds for the
extended function.

Define c (n, m, a, i) for 0 _-< a -< n 2 and 1 -<_ m <- n 1 by

g(n,m)= a(n,m,a,i) g(n-a,m-i)
i=0

where the a(n,m,a,i) are defined recursively by Theorem l(iii). For example
a(n, m, 1, O) m, a(n, m, 1, 1) n- m, a(n, m, 2, O) m2, a(n, m, 2, 1)
2nm-2mZ-m and ce(n,m, 2,2)=(n-m)2.

LEMMA 5. The function a satisfies the following conditions:

(i) m. a(n, m, a, i) /fi=0,

a(n,m,a+l i)=
(n-a-m+i-1). a(n,m,a,i-1)

+(m-i).a(n,m,a,i) for l<=i<=a,
(n-m). a(n,m,a,a) ifi=a+l;

(ii) a(n,m,a,i)= n"
i=o (n-a)!’

(iii) g(n,m)=a(n,m,n-2,1);

Proof. For condition (i), by Theorem 1 (iii)

g(n, m)= Y (n, m, a, i) g(n-a, m-i)
i=0

a(n, m, a, i)[(m-i) g(n-a-1, m-i)
i=0

+(n-a+m-i). g(n-a-l,m-i-1)]
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=a(n,m,a,O). m. g(n-a-l,m)

+ [(n-a-m+i-1)a(n,m,a,i-1)
i=1

+(m-i)a(n, m, a, i)]g(n-a-1, m-i)

+(n-m)a(n, m, a, a)g(n-a-1, m-a-l).

Condition (i) follows by comparing coefficients.
Condition (ii) is shown to hold by a simple induction. Suppose that Y=0 a(n, m, a +

1, i)= n!/(n-a)!. Then in the above, each a(n, m, a, i) is multiplied by n-a in
generating the a(n, m, a + 1, i). Hence

a+l n!
a(n, m, a+l, i) (n-a).=

i=0 (n-a)! (n-(a+l))!"

Since g(2, i) =0 if 1 and g(2, 1) 1,
n--2

g(n,m)= a(n,m,n-2, i)g(2, i)=a(n,m, 2,1).
i=0

LEMMA 6. Let 1 <-- <-- m 1. If m <-- b <- 2m 2 and 1 <- m <= 2m b- 1, then
a(2m, m,b,i)>=O.

Proof. Since g(n, m) 1 g(2m-0, m-0), a(2m, m, 0, 0) 1. Assume that
a(2m, m, b, i) >- 0 for 0_-< =< b where b < m. Then by Lemma 5(i),

a(2m, m, b + 1, O)= ma(2m, m, b, O)>-O,

a(2m, m, b+l, b+l)=(2m-m)a(2m, m, b, b)>_-0,

and

a(2m, m, b+ l, i) =(2m-b-m+ i-1)a(2m, m, b, i-1)

+(m-i)a(2m, m,b,i)

-> (2m-(m-1)-m+i-1)a(2m, m, b, i-l)

+(m-i)a(2m, m,b,i)

>= ia(2m, m, b, i-1)+(m-i)a(2m, m, b, i)>-0

for 1 =< _<- b _<- m- 1 and each factor in each term above is nonnegative. This establishes
the lemma for b m.

The condition that 1 -< m -< 2m b- 1 is equivalent to the condition that b- m +
1 <- <- m 1. Assume that m =< b < 2m 2 and that the lemma holds for b. Then

a(2m, m, b+ l, i)=(2m-b-m+ i-1)a(2m, m, b, i-1)+(m-i)a(2m, m, b, i)

>-_(2m-b-m+(b-m+l)-l)a(2m, m, b, i-1)

+(re-(m- 1))a(2m, m, b, i)

_>-0. a(2m, m, b, i-1)+1 a(2m, m, b, i)

_->0. ]

LEMMA 7. g(n, m) <-- (1/m)(2m)!.
Proof. By Lemma 5 (ii), Yo a(2m, m, m, i)= (2m)!/m!. Since each of the

a(2m, m,m,i) is nonnegative, a(2m, m,m,i)<=(2m)!/m!. Let b>-m. For and b
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which satisfy Lemma 6,

a(2m, m, b+l, i) (2m- b-m+i- 1)a(2m, m, b, i- 1)+(m-i)a(2m, m, b, i)

=< (2m- b- 1) max {a(2m, m, b, i- 1), a(2m, m, b, i)}.

In particular, if b-- m,

(2m)! (m-l) (2m)!
o(2m, m,m+l,i)<=(m-1)

m! m (m-l)!"
Assume that a(2m, m, re+j, i)<=((m-j)/m) (2m)!/(m-j)!. Then

a(2m, m, m +j+ l, i) <= (m-j-l)

Hence, by Lemma 5 (iii),

(m-j). (2m).<(m-j-i). (2m)!
tn (m-j)! rn (m-j-l)!

g(2m, m) a(2m, m, 2m 2, 1) _-<--
2 (2m)! 1

(2m)!.
m 2 m

The notation an b is used to mean that lim an--b.
THEOREM 2. lim,_K(n, [n/2J)/n! =0.

Proof. K(2m, m) 2h(2m, m), and

K(2m+l, m)= h(2m+l, m)+h(2m, m)

<-2h(2m+l,m)

-< 2g(2m + 1, m) +2(2m + 1) h(2m, m)

by Theorem l(iv) and (v). By either Lemma 4 or Lemma 7, it is clear that
lim g(n, m)/n! =0. To complete the proof of the theorem, it suffices to show that
limm_ h(2m, m)/(2m)! =0.

First,

(2m-/m.logm)1/22r(m--/ log m)m
Next,

e-(k/2) k e-k2
2

Third,

(m- k/m)m

By Stirling’s formula, n! /2"rrn(n/e)", hence

22m [,/m] m-k[.,/J 2rr(m-k[.,/J)m (m-k[.,/J) m-’tm m
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2 "rr m kx/-- m

(
\ (m- kx/--)m / m

<= 1 e k2/4 e-k2/2- e-k2/4.
By Theorem l(iii) and the fact that g(n, m) >= ng(n- 1, m- 1) for m <- n/2, it

follows that
(n-i)!

g(n- i, m-i)>= g(n- i-j, m-i-j).
(n-i-j)!

Hence

(2m)! (2m)!
g(2m- i, m- i) >-_

(2m- i)! (2m-i-j)!

By Theorem 3(iv),

ml (2m)!
h(2m, m) g(2m- i, m- i)

i=0 (2m-i)!
[V’" log m] --1 (2m)!

2 .g(2m-i,m-i)
i=0 (2m-i)!

,,-1 (2m)!+ g(2m- i, m- i)
i= t./.og mJ (2m- i)!

=< [x/m .log m]g(2m, m)

Hence

g(2m-i-j, m-i-j).

q--m. (2m)!
(2m- [v/--. log m])!

_-<x/m log m.--. (2m)!
m

+2m.

g(2m- [x/m.log m], m- [x/m .log m])

(2m)! (2m- [/m log m])!
(2m- [4 log mJ)! 2 m-bm’’g mj

( 2m- [x/.log m]
2m- [x/- log m])

t- 2m e-(lgm)2/4
m

_-< (2m)! (/m ’m-lg m

by the above

m(log m)/4

by Lemmas 4 and 7

by the above

x/m log m 2mh(2m, m)< +
(2m)! m m(log rn)/4"
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The limit of the right-hand side of this inequality is clearly 0 as m oe. This proves
the theorem.

Tables 1 and 2 show the first few values of g(n, m) and give a comparison of n!,
Pn and K(n, n/2). Pn is the corner-cut triangulation of [6], [9].

4
5
6
7
8
9
10

TABLE 1.
g(n,m).

2 3 4 5

4
11
26 66
57 302
120 1,191 2,416
247 4,293 15,619
502 14,608 88,234 142,684

The other values of g(n, m) are easily found by Theorem l(i) and (ii).

2
3
4
5
6
7
8
9
10

TABLE 2.
A comparison of n !, Pn and K(n, n/2).

n! Pn K(n,n/2)

2 2 2
6 5 5

24 16 16
120 67 67
720 364 324

5,040 2,445 1,962
40,320 19,296 13,248

362,880 173,015 106,181
3,628,800 1,720,924 931,300

It should be noted that S(C(n, n), V) is known in the literature as the K triangu-
lation.

3. Identifying simplices in S(C(n, m), V). In order to use Lemma 1 and to be
able to discuss a middle-cut triangulation, it is necessary to choose a specific m-ordering
of vert I n. For any vertex v of I n, let COUNT (v) Y vi and VALUE (v) Y vi. 2-1.
Note that COUNT (v) is the function used to define an m-ordering. Let V be the
m-ordering of vert I defined by first comparing COUNT (u) and COUNT (v) and
if these values differ, ordering u and v according to properties (i)-(iii) of the definition
of an m-ordering; otherwise u and v have the natural ordering given by comparing
VALUE (u) and VALUE (v).

Just as the facets of the cuve are defined by setting a particular coordinate to
either 0 or 1, any proper face of the cube is defined by choosing a subset L of
{1, 2,..., n} and for each i L, setting the ith coordinate to either 0 for all x in the
face or to 1 for all x in the face. To be mathematically precise, let L

_
{1, 2,. , n}

and f:L {0, 1}. Then

Q,i N F,(
iL
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is a face of I n. It is not difficult to show that F is a proper face of I iff there exists
an L and a function f as above for which F FL,r.

Since A(n, m) I t3 H_(n, m), all the proper faces F of A(n, m) are of either
form 1 where F H_(n, in) (3 FL. or of form 2 when f= H(n, m) (3 F.. A coordinate
of a vertex in a face F will be called fixed if i L and free otherwise. The first vertex
of A(n, m) in V is Vo= (0, 0,..., 0). The first vertex v of a face F of form 1 is the
vertex v with vi f(i) if L and vi 0 otherwise. The first vertex of a face F of form
2 is found by setting vi =f(i) if L, then setting the first rn-Yif(i) free coordinates
to 1 and the other free coordinates to 0.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

FIG. 1. A simplex in S(C(10, 5), V).

As an example of these ideas, Fig. 1 is the matrix of coordinate values of a simplex
in S(C(10, 5), V). The face opposite VA(10,5) is F81. The vertices v3, v4,’’’, vii all lie
in the face F=F,rf3H_(IO, 5), where L={5, 8}. The vertices v7,""", Vl lie in the
face F= F,r f) H(10, 5) where L= {1, 2, 5, 8, 10} with f(1) =f(2) =0 and f(5) =f(8)
f(10) 1. The first 5-COUNT (v)=2 free coordinates are 3 and 4 and these are
indeed 1.

Using Lemma 1 to construct a simplex in A(n, m), the first vertex is Vl v0. The
second vertex is in a facet opposite, hence it must have either one nonzero coordinate

or exactly the first m coordinates are equal to 1. In the first case, let this coordinate

be j, then L { j}, and f(j) 1. If the first k vertices have been chosen and k <= m- 1,
then either COUNT (Vk) k 1 or COUNT (Vk) m. In the first case, k 1 coordinates
are fixed.

If COUNT (Vk) m and k < n, then Vk has at most m- 1 fixed coordinates which
are 1 and at most n-m- 1 fixed coordinates which are 0. Also, Vk has at most k-2
fixed coordinates. A face of A(n, m) opposite Vk in H(n, m) has vertices v with

v(i) 1 Vk (i) for some i.
Thus if M(S) is the coordinate matrix of a simplex S S(A(n, m), V), then

Sl (0, 0, , 0) and for => 1, either there exists j such that Sk,j 1 Si.j for all k > or

Sk, m for all k >_- and s, < m.

4. A pivoting procedure for S(C(n, m), V). Excellent discussions of the theory
and use of pivoting algorithms based on triangulations of R to find fixed points of
functions f: Rn R can be found in the books by Todd [14], Talman [13] and van
der Laan [15].

Let S be a triangulation of a polytope P. The dual graph G of S is the graph
whose vertices are the simplices of S and a pair of vertices of G are joined by an edge
iff the corresponding simplices have a facet in common. The algorithms in use today
find a path in G from a simplex T having certain properties to a simplex S whose
vertices have the property that If(v) v) < e for e > 0. Hence all the points in S have
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this property and are called approximate fixed points. Replacing one simplex in the
path from T to S by the next simplex in this path is called pivoting.

Simplices are readily identified by their vertices. The pivoting algorithms are based
on a criterion for replacing a vertex x of a simplex X e S with a vertex y of the simplex
Y e S which shares the facet of X opposite x with X. Thus, given x e vert X, X e S,
a pivoting procedure must be able to find y x such that con ((vertX-{x}) U {y}) e S.

A pivoting procedure must be able to handle pivots for which both simplices
belong to the same cube and pivots between simplices which do not belong to the
same cube. Pivoting between simplices which do not belong to the same cube will be
discussed first.

Let {[ai, bi]} be an arbitrary set of n unit intervals. Let v l be the vertex of the
cube defined by the intervals above whose coordinates are all odd and let v0 be the
vertex of the cube diagonally opposite v 1. Each vertex v of this cube has an associated
vertex in I defined by ti--0 if Vi V0i and ti 1 if vi =/)li. It follows that vi
vOi + ti( vli- vOi).

The facets of this cube adjacent to v0 and v l are the intersection of the cube
with the hyperplanes

H(i, vO) {x Rn: X

and

H(i, vl) {x Rn: xi

for 1-<_iN n. If the cube is reflected through H(i, v0), then the vertex vl is replaced
by the vertex v where

vl ifj i,
v= vl-2(vl-vO) ifj=l.

Similarly, if the cube is reflected through the hyperplane H(i, v 1), then v0 is replaced
by the vertex v defined by

if j # i,
l)y

vOi _+_ 2( v l vOi) ifj=i.

If v’ is the vertex of the new cube which is the reflection of v, then the vertex of I
associated with v’ is just t, the vertex associated with v.

Let S be an arbitrary simplex in $(A(n, m), V) and let M(S) be the matrix whose
rows are the coordinates of the ordered set of vertices of S. Let ai =0 if i-1 or
COUNT (si)- m and COUNT (si-1)< m. Otherwise let ai j if the jth coordinate of
si is fixed and the jth coordinate of si-i is free. sn has two free coordinates, hence
there are two choices for an+l. Let an+l be the rightmost of these coordinates, the one
for which Sn+l 1. For example, if M(S) is the matrix of Fig. 1, then a-0, a2 8,
a3=5, a6=2 a7- l, a8=4, a9--7, ao=3 and a=9. The two free coordinates of
slo are 6 and 9.

Let Lij={ak: k<-j}U{ai}-{O} and define

Sj,aj if j # i,
aj)

1- si,, ifj=i

for all ai Lij.
If COUNT (sj)< m, let Flj=Flij,fijf’lH_(n, m).
If COUNT(sy)= m, let FI-FLij.fif’IH(n, m).
Finally, let zii be the first vertex of Fli.



MIDDLE-CUT TRIANGULATIONS OF THE n-CUBE 417

For example, if M(S) is the matrix of Fig. 1, then L7,4--{a2, a3, a4, a7}--
{8,5,10,1} and f7,4(g)=f7,4(S)--f7,4(10)=f7,4(1)=l and z7,4= (1, 0, 0, 0, 1, 0, 0, 1,
0, 1). Much more interesting are z4,11 =(1, 1, 1, 0, 1, 0, 0, 1, 0, 0) and z9,11 =(0, 0,
0, 0, 1, 1, 0, 1, 1, 1), which are the new vertices when the pivoting replaces s4 and s9
respectively.

PROCEtURE 1. Pivoting for a simplex S in S(A(n, m), V) which replaces the kth
vertex of S.

Step 1. (replacing Sl (0, 0,..., 0))
If k 1, go to step 2.
If COUNT (s2) 1, reflect through H(a2, vl) as above.
If COUNT (s2)= m, set s] (1, 1,..., 1).
Return.

Step 2. (pivoting among vertices not on M(n, m))
If COUNT (Sk)= m, go to step 4.
If COUNT (Sk+l)= m, go to step 3.
Do i=l,n

S k,i Sk+ ,i Sk, -t- Sk_

End do
Return.

Step 3. (the last vertex not on M(n, m) must be replaced by a vertex on M(n, m))
Doj=k+l,n

If sj-1 < Zk,j < S, then insert zk,; delete Sk; return.
End if.

If z,n+l > sn+l, then add Zk,n+l, delete Sk.
Return.

Step 4. (replacing vertices on M(n, m))
Let si be the first vertex on M(n, m).

(If COUNT (Sk) m, then deleting row k from the submatrix M’(s) of M(S) consisting
of the rows from to n + 1 will either introduce a column of zeros in M’(S), introduce
a column of ones into M’(S), introduce a column of ones into M’(S), or the new
vertex will be on M(n, m).) Delete row k from M’(S).

If column j is all ones for some j, then set s, si_ -t- e (the jth unit vector); return.
If column j of M’(S) is all ones, then the pivot is external through the facet

lying on H(j, vO) and can be handled as described above.
Doj=i,n

If si < Zk, < Sk,j+I, then insert Zk,; delete Sk; return.
End do.
If Zk,+I > S+I, then add Zk,,+l and delete Xn+l.

Return.
End Procedure.

That the procedure is correct follows from Lemma 1 and the construction of the
triangulation.

5. The diameter of S(A(n, m), V). The diameter of the K triangulation of I is
(n-1)(n-2)/2. It will be shown in Theorem 3.

THEOREM 3. The diameter of S(A(n, m), V) is O(n2).
Proof. Let S be any simplex in S(A(n, m), V) and M(S) be its associated matrix.

If I<-COUNT(sk)<COUNT(sk+I)=m, then Sk is replaced by s, where
COUNT (s,) m. Hence S is at most a distance m- 1 from a simplex in S(A(n, m), V)
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whose vertices vi for i->2 all lie in M(n, m). Let T(n, m) be the matrix as in Fig. 2
whose first row is 0, whose second row contains a block of m ones, and whose next
m-1 rows are formed by shifting the block of m ones one place to the right and
whose last rows are formed by successively shifting the last one in the block as far
right as possible.

0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

FIG. 2

Let M =M(S) and Mi be the reduced matrix formed by deleting the rows 2
through i-1 and the colums a3 through ai, where the ai are defined as in the last
section. Mn-2 is the matrix

Suppose Mi T(], k) for some ] and k. Then M-I introduces a new row 2 and either
a column of zeros or a column of ones as in Fig. 3.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

M M_ or Mi-1

FIG. 3

In the first case, the block of ones starting in row 3 are successively shifted one place
to the right until no further such shifts are possible. In the second case, similar shifts
occur. In either case, at most n-i shifts are needed. It follows that any simplex in
$(A(n, m), V) which has a facet in M(n, m) is at most distance (n- 1)(n-2)/2 from
the simplex whose associated matrix is T(n, m). Hence, any simplex is at most
m- 1 +(n- 1)(n-2)/2 steps from this simplex and the diameter of S(A(n, m), V) is
at most twice the number above.

6. Concluding remarks. It is clear that S(C(n, m), V) is not a minimal triangula-
tion of the n-cube as the facet M(n, m) of A(n, m) and B(n, m) can also be cut near
the middle and a suitable ordering of its vertices will result in fewer simplices in the
triangulation of M(n, m) and hence in the triangulations of A(n, m) and B(n, m).

It would be nice if a closed form for the estimate of both K(n, m) and the lower
bound of (n), the minimum number of simplices required to triangulate the n-cube,
presented in [10] so that these values could be more easily compared. Gr/inbaum has
suggested that lower bounds for (n) may be found by studying the following two
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problems. First, what is the minimum cardinality of a set S for which (3 S I"? Second,
what if the simplices in S are required to have disjoint interiors?

Since the pivoting step for the K triangulation is so simple, it is not clear that the
pivoting procedure presented here will be an improvement even though S(C(n, m), V)
has far fewer simplices.

Finally, the excellent book by Sommerville [12] is highly recommended to the
reader with an interest in n-dimensionality geometry.

Acknowledgment. Many thanks are certainly due Victor Klee.
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ON THE ALGORITHMIC COMPLEXITY OF TOTAL DOMINATION*
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Abstract. A set of vertices D is a dominating set for a graph G (V, E) if every vertex not in D is

adjacent to a vertex in D. A set of vertices is a total dominating set if every vertex in V is adjacent to a
vertex in D. Cockayne, Goodman and Hedetniemi presented a linear time algorithm to determine minimum
dominating sets for trees. Booth and Johnson established the NP-completeness of the problem for undirected
path graphs. This paper presents a linear time algorithm to determine minimum total dominating sets of a
tree and shows that for undirected path graphs the problem remains NP-complete.

AMS(MOS) subject classifications. O5C graph theory, 68E discrete mathematics

1. Introduction. We consider undirected graphs G (V, E) with no loops or
multiple edges. A dominating set in G is a set D of vertices such that every vertex in
V-D is adjacent to at least one vertex in D. The domination number of a graph G,
denoted 7(G), is the minimum number of vertices in a dominating set.

Although the notion of dominating sets of queens on chessboards dates back to
the 1800’s [1], the modern study of domination can be attributed initially to Ore [15],
Berge [2], [3]. For a survey of results on domination see Cockayne and Hedetniemi
[5], Cockayne [6] or Laskar and Walikar [13].

For arbitrary graphs the problem of finding a minimum dominating set is NP-
complete [10]. For the special case of trees Cockayne, Goodman and Hedetniemi [8]
presented a linear time algorithm, which was improved by Natarajan and White [14]
for weighted trees.

A graph is an intersection graph if there is a correspondence between its vertices
and a family of sets (the intersection model) such that two vertices are adjacent in the
graph if and only if their two corresponding sets have a nonempty intersection. A
graph G is chordal if every cycle in G of length >3 has a chord, namely an edge
joining nonconsecutive vertices on the cycle. It is well known [11] that chordal graphs
are exactly the intersection graphs of subtrees of a tree. If the intersection model is
further restricted, so that each subtree is a path, a proper subclass of chordal graphs,
called undirected path graphs results [12]. It was shown by Booth and Johnson [4] that
the problem of determining a minimum dominating set remains NP-complete for
undirected path graphs. Recently, Farber [9] presented a linear algorithm for
strongly chordal graphs, a proper subclass of chordal graphs which includes powers of
trees.

In [7] Cockayne, Dawes and Hedetniemi introduced the concept of a total dominat-
ing set. A dominating set D is a total dominating set if the subgraph (D} induced by
D has no isolates. The total domination number 7t(G) is the minimum number of
vertices in a total dominating set.

In this paper we present a linear algorithm to determine a minimum total dominat-
ing set of a tree, and show that for undirected path graphs the problem remains

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631.
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The research of this author was partly supported by the National Science Foundation under grant
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NP-complete. The problem remains open for directed path graphs, and even for interval
graphs.

2. Linear algorithm for finding minimum total dominating set of a tree. Our
algorithm actually solves a slightly more general problem, which can be formulated
as follows: for a tree T with vertex set V, partitioned into four sets F, B, R1, and R2,
each consisting of vertices labeled F, B, R1, and R2, respectively, we define a mixed
total dominating set (t-set) of T to be a set TD of vertices of G satisfying:

1. R1UR2TD,
2. x B U R1 - x is adjacent to some vertex in TD.
Clearly, if all vertices of T are labeled B, then a mixed total dominating set of T

will be a total dominating set of T, and vice versa. The minimum order of a mixed
total dominating set of T will be denoted by rot(T). A linear algorithm for finding a
minimum mixed total dominating set (mr-set) of a tree is given.

ALGORITHM MIXED TOTAL DOMINATING. We take as input a tree T with vertices
labeled F, B, R1, or R2, and produce a set TD which is a minimum mixed total
dominating set of T. The algorithm is simply a greedy algorithm which visits an
endvertex, makes an appropriate action and deletes this endvertex from the tree, giving
a new tree. We denote the endvertex currently being visited by v, and its unique
neighbor by u.

Step A. If there are only two vertices left, go to step B, Otherwise let v be an
endvertex, adjacent to u.

1. If v e F, delete v.
2. If v B, and u F U R2, delete v, and label u with R2.
3. If ve B, and u B U R1, delete v, and label u with R1.
4. If v e R1, delete v, put v into TD, and label u with R2.
5. If v R2, and u R1 U R2, delete v, put v into TD, and label u with R2.
6. If v R2, and u F U B, delete put v into TD, and label u with F.
Repeat step A.
Step B. The tree now has only two vertices, u and v.
If u and v both in F, stop.
If v in F, u in B, put v into TD, and stop.
If u and v both in B, put u and v into TD, and stop.
If u or v in R1, put u and v into TD, and stop.
If u in R2, in F U B, put u into TD, and stop.
If u and v in R2, put u and v into TD, and stop.

THEOREM 1. Algorithm Mixed Total Dominating produces a mixed total dominat-
ing set of T of minimum order.

Proof. It is sufficient to consider trees having at least three vertices, since the
algorithm clearly finds an mt-set of a two-vertex tree correctly.

Case 1. If v e F then mr(T) mt(T- v).
a. Let D be an mt-set of T. If v e D then u must need to be adjacent to some

vertex in D. Let w be any vertex adjacent to u, w v. Then D-{v} U { w} is a t-set
of T-v. Hence mt(T-v)<-mt(T). If v D then D is also a t-set of T-v. Hence
rot( T- v) <- rot(T).

b. Conversely, let D be an mt-set of T-v. Since v e F, D is also a t-set of T.
Thus, mt( T) <- mt( T- v).

Thus rot(T) mt( T- v).
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Case 2. If v B and u FU R2, and T’ is the tree which results by deleting v
from T and labeling u with R2, then mt(T)= mt(T’).

a. Let D be an rot-set of T. Since v B we know that u D. Now if v D then
D is a t-set of T’ and mt(T’)<-mt(T): Since the only vertex adjacent to v, namely u,
need not be adjacent to any vertex in D, we know v D.

b. Conversely let D be an mt-set of T’. Then since u R2 (in T’) it follows that
u D. Hence D is a t-set of T and mt(T)<= mt(T’).

Case 3. If v B and u B t_J R1, and T’ is the tree which results from deleting v
from T and labeling u with R1, then mt(T’)= rot(T).

a. Let D be an rot-set of T. It follows that since v B, then u D. Now if v D
then D is a t-set of T’. Hence, mt(T’)<= mt(T). If, however, v D then by replacing
v with another vertex w adjacent to u, D-{v} U {w} will be a t-set of T’, and again
mt( T’) <- mt( T).

b. Conversely, let D be an rot-set of T’. Then since u R, it must follow that
u D. Thus D is also a t-set of T, and mt(T) <- mt(T’).

Case 4. If v R1 and T’ is the tree which results from deleting v and labeling u
with R2, then mr(T) mt( T’) + 1.

a. Let D be an mt-set of T. Then since v R1 we know that v and u are in D.
Furthermore, D-{v} is a t-set of T’ since u R2 in T’. Hence mt(T’)<= mr(T)-1.

b. Let D be an mt-set of T’. Since u R2, we know u D. But then D t_J {v} is
a t-set of T and mt(T) <= mt(T’) + 1.

Case 5. If v R2 and u R1 U R2 and T’ is the tree which results from deleting
v and labeling u with R2, then mt(T’)+ 1 mr(T).

a. Let D be an mt-set of T. Since u R1 t3 R2 and v Re we know that u D,
and furthermore since u R2 in T’ it follows that D-{v} is a t-set of T’. Hence
mt(T’)<-mt(T)-l.

b. Let D be an mt-set of T’. Then u D and D U{v} is a t-set of T. Hence
mt(T)<-mt(T’)+l.

Case 6. If v R2 and u F t3 B, and T’ is the tree which results from deleting v
and labeling u with F, then mt(T’)= mt(T)-1.

a. Let D be an mt-set of T. Then, since u F in T’ it follows that D-{ v} is a
t-set of T’. Hence, mt( T’) <= mt( T)- 1.

b. Let D be an mr-set of T’. Since v R2 in T it follows that D t_J { v} is a t-set
of T. Hence mt( T) <= mt( T’) + 1.

3. NP-completeness for undirected path graphs. The dominating set problem for
undirected path graphs was shown NP-complete by Booth and Johnson [4] using a
reduction from the 3-dimensional matching problem. We prove here that the determi-
nation of minimum total dominating sets for undirected path graphs is also NP-complete
using a slight variation of that reduction. As a matter of fact, the reduction is almost
the same as that of Booth and Johnson’s except in the formation of one clique which
turns a minimum dominating set into a minimum total dominating set. For the sake
of completeness, we will describe the reduction completely, which will be mostly Booth
and Johnson’s reduction.

THEOREM 2. The problem offinding the total domination number of an undirected
path graph is NP-complete.

Proof. We will show that the 3-dimensional matching problem can be reduced to
the total domination number problem of a certain undirected path graph.

Following Booth and Johnson [4], let W, X, and Y be three disjoint sets each of
cardinality q and let M be a subset of W X Y having cardinality p. We use the
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following notation of Booth and Johnson [4]:

W={wll<-_j<=q},

X {x,[l <- k <= q},

Y {y,]l <= <= q},

M {mi wj, x:, yl)l Wj W, Xl G X, yl Y, l <-_ <= p}.
For a 3-dimensional matching problem with triples M we may assume that each

element of W, X, and Y occurs in at least two triples since otherwise the single triple
must occur in any solution so we could reduce the problem to a smaller one. We
construct a tree having 6p+ 3q + 1 cliques from which we will obtain an undirected
path graph. The cliques of the tree are explained below.

For each triple mi in M there are 6 cliques whose vertices depend only upon the
triple itself and not upon the elements within the triple. These six cliques form the
subtree corresponding to mi, which is illustrated in Fig. 1.

{Ai, Bi, Ci, Di} (1)

{A, B, D,, F} (2)

{C, Oi, Gi} (3)

{Ai, Bi, Di, Ei} (4)

{Ai, Ei, Hi} (5)

{Bi, Ei, li} (6) forl<-i<-.p.

{Ai, Bi, Ci, Di}

{Ai, Bi, Di, Fi}

{A Bi, Di, El}

{Ai: <-i<=P}

U{Bi: l<--i<--P}

U{C: l<--i<--P}

{A w] rn}

Q, Di,

Vmi M

{K}U

{Bi: Xk mi}

VXk X

{Ai, Ei, Hi} Bi, Ei, li

FIG.
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It may be pointed out here that the above cliques are the same as in Booth and
Johnson’s paper except the (4) given above, and this little change makes the desired
reduction possible.

Next, there is a clique for each element of W, X and Y which depends upon the
triples of M to which the element belongs.

{J}U{Ailwim} forl<=j<-q,

{Kk} U {Blx, mi} for 1 <= k =< q,

{L}U{CIyem} forl<=l<=q.

And finally there is one large clique, the root of the tree, which contains vertices
for each of the triples

{Ai, B, C]l p}.

We see that the sets are cliques by verifying that no set is properly contained
within another. We check that each element is contained only in a family of cliques
which form an undirected path within the tree; it is then easy to see that there is only
one way in which the cliques can be connected into a tree so that these conditions
hold. This is the arrangement shown in Fig. 1. We thus know that the graph G whose
cliques were built from the 3-dimensional matching problem is an undirected path
graph and the clique tree is unique.

We next claim that the undirected path graph G has a total dominating set of
size 2p+ q if and only if the 3-dimensional matching problem has a solution.

Verifying one direction of the claim is easy. If the 3-dimensional matching problem
has a solution M’ we simply choose for each m in M’ all of the vertices A, B and
C corresponding to that rni. There are precisely 3q of these. For all other rn not in
M’ we choose the corresponding D and E. There are 2p-2q of these. Altogether
we have chosen 2p+ q vertices which form a total dominating set of G, since Ai,
C are mutually joined, and Di and E are joined.

Conversely, given a total dominating set for G we can assume without loss of
generality that for each either all three of Ai, B and C or else both of D and
have been included. This follows from the observation that the only way to totally
dominate the subtree corresponding to m with two vertices is to choose D and Ei,
and that any larger total dominating set might just as well consist of A, B and C,
since none of the Other possible vertices dominate any vertex outside of the subtree.

The proof is completed by noting that if there are of the rn for which Ai,
and C are chosen in a dominating set of size 2p + q, these account for 3t vertices and
the remaining E and D account for 2p-2t vertices. It must be the case that q.
Picking the q triples m for which Ai, B and Ci were chosen yields a solution to the
3-dimensional matching problem.
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UNLABELLED PARTITION SYSTEMS:
OPTIMIZATION AND COMPLEXITY*

P. M. CAMERINI’ AND F. MAFFIOLI-

Abstract. In this paper we consider unlabelled partition systems, i.e. independence systems (S, ),
where the ground set S--of m elements-- is partitioned into n blocks and for each base B 3 the number
of blocks containing elements of B is exactly ci a given nonnegative integer--for each i= 0, 1,. , m.
For any weighting w:S ’, we show that the problem asking for a most weighted base is solvable in
polynomial time. When Ck-1 + Ck n for some k, 0 < k <= m, we have a matroid, called unlabelled partition
matroid. We also introduce a matroid operation, called star, which preserves linear representability. Finally,
we investigate the computational complexity of optimum intersection and parity problems for structures of
this kind. These arise naturally in many degree-constrained subgraph problems, when only the number of
vertices with prescribed degree is assigned, disregarding the vertices identities.

Key words, independence systems, matroids, matching problems, complexity classification

AMS(MOS) subject classifications. 05A05, 05B35, 68C25, 90C09

1. Introduction. A well-solved class of important combinatorial optimization
problems is constituted by the degree-constrained subgraph (DCS) problems, both in
bipartite and nonbipartite graphs, weighted or not. Not only are the problems solvable
in polynomial time when the prescribed degree of each vertex is one (matchings), but
also in the more general case of arbitrary degrees, i.e., when for each vertex v a
nonnegative integer a is given, and the required subgraph has to contain a edges
incident to v.

Surprisingly little attention has been given to the "unlabelled" DCS problems,
namely to the cases where only the number of vertices with prescribed degree is
assigned, and the identity of these vertices disregarded. Such problems turn out to
arise in some practical applications, such as the optimum assignment of traffic bursts
in SS-TDMA systems [4], [5].

In order to investigate in general problems of this kind, in 2 of this paper we
define and study unlabelled partition systems, i.e. independence systems whose ground
set S of m elements is partitioned into n blocks and whose bases B are such that the
number of blocks containing elements of B is exactly cima given nonnegative
integer--for each =0, 1, ..., m. For any weighting w: S-7/, we show that the
problem asking for a most weighted base is solvable in polynomial time. When
Ck- "-Ck "-n for some k, 0 < k-< m, the system is a matroid, which we call unlabelled
partition matroid.

In 3 we introduce and discuss a matroid operation, called star, yielding a
hierarchical matroidal structure and preserving linear representability. In 4 we
investigate thoroughly the computational complexity of both intersection and parity
problems involving unlabelled partition systems. In 5 we motivate this study by
applying it to unlabelled degree-contrained subgraph problems and by proposing a
reliability problem which can be efficiently solved using the star operation.

* Received by the editors July 6, 1983. This research was partially supported by a research contract

of the Italian Ministry of Education. This work was presented at the SIAM Second Conference on the
Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Dipartimento di Elettronica & Centro di Studio per le Telecomunicazioni Spaziali del CNR-Politecnico
di Milano, 20133 Milano, Italy.
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2. Unlabelled partition systems. Let S--{Sl, s2,’", s.,} be a ground set of
elements, properly partitioned into n partition blocks $1, $2,’", Sn. For each X C_ S,
i=O, 1,. ., m, let

"fi(X) ’-]{Sj" ISj ( X[ i}l,
i.e., Ti(X) denotes the number of partition blocks having elements in common with
X. Let Co, Cl, , c,, be m + 1 nonnegative integers, called charges, such that

Ci-n
i=o

(2.1)

and

(2.2) Z Ch <- 2
h=i h=i

for each i= 1,..., m.
Because of (2.1), (2.2) the set of subsets X of S such that

(2.3) i(X)-ci

for each i= 0, 1,..., m, is a nonempty set. Moreover, since all members of have
the same cardinality,

(2.4) r= Y. i. ci,
i=1

the following property is satisfied.

(P.1) X 3 and X C_ X’ implies X’ N.

The pair U (S, 3) is therefore an independence system [6], [9] which we call an
unlabelled partition system (UPS). The members of 3 are called the bases of U. Any
subset of a base is an independent set of U.

We say that a UPS is given in concise form or concisely, when its bases, rather
than being listed explicitly, are specified as above, i.e. by giving the integer m, the n
partition blocks, and m + 1 nonnegative integers ci, i=0, 1,..-, m, satisfying (2.1)
and (2.2). Notice that the size of the input data needed to specify an UPS in concise
form is bounded above by a polynomial in m--the cardinality of the ground set.

We are concerned with the following decision problem"

WEIGHTED UPS BASE (WUB)
Instance. A UPS U (S, N), given in concise form;

a weight w(s) 7] for each s e S;
a threshold W 7].

Question. Does there exist a base X e 3 (i.e. a subset X of S satisfying (2.3))
whose total weight w(X)=Ysx w(s) is not smaller than W?

THEOREM 2.1. WUB is solvable in polynomial time.

Proof. Consider the following algorithm, whose input is any instance of WUB.

begin
1. let G--(M, N, E) be a bipartite graph, where

M={uo, ul," ", u,,}, N={vl," ", v,} and
E={{ui, v}" uieM, viN,

2. Ior each edge e { u, v} of G do
let z(e) be the sum of the weights of (any) most weighted elements in S
(z(e)-0 if i=0);
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3. find in G a set F* of edges such that
(i) exactly ci edges of F* are incident to ui, i=0, 1,..., m,
(ii) exactly one edge of F* is incident to vj, j-1,..., n,
(iii) Z eF* z(e) is maximized, subject to constraints (i) and (ii) above;

4. if Z => W then return "yes" else return "no"
end

We show that this algorithm solves WUB in polynomial time.
First, it is easy to see that if X* is any UPS base, then

F* {{u,, vj}: i= IS (q X*[}
satisfies conditions (i) and (ii) of step 3. Moreover, if X* is an UPS of maximum total
weight, then

w(X*) Y z(e).
eeF*

(In order for X* to have maximum total weight, the elements of Sif) X* must be
[Si f-) X*[ most weighted elements of Sj.)

Second, if F* is any set of edges of G satisfying the three conditions of step 3,
then we can construct a corresponding set X*, by taking for each edge e { u, vj} e F*,
most weighted elements of Si, and therefore X* is an UPS base, of total weight

w(X*) z( e) Z.
eF*

Because of these two facts, the value of Z found in (iii) of step 3 is the maximum
total weight of a UPS base, and step 4 provides a correct answer. To see that the
algorithm runs in polynomial time, it is enough to note that standard matching
techniques [8] can be utilized for executing step 3. [3

It is well known [13] that an independence system (S, ) is a matroid (defined in
terms of its bases) if and only ifmin addition to (P. 1)--the following property is satisfied.

(P.2) X , X’ and x X implies X-{x} t_J {x’} for some x’ X’.

The theorem below will be proved in more general form in the next section and
is stated here to point out that a UPS is a matroid, called unlabelled partition matroid
(UPM), when only two consecutive charges, say Ck-i and Ck, are different from zero.

THEOREM 2.2. A UPS such that Ck-l+Ck n for some k{1,..., m} is a
matroid.

An UPM for which Ck-1 "t- Ck F/ is also indicated as a k-UPM, and can be defined
in terms of its independent sets, as M (S, 5), where

{I c_ S: "Yk(I) <= Ck, II (’l SI <--_ k, ]= 1,..., n}

(Notice that a k-UPM with Ck =n is an ordinary partition matroid [10], whose
independent sets have no more than k elements in each partition block.)

As a consequence of Theorem 2, when Ck-I+Ck n for some k e {1,..., m},
problem WUB can be solved by the "greedy" algorithm [10], which is much simpler
and faster than the method (see proof of Theorem 1) utilized for the general case.

On the other hand, when two nonconsecutive charges are different from zero, the
greedy algorithm cannot be used in general, since the corresponding UPS is not
necessarily a matroid, as the following example shows. Let S {Sl, s2, s3, s4}, S1
{S1, $2}, S2 {$3, $4}, cO c2 1, cl ca c4 0: the set of bases {S1, $2} does not
satisfy property (P.2).



UNLABELLED PARTITION SYSTEMS 429

3. The star of matroids. In this section we generalize the definition of unlabelled
partition matroid, using an operation, called star, which can be made on any matroid
and any sequence of n matroids, n beingthe number of elements of the first matroid.
This operation yields a new matroid and preserves linear representability, i.e. the star
of matroids linearly representable over the same field is linearly representable.

Let N be a matroid, with ground set T={tl,’", tn} and base set % Let
M1,’" ", Mn be matroids, Sj and Nj denoting respectively the ground and the base
sets of M, j= 1,..., n. All these matroids are arbitrary, but for the fact that we
assume their ground sets to be pairwise disjoint, and IT[ n. This latter assumption
allows the index j to establish a natural one-to-one correspondence between any
element t of T and the matroid M. We say that t is the image (in T) of any base of

Let s be the rank (i.e. the cardinality of the bases) of N. For each j 1,..., n,
let r be the rank of Mj and

{X S" ::ix S X s.t. X U x} }
be the set of the sub-bases of N/, that is j contains all the independent sets of M
with O-1 elements, or equivalently all the maximal independent sets contained into
the hyperplanes [13] of M.

Let

and for each X c_ S,

Let also

s=us 

B(X) { t,: x n s, e }.

={XC_S: B(X)e %XfqSe .U @,j= 1,..., n};

i.e. @ contains every subset of S such that (i) its intersection with each S is either a
sub-base or a base of M, and (ii) the elements of T which are images of these latter
bases, form a base of N.

We call M=(S,@) the star of N and M1,’" .,M and write M=
N (M1,""", M,) to denote this operation.

Observe that if N is a free matroid (i.e. a matroid having the ground set as its
unique base), then N (M1,’", M) is the direct sum [13] of M1,’", M.

THEOREM 3.1. The star of matroids is a matroid.
Proof. We show that the pair M (S, @) defined above satisfies properties (P.1)

and (P.2) of 2.
Since all members of @ have the same cardinality

r= s+ (r-l),
j=l

(P. 1) is obviously satisfied.
In order to show that (P.2) is also satisfied, let X, X’ be any two members of

and let x be any element of X. Let h be the index such that x Sh. There are two cases.
Case A. IX Sh[ <= [X’ fq Sh]. Hence the independent set of Mh

i=(xns)-{x},

has fewer elements than the independent set I’= X’f3 Sh.



430 P. M. CAMERINI AND F. MAFFIOLI

Because of the properties of the independent sets of a matroid [13], it follows
that there exists an element x’ I’-I c_ X’ such that I U {x’} is independent in Mh.
Moreover, I {x’} is either a base or a sub-base, depending on whether X Sh is a
base or a sub-base. Therefore

X-{x}U{x’} y.

Case B. IX f3 Sh] > [Xt "] Sh[. Hence X f3 Sh is a base, X’ f3 Sh is a sub-base of Mh,
and th B(X)-B(X’). Since both B(X) and B(X’) are bases of N, and property
(P.2) holds for , it follows that B(X)--{th}U{th,}6 for some th, 6B(X’)-B(X).
As a consequence, X’f-1 Sh, is a base and X f3 Sh, is a sub-base of Mh,. Because of the
properties of the independent sets, there exists an element x’ of (X’ f3 Sh,)- (X f-1Sh’) C_
X’ such that (X fq Sh,)U {x’} is a base of Mh,, whose image is th,, SO that

X-{x} U {x’} e . 3

Theorem 3.1 can also be proved as in [3] utilizing the following elementary
operations, studied in [2].

(A) Free extension. For any matroid L on a ground set R, the free extension of
L by an element x is the matroid L’ on the set R U {x}, whose bases are all the bases
of L, together with all sets obtained by adding x to any sub-base of L.

(B) Two-sum. For any two matroids L, L2 on ground sets respectively R, R2,
such that R f-IR2={y}, the two-sum Ty(La, L2) is a matroid on the ground set
R U R2-{y}, whose bases are all sets of the form B U A2 or A t3 B2, where for each

1, 2, B is any base of L not containing y, and A is any sub-base of L such that
A U {y} is a base of L.

It turns out that

N (M1, , M,) Tt. Tt,,_l ("" TtI(N, M’)... M-I), M),

where for each j 1,..., n, M denotes the free extension of M by tj.
The proof of Theorem 2.2 follows easily from Theorem 3.1, observing that any

k-UPM M (S, ) is given by

U[T, Ck] * UESI, k], U[S,, k]),

where we denote by U[R, p] the uniform matroid [13] on ground set R, whose bases
are all subsets of R with p elements.

Since it is known [2] that both operations (A) and (B) preserve linear representabil-
ity, it follows that the star of matroids, all linearly representable over the same field
F, is linearly representable over a suitable extension of F. We refer the reader to [3]
for a general way of constructing such a linear representation. In the particular case
of a k-UPM, a possible representation over the field of reals is given by the following
r x m matrix:

where for ]= 1,--., n

S 0 0

Sn
T T T
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is a (k-1)x [S.] matrix, and

Tj

is a ck x ISgl matrix.
When, as it happens above, the representation over the field of reals involves only

not too large integers, the problem of finding (if any) a base respecting 2-parity
conditions may be solved efficiently by the random polynomial algorithm of [11].
However, for the case of a k-UPM, an efficient polynomial deterministic algorithm
will be proposed in the next section (see Corollary 4.1).

Finally, let us observe that the star operation can obviously be performed itera-
tively, thus yielding a multi-level matroidal structure. We shall see in 5 a possible
application of this fact.

4. Intersection and parity problems. In this section we investigate the computa-
tional complexity of problems involving more than one UPS, or imposing parity
constraints on the elements of the ground set. Specifically, we consider (p-) intersection
problems, asking for a basemof total weight not smaller than a given threshold
Wmcommon to p UPS’s given in concise form, all having the same rank and sharing
the same ground set of m weighted elements. These problems are denoted by a
sequence of p "fields" separated by vertical bars: each field specifies in increasing
order, for the corresponding UPS, the indices of those charges which are allowed to
be greater than zero. For instance

(2,413)
identifies the problem of intersecting two UPS’s: the first having all charges equal to
zero, but (possibly) c2 and Ca; the second with a unique nonzero charge, d3. This means
that for any base X common to both UPS’s, c2 partition blocks of the first UPS share
2 elements with X, and the remaining (Ca) partition blocks have 4 elements in common
with X, whereas all (d3) partition blocks of the second UPS, share 3 elements with X.

We shall also consider (q-) parity problems, where a single UPS U (S, N),
weighted on elements, is given in concise form, together with a proper partition of S
into parity blocks of equal cardinality q (q being a divisor of [SI), and we ask for a
base X e mof total weight not smaller than a given threshold W--satisfying parity
conditions, i.e. each parity block must share with X either all, or none of its elements.
Parity problems of this kind are denoted as

(hi,""", ht: q),

where (similarly as for intersection problems) hi," , hi are the indicesmin increasing
order--of those charges of U, which are allowed to be greater than zero.

Obviously, when p =q 1, both intersection and parity problems specialize to
problem WUB considered in 2. A less trivial observation is the following.

Remark 4.1. Any parity problem (hi,’", hi: q) is a special case of
(hl,"’,hll0, q), where the partition blocks of the second UPS have equal
cardinality q.

Because of Theorem 2.2, we also note that any problem (h, h +llk, k + 1) asks
for a base, of weight not smaller than W, common to two (unlabelled partition)
matroids, and hence is solvable in polynomial time [10, Ch. 8]. Similar to the problem
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of intersecting two ordinary partition matroids [10, 12], the optimal intersection of
two UPM’s can be found by defining a suitable min-cost flow problem, with lower and
upper bounds to arc flows (see [14], [5] for an application).

A more general result is the following.
THEOREM 4.1. Anyproblem (h, h +l[k, k + 1, k + 2) is solvable in polynomial time.

Proof. We show that, using polynomial time, it is possible to transform any instance
of this problem into an equivalent instance of the weighted degree-constrained subgraph
problem [8, Ch. 7]. To this purpose, let us consider the following construction.

Let n and n2 be respectively the number of partition blocks of the first and the
second UPS. For each i- 1,..., m, let ci and di be respectively the ith charge of the
first and the second UPS. Let V1 { vj: j 1, , n} be a set of vertices, in one-to-one
correspondence with the partition blocks of the first UPS. For each 1,..., n2, we
associate to the/th partition block of the second UPS a pair of vertices u, z connected
by an edge of zero weight. Let V2, E2 denote respectively the set of all these vertices
and edges. To each element si (i= 1,..., m) of the ground set S, assuming that s
belongs to the jth partition block of the first, and to the /th partition block of the
second UPS, we associate the graph of Fig. 1, weighted on edges as shown (i.e. all

w(si) 0

xi

FIG.

u

edges have zero weight, but for vj, x}, whose weight is the same as that of s). Let
E3 and V3={x, yi:i= 1,..., m} denote respectively the set of all edges of these
graphs, and the set of all vertices not in V LJ V2. Let V4 {r, z} be a set of two other
vertices, and let

E {{r, v}: j= 1,’’-, nl},

E4 {{’/’, Ul}: 1- 1,""", n2},

be two other sets of edges of zero weight. Let G (V, E) be the graph such that
V=U 4= V and E U 4 E,.

We claim that to any subset F of E having exactly
(i) Ch edges incident to or,
(ii) dk/l edges incident to z,
(iii) h / 1 edges incident to each vertex of
(iv) k / 1 edges incident to each vertex Zl (! 1,. , n:),
(v) one edge incident to each other vertex,

there corresponds one-to-one a base X common to both UPS’s, whose total weight
is the same as that of F. Once this claim is proved, the theorem follows immediately,
since the given construction provides a polynomial transformation [7] from
h, h / llk, k / 1, k / 2 to the weighted degree-constrained subgraph problem. Figure 2
illustrates an example of this construction, for an instance of 1,211, 2, 3, with cl =0,
c: 3, dl- d: d3 1; nl n: 3; m =9; partition blocks of the first UPS: {s, s2, s3},
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{$4, $5, $6} {$7, $8, $9} partition blocks of the second UPS: {s1, $4, $7} {$2, $4, $8}
{$3, $6, $9} W( Si) i, i= 1,’’’, 9.

Figure 2 represents the corresponding graph G (only nonzero weights are shown):
the wavy edges identify the subset F corresponding to X {sl, s3, ss, s6, ST, s9}.

xl Yl

v2 x u2

x8

FIG. 2

In order to prove the claim, suppose that we are given a subset F of E satisfying
properties (i) through (v) above. Let

X { si S: { vj, xi} F for some j}.

It is trivial to see that F and X have the same total weight. Because of (i) and
(iii), there are exactly Ch (respectively Ch/l rtl-Ch) vertices of V1 incident to exactly
h (respectively h + 1) edges of F-E. It follows that X is a base of the first UPS. In
order to show that X is also a base of the second UPS, observe that for each 1, , n2
the unique edge of F incident to Ul can be either

(a) edge { ut, zt}, or
(b) edge { ’, Ul}, or
(c) an edge {u, Yi} for some i.
In case (a), because of property (iv), F contains k edges of the kind {Yi, Zl}; for

each one of these edges, {xi, yi} F, so that {vj, x}e F for some ; it follows that X
contains exactly k elements of the /th partition block of the second UPS.

In case (b), again by property (iv), F contains k + 1 edges of the kind {y, zt};
similarly as for case (a), it follows that X contains exactly k + 1 elements of the /th

partition block.
In case (c), F contains k + 1 edges of the kind {y, Zl} and one edge of the kind

{ut, y}, so that X contains exactly k + 2 elements of the /th partition block.
Because of property (ii), case (b) occurs exactly dk+a times, and therefore exactly

dk+l partition blocks of the second UPS contain exactly k + 1 elements of X. Moreover,
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letting 6a, 6 denote respectively the number of times that case (a) and case (c) occur,
we have

6a + d+a + 6 1"/2,

k. 6+(k+l)d,+l+(k+2)6=lXl=r,
where r is the rank of both UPS’s.

Since the above system of linear equations in the unknowns 8a, 6c has a unique
solution, and since dk and dk/2 satisfy the system, it follows that exactly dk (respectively
d/2) partition blocks of the second UPS contain exactly k (respectively k + 2) elements
of X, and therefore X is a base of the second UPS.

Conversely, it is easy to see that given a base X common to both UPS’s, one can
always construct a corresponding subset F of E satisfying properties (i) through (v),
and having total weight equal to that of X.

COROLLARY 4.1. Any problem (h, h + 1" 2) is solvable in polynomial time.
Proof. This result follows immediately from Remark 4.1 and Theorem 4.1.
We now turn our attention to NP-complete problems.
TzolZM 4.2. Problem (1[0, k) is NP-complete, for any k >- 3.
Proof. Since it is obvious that this problem belongs to NP, we exhibit a polynomial

transformation from the following well-known NP-complete problem [7].

EXACT COVER BY 3 Szas
Instance. Set O {1,. , 3q};

collection C of three-element subsets of O.
Question. Does C contain an exact cover for Q, i.e. a subcollection C’ c_ C such

that every element of O occurs in exactly one member of C’?

Let
S {{x, y}" y C and either x y or x O’},

where O’ ={3q+l," , k. q}. For each j= 1,. , 3q, let

I-I {{j, y}" j c y C};

for each j= 3q+l,. ., k. q, let

H {{j, y}: y C};

for each l= 1,..., ICI, let

K ---{{x, Yl}: either x Yl or x e O’},

where Yl is the /th member of C.
Let U1 be a UPS having ground set S; partition blocks /-/, j 1,---, k.q; all

charges ci’s equal to zero, except c k.q.
Let U2 be a UPS having the same ground set; partition blocks K, 1,...,

all charges di’s equal to zero, except do IcI-q, d q.
It is easy to see that C contains an exact cover for O if and only if there exists

a base common to both U and U2. Since the problem asking for any base common
to U1, U2 is a specialization of (1[0, k), the proof follows.

Theorem 4.2 can be extended with the help of the two following lemmas, which
we prove quite concisely.

LEMMA 4.1. Any problem (h,. , hp[0, ka,. , kq) transforms polynomially into
(hl, ., hp[g, k + g, ., kq + g) for any g { 1,. ., m + kq}, h > O.
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Proof. Let an instance of the first problem be denoted as in the proof of Theorems
4.1, 4.2. We shall use a corresponding primed notation for describing an instance of
the second problem. Let

n, nl + g, n’2 h,;

S {s1, Srn, Sin+l, Sin’}

where

m’ m+n. g;

for each j= 1,..., n

H; Hi;

for each j= n,+l,. , n,

H {Srn+(j_nl-1)hl+O a 1,. ,
for each l= 1,..., n2

K Kl -J.{Sm+(l-1)g+13" / 1," , g};

for each =//2 + 1,. , n
K {s,,,+(l-,)g+t" /3 1,’’’, g};

c’, ch,+ n’l- n,,

d’= do+ n.- n2,

for each i= 1,-.-, m

w’(s,) w(s,);

for each i= m+ 1,..., m’

Wt(Si) -’-0;

C h. Ch(O 2, p),

d’ dk (B l q)"k+g

W’= W.

LEMMA 4.2. Any problem (110, k) with k >- 2 transforms polynomially into (hi0, k)
for any h {2,. m}.

Proof. Using again the notation of the previous proof to denote corresponding
instances of the two problems, we assume that 3 (k 1) h divides n,, for otherwise
the following construction yields another equivalent instance of (110, k), which satisfies
such an assumption.

Add to the original ground set (6-1). n new elements of zero weight; partition
these new elements in the two following ways, so as to obtain two sets of new partition
blocks, which are added respectively to the two original sets of partition blocks: the
first partition consists simply of as many singletons as there are new elements, whereas
the second partition is formed by (6-1)- dk blocks of k elements each (since n d. k
is the rank of both UPS’s, these two partitions are possible); if we multiply by 6 all
charges but do it is easy to see that this enlarged instance of (110, k) is a yes-instance
if and only if the original instance is a yes-instance, and the assumption that 6 divides
n, applies.
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Let now

nl’(h-1) n.(h-1)
n’ n +

6
n’2 n2 + k-1

St.-- {

where

k. nl’(h-1)
m’=m+

for each j= 1,...,

H} I4 U {Sm+(i-1).(h-)+" a 1," , h- 1};

for each j= nl+l,’", n
H= {Sm+(h_l).n,+(j_n,_l).h+a" a 1,’’’, h};

for each l=l,...,

K=K;

for each l= n2+ 1,. .,
K={Sm+(l_nz_l).(k_l)+O" 1,..., k--1}l,-J{sm+(h-1).n,+l-n2};

c’h= n;;
n.(h-1)

d’o do, d’ dk + k-1

for each i= 1,.. , m
w’(s,) w(s);

for each i=m+l,...,m’

w’(s) =0;

THEOREM 4.3. Any problem (hlkl, k2) is NP-complete whenever k2- kl >--3.

Proof. The proof follows immediately from Theorem 4.2 and Lemmas 4.1, 4.3. [3

The two following lemmas and Theorem 4.4 are in order to show the NP-
completeness of some 2-parity problems.

LEMMA 4.3. Any problem (0, klO, k) transforms polynomially into (0, k: 2).
Proof. The first problem is a special case of the second, where the partition blocks

can be subdivided into two groups such that no two elements of a parity block belong
to partition blocks of the same group. [3

LEMMA 4.4. Any problem (0, h: 2) transforms polynomially into (g, h + g: 2) for
any g e {1,. , m-h}.

Proof. Given any instance of the first problem, we construct a corresponding
instance of the second problem in the following way: For each partition block of
the first instance, (i) add to the ground set 2. g new elements, partitioned into g new
parity blocks {aj, k, aj,k}, k 1,’’" g; (ii) add a,k (k 1,""", g) to H; (iii) add a new
partition block/-/. { ti,k: k 1," , g}. Let then the new nonzero charges dg and dh+g
be respectively Co + n (n being the number of the original partition blocks) and Ch. [3
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THEOREM 4.4. Any problem (hi, h2." 2) is NP-complete whenever h2- h 3.
Proof The proof follows easily from Theorem 4.3 and Lemmas 4.3, 4.4.
Further results are stated in the following theorem.
THEOREM 4.5. All p-intersection and q-parity problems with p >-_ 3, q >_-3 are NP-

complete.
Proof. It is well known that the following problem is NP-complete [7].

3-DIMENSIONAL MATCHING.
Instance. Set S c_ X Y Z, where X, Y and Z are disjoint sets having the same

number n of elements.
Question. Does S contain a matching, i.e. a subset X C_ S such that [X[ n and

no two elements of X agree in any coordinate?

It is obvious that this problem is a special case of (11111), where each element of
the ground set S has unit weight, and the threshold W equals the number of partition
blocks. It is easy to show that (11111) transforms polynomially both to (h" 3) and to
(hlkll) for any h, k, l, thus implying the theorem.

Remark 4.2. All the NP-completeness proofs given in this section show in fact
that the corresponding problems remain in NP-complete, even in their simpler version
asking for the existence of any base satisfying the intersection or parity conditions.

The results of Theorems 4.1, 4.3, 4.4, 4.5 and Corollary 4.1 may be summarized
by saying that almost all UPS intersection and parity problems have been classified
according to their complexity.

The only problems whose complexity remain to be studied are the 2-intersection
and the 2-parity problems for which the index range of the nonzero charges is two.
Among these problems, the most crucial one is perhaps (0, 2" 2), for the two following
reasons. First, this problem is equivalent to (0, 2[0, 2), because of Remark 4.1 and
Lemma 4.3. Second, should (0, 2: 2) turn out to be NP-complete, the borderline
between "easy" and "hard" problems would become quite sharp, since the following
Lemma 4.5, together with Lemmas 4.1, 4.4, would imply the NP-completeness of both
(hi, h21kl, k2) and (hi, h2: 2) whenever h2- hi >-- 2 and k2- kl >- 2.

LEMMA 4.5. Any problem (0, hi0, k) with k >- 2 transforms polynomially into
(g, h+g[0, k) for any g {1,. ., m-h}.

Proof. Using the notation of the proof of Lemmas 4.1, 4.2 to denote corresponding
instances of the two problems, we assume that k-1 divides nl, for otherwise the
following construction yields another equivalent instance of (0, hi0, k) satisfying the
assumption" Add to the original ground set [nl/(k-1)]-nl new elements of zero
weight; partition these new elements into as many singletons; add these singletons to
both the original sets of partition blocks; add the number of new elements to both Co
and do.

Let now

nr nl n.g
nl +k-i-1 nl n2 + k, |

S’ {s1, sin, Sin+l, Sin, }

where

m’ m + n’l g;

for each j= 1,..., n

H) =/-/. LI{:a 1," , g};
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for each j n + 1, n’

H= {s,+(j-1).g+" a 1," g};

for each l- 1,..., n2

K=K;

for each l- n2+l,’" n
K {Sm+(l_n2_l).(k_l)+: 1," , k- 1} U {Sm+n.g+l_n2};

c co + k_ l
c+g c,

_nl’g.d=d0, d’ dk- k- l

for each i-1,.-.,m

W’(Si)-- W(Si);

for each i-m+l,...,m’

5. Some applications. As we pointed out in the introduction, an important class
of combinatorial optimization problems which can be solved in polynomial time is
constituted by the degree-constrained subgraph (DCS) problems, both in bipartite and
nonbipartite graphs, weighted or not. More formally, for any set X of edges and any
vertex v in a given undirected graph G (V, E), let a(X) denote the degree of v in
the graph (V, X), i.e. the number of edges of X incident to vertex v. (Here and in
the sequel, loops are counted twice.) The following search problem has been extensively
studied and shown to be solvable in polynomial time [8, Ch. 7].

DEGREE CONSTRAINED SUBGRAPH (DCS).
Given. An undirected graph G (V, E);

a nonnegative integer a for each v e V;
a weight w(e) e Z for each e E.

Find. A subset X of E such that a(X)= a for each v e V and the total weight
w(X) YeX w(e) is maximized.

The special case of DCS, where a 1 for each v V is the well-known perfect
matching problem.

Surprisingly little attention has been given so far to the "unlabelled" versions of
these problems, namely to problems where only the number of vertices with prescribed
degree is assigned, without imposing any constraint on the identity of such vertices.
Specifically, for any set X of edges in the graph G (V, E) and for any integer

0, 1, , [El, let [i(X) be the number of vertices of G which are incident to exactly
edges of X. For any set of edges in the bipartite graph G (V’, V", E) and for any

integer i= 0, 1,..., ]E], let/31(X) and/3,’.’(X) be respectively the number of vertices
in V’ and V" which are incident to exactly edges of X. We may then consider the
two following search [7] problems.
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UNLABELLED DCS (UDCS).
Given. An undirected graph G (V, E);

a nonnegative integer bi for each i-0, 1,..., 2. ]El;
a weight w(e) e 7/for each e e E.

Find. A subset X of E such that /3i(X)= b for each i=0, 1,...,2. IE[ and
w(X) is maximized.

UNLABELLED BIPARTITE DCS (UBDCS).
Given. An undirect bipartite graph G V’, V", E);

two nonnegative integers hi, b for each i=0, 1,..., ]El;
a weight w(e) e 7/for each e e E.

Find. A subset X of E such that/3’i(X) b’,/3(X) b’ for each i= 0, 1,...,
and w(X) is maximized.

It is easy to see that UBDCS and UDCS problems are natural interpretations--in
terms of graph optimizationmof the 2-intersection and the 2-parity UPS problems,
respectively, which have been discussed in the previous section. More precisely, the
following one-to-one correspondence between instances of the UBDCS (in its obvious
decision form) and instances of the 2-intersection UPS problem preserves the correct
answer: S E; for each j 1,. , Iv’l, the jth partition block of the first UPS contains
the edges of G incident to the jth vertex of V’; for each 1,..., Iv"l, the /th

partition block of the second UPS contains the edges incident to the/th vertex of V";
’and di b" IEthe charges of the first and the second UPS are c b (i--0, 1, 1)

respectively.
Similarly, equivalent instances of the UDCS and the 2-parity UPS problem

correspond to each other as follows: S {sl, gl,"" ", s,,, g,} with m IEI; for each
i= 1,..., ]E[, the two elements si, g of the ground set S correspond to the ith edge
e (x, gi) of G and constitute the ith parity block of the UPS; for each j 1,. , IV[,
the jth partition block contains all elements s or g such that x or g, respectively,
coincides with the jth vertex of G; the charges are ci bi, 0, 1, , 2 Iu[; for each

1, , IEI the weight of the ith edge ei is the sum of the weights of the corresponding
elements s, g.

The complexity results of 4 can then be directly utilized for studying these
unlabelled DCS problems. In particular we note that the open problem (0, 2: 2) (in
its "unweighted" version asking for any base satisfying parity conditions) is equivalent
to the problem:

EXACT PARTIAL COVERING BY CIRCUITS (EPCC).
Instance. A graph G V, E);

a positive integer c
Question. Does G contain a set of vertex-disjoint circuits covering exactly c

vertices?

It is easy to see that the nonbipartite matching techniques solve in polynomial
time the similar problem asking for the existence of vertex-disjoint circuits covering
at least c vertices.

We conclude this section by suggesting a possible applicationin the field of
system reliabilityof the UPM’s and the star operation studied in 2 and 3.

Being k _-> 2 any fixed integer, for any nonnegative integer l, a (level) l-component
is defined recursively as follows, in terms of its elements:

a O-component is an element,
an l-component is a set of at least k (l-1)-components.
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Any/-component can be in one of the following three (mutually exclusive) states,
listed from better to worse:

a working, or w-state;
a critical, or c-state;
a broken, or b-state.
For any > 0, the state of any /-component T is determined by the states of its

(l-1)-components according to the following rules:
T is in w-state itt none of its components is in b-state and at least k of them are
in w-state;
T is in c-state iff none of its components is in b-state and exactly k-1 of them
are in w-state;
T is in b-state otherwise, i.e. iff at least one of its components is in b-state, or
less then k-1 of them are in w-state.
From these rules it follows that the states of all elements determine uniquely the

state of any/-component T. In particular, if all elements are in the working state, so
is T; if one or more elements are in the broken state, so is T. Note also that T is a
coherent system in the sense of [1 ], i.e. improving (worsening) the state of any element
either leaves unchanged, or improves (worsens) the state of T. When T is in the critical
state, worsening the state of any element causes T to switch to the broken state.

If "costs" are associated to w-states of elements, we might be interested in
considering minimal working sets for T, i.e. sets of elements such that assigning to
them the w- state, and letting the remaining elements be in c-state, T is in w-state,
but whenever any element in w-state switches to c-state, so does T. We also consider
critical sets, i.e. sets of elements such that assigning to them the w-state, and letting
the remaining ones be in c-state, T is in c-state. In addition to costs, "weights" may
be associated to elements: for instance the weight w(si) of element si may be log p,
p being the probability that s remains in w-state, once such state has been initially
assigned to s. Assuming statistical independence among the element states, we may
then wish to find a minimal working set X which maximizes for T the probability of
remaining in the working state, i.e. maximizes the total weight w(X)= Ys,x w(si).
This problem can be solved in polynomial time, by the greedy algorithm, as shown by
the following matroidal, recursive interpretation.

For any 0-component T s, the (unique) minimal working set and the (unique)
critical set is {s} and respectively, which are the (unique) base and the (unique)
sub-base of free-matroid on the ground set S {s}; this matroid is given the name
of O-level k-UPM.

Let T {tl,’’’, t} be an /-component whose jth (l-1)-component t has a set
of elements S, j 1,..., n, all these sets being pairwise disjoint. Then S U ’= S is
the set of elements of T. Assuming by inductive hypothesis that for each j- 1,..., n,
the minimal working sets and the critical sets for t are respectively the bases and the
sub-bases of an (1-1)-level k-UPM Mi on the ground set Si, it follows that the minimal
working sets and the critical sets of T are respectively the bases and the sub-bases of
M U[T, k] * (M,... ,M), U[T, k] being the uniform matroid of rank k on the
ground set T: M is called an l-level k-UPM.

Remark 5.1. A l-level k-UPM is a uniform matroid of rank k; a 2-level k-UPM
is an (ordinary) k-UPM, as defined in 2.

6. Conclusions. The results of this paper may be subdivided into three parts.
First, we have introduced and discussed, from a set-theoretic point of view, unlabelled
partition systems, unlabelled partition matroids and the star operation. Second, we
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have investigated the computational complexity of combinatorial optimization prob-
lems involving these structures. Third, we have suggested a few applications of these
ideas to problems in reliability theory and to some interesting variants of the well-known
matching problems: the unlabelled degree constrained subgraph problems. In trying
to draw the borderline between easy and hard problems of this kind, we have identified
a problem on graphs which can be formulated in a very simple way, but whose
complexity remains open to date: the exact partial covering by circuits.

Acknowledgments. The authors are grateful to S. Bellini and T. Brylawski for
fruitful discussions.
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ON REDUCING THE SPACE REQUIREMENTS OF A
STRAIGHT-LINE ALGORITHM*

DAVID A. CARLSON

Abstract. The simultaneous time and space requirements of a straight-line algorithm can be determined
by playing a well-known "pebble game" on a directed acyclic graph whose vertices and edges represent
operations and argument assignments of the algorithm, respectively. In the game, pebble placements are
made on vertices only when all predecessors have pebbles, time is the number of such placements made,
and space is the number of pebbles used to reach all outputs of the graph. When space is restricted, extra
time may be required to repebble some vertices, causing a tradeott between time and space. Previous
research has identified computations exhibiting different tradeoff characteristics, such as an extreme time-
space tradeoff, in which a reduction in space causes time to rise from polynomial to superpolynomial in the
size of the graph, and a favorable time-space tradeoff, in which a significant decrease in space can be achieved
at the expense of a small (e.g. constant factor) increase in time. In this paper, we show that a computation
is not limited to having only one tradeoff characteristic, but may exhibit both an extreme and a favorable
time-space tradeoff. For three families of graphs, we derive upper and lower bounds on pebbling time for
certain values of space that provide evidence of each family possessing both types of tradeoffs. We also
provide upper and lower bounds on the maximum amount of time that can result from pebbling a graph
when S pebbles are used.

Key words, pebble game, time-space tradeoff, straight-line algorithm, storage allocation, complexity
theory

1. Introduction. The pebble game, played on directed acyclic graphs, is a natural
model for determining the simultaneous time and space requirements of a straight-line
algorithm. Nodes of the graph correspond to operations in the algorithm, and edges
denote dependencies between the operations. Temporary registers used by the
algorithm are modeled by pebbles, which are moved from input nodes to output nodes
according to three rules:

1. a pebble may be placed on an input node at any time,
2. a pebble may be removed from any node at any time, and
3. noninput nodes may be pebbled only when all their predecessors have pebbles.

Accordingly, the space requirement of the algorithm is reflected in the maximum
number of pebbles on the graph at any point during the pebbling process, and time is
measured by the number of pebble placements made on the graph (applications of
rules 1 and 3). When the amount of available space is decreased, it may be necessary
to "recompute" certain nodes of the graph due to the inability to hold pebbles on all
intermediate computations, which implies the existence of a tradeoff between time
and space.

The study of a straight-line algorithm’s time-space tradeott behavior has been the
subject of a large amount of recent research. Since straight-line algorithms form the
heart of many algebraic computational problems, it is natural to ask how much time
is required to solve such a problem using a certain amount of space. Typically, if an
n input problem (graph) is being solved using space S (pebbles), f(n) placements

* Received by the editors July 6, 1983. This work was supported in part by the National Science
Foundation under grant NSFECS-04894. This work was presented at the SIAM Second Conference on the
Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

? Department of Electrical and Computer Engineering, University of Massachusetts, Amherst,
Massachusetts 01003.
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must be made for each set of O(S) outputs pebbled, due to the richness of dependencies
between inputs and outputs in the graph associated with such a computation. Thus, a
pebble game analysis implies T (n2/S) for problems and algorithms such as the
Fast Fourier transform 11 ], integer multiplication [12], and problems whose underlying
representations possess concentration properties [14].

The pebble game has also been used to study the tradeoff between time and stack
size in the evaluation of a linear recursive function. Paterson and Hewitt [7], Chandra
[2], and Swamy and Savage [13] have obtained results for this problem. The most
comprehensive are those of Swamy and Savage [13], where optimal pebbling strategies
are derived for the graph associated with a linear recursive program. These pebbling
strategies also indicate that for such graphs, space can be reduced significantly (e.g.
from linear in graph size to the square root of graph size) at the expense of only a
constant factor increase in time. In this paper, we refer to such behavior as a favorable
tradeoff

In general, any graph having size (number of nodes) N can be pebbled in linear
time using N pebbles. Hopcroft, Paul, and Valiant [5] showed that any graph can be
pebbled with O(N/log N) pebbles, so it is natural to ask what the consequences are
when the space available to pebble a graph is reduced. Recent research has shown
that certain computations possess an extreme tradeoff, for which a reduction in space
results in superpolynomial pebbling time. Paul and Tarjan [8] exhibited the first extreme
tradeoff by constructing a family of graphs for which a constant factor reduction in
space results in time rising from polynomial to superpolynomial in graph size. Lengauer
and Tarjan [6] extended the analysis of these graph families to show that super-
polynomial time occurs when S= O(N/log N), which is the maximum possible
reduction in space that can be achieved for a graph [9]. Van Emde Boas and van
Leeuwen [3] have shown that superpolynomial time can result from the savings of a
single pebble, and Carlson and Savage [1] proved that minimum space growing as any
slowly increasing function of graph size is a necessary and sufficient condition for
a graph family to possess an extreme tradeott. Recently, Tompa [15] has shown
that an algorithm for the natural problem of computing the transitive closure of a
matrix has an extreme tradeott by considering space-restricted implementations of
the algorithm.

In this paper, we consider the general question of what are the consequences of
reducing the space available when pebbling the outputs of a directed acyclic graph
(equivalently, performing the computations of a straight-line algorithm). We show the
existence of graph families that possess both an extreme and a favorable tradeoff; thus
these two somewhat complementary behaviors can coexist in the same straight-line
algorithm. This implies that it is difficult to know whether or not to attempt to decrease
the space available to a specific straight-line algorithm: on one hand a significant
decrease may be possible with the associated penalty in time being very small, while
on the other hand the time penalty may be so large that such a decrease in space
should not be attempted.

We also consider the maximum amount of time that can be associated with the
pebbling of an arbitrary N node graph using S pebbles. We prove an upper bound on
the pebbling time of the form T <= (eN/S)s, and construct graph families, which for
certain values of space S, require pebbling time close to this upper bound. This is
analogous to previous research that has concentrated on the space requirements of
arbitrary N node directed acyclic graphs--the results being that any such graph can
be pebbled using space O(N/log N), and there exist graphs whose minimum space
requirement is f(N/log N) pebbles [5], [9].
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2. Combining extreme and favorable tradeols. In this section, we present three
different graph families that possess both an extreme and a favorable tradeoff. The
building blocks for these graph families are the ladder graphs studied by Swamy and
Savage [13], which can be defined as follows:

DEFINITION 1. The ladder graph 11 on N elements has vertex set V {/31, V2,
v,, wl, w2," ", w,} and edge set

E--{(vi, Vi+l) (wi, w,+,)ll<=i<=N-1}U{(v,

Vertex v is the ladder graph’s single input, and wN is its single output.
The pebbling time of a ladder graph can be explicitly characterized by the following

lemma:
LEMMA 1 (Swamy and Savage [1 3]). The time required to pebble a ladder graph

l on n elements when S pebbles are available satisfies

Snl+l/s(s/(1 + S)),
T---- cl n log n,

n log n/log S,

S << log n,
S c2n log n,
S >> log n.

From the above lemma, it is easily seen that ladder graphs (which form the basis
for the evaluation of a linear recursive program, see Swamy and Savage [13]) possess
a favorable tradeoff, since space can be reduced from linear in n to n, 0 < e < 1 a real
constant, at the expense of a constant factor increase in time. Another graph family
that can be seen to possess a favorable tradeoff is defined in Pippenger [10]. Pippenger’s
graphs require time T O(N log (N/S)) when S pebbles are available; thus S can be
reduced from N to O(1), while time increases from ClN log N to c2N log N(cl < ca).

We also rely on the notion of a stack of superconcentrators, because it has been
shown that such graphs require superpolynomial pebbling time when restricted amounts
of space are used.

DEviNrriorq 2. An n-superconcentrator is a directed acyclic graph with n inputs
and n outputs such that for any subset I of k inputs and 0 of k outputs, there exist
vertex-disjoint paths joining I and 0.

DEFINIa’ION 3. A stack of k n-superconcentrators C(n, k) is formed by taking k
n-superconcentrators Ci, 1 -< =< k, and joining the outputs of Ci to the inputs of C/1,
l<__i<_k-1.

Tompa [14] showed that an n-superconcentrator requires T=I)(n2/S) moves to
pebble all outputs using S pebbles, and Valiant [16] constructed n-superconcentrators
with size O(n). The above lower bound can be iterated to show that a stack of
superconcentrators requires T- f((n/S) k) moves using S pebbles, and Lengauer and
Tarjan [6] have improved this to T f((N/s)k). This iterative type of argument also
forms the heart of Tompa’s result [15] for a transitive closure algorithm based on
successive matrix squaring operations.

Our first graph family that combines an extreme and a favorable tradeoff is formed
by embedding a stack of superconcentrators into the nodes of a ladder graph.

DEFINITION 4. The graph G(n, k) consists of 2k stacks of superconcentrators
C(n, log n), where the graphs C(n, log n) are connected to one another as if each
were a single node of a ladder graph. More formally, the outputs of C(n, log n) are
connected to the inputs of Ci+l(n log n) for 1 _<- i_-< k- 1, k / 1 <_- =< 2k- 1 and the
outputs of C(n, log n) are connected to the inputs of CEk+l-i(n, log n) for 1 _<--i_--< k.
Figure 1 shows the general composition of such a graph..
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FIG. 1. G(n, k).

Graphs that are similar to stacks of superconcentrators form the basis of algorithms
for natural problems [15], thus it is not unrealistic that graphs resembling the ones
defined above may be encountered in practice when the solution of a problem leads
to a linear recursive program, which can be further decomposed into the above format.
The following theorem shows that such a problem decomposition may possess both
extreme and favorable tradeoff characteristics.

THEOREM 1. For k= nc-1 (c a positive integral constant), the graph family
{G(n, k)} combines an extreme tradeoff with a favorable tradeoff.

Proof. G(n, k) has size N O(nk log n) O(n log n). We claim that superpoly-
nomial time is required to pebble the graph when S= O((N/log N)1/)1-)) (note
that the graph can be pebbled using S O((N/log N)/c1-) pebbles since S > Smin).
This follows since by Lengauer and Tarjan [6], any subgraph C(n, log n) of G(n, k)
requires time T=f((n/S)gn) when only S pebbles are available. Since n=
O((N/log N)I/), when S= O((N/logN)/)1-)) (e a real constant between 0 and
1), we have T lq((N/log N)/2gV), which is superpolynomial in N. Thus G(n, k)
possesses an extreme tradeotI.

To see that G(n, k) also has a favorable tradeoff, we first note that G(n, k) can
be pebbled in linear time with S O(nk) pebbles by pebbling subgraphs C(n, log n)
in linear time (O(n) pebbles are required for this) and by holding pebbles on their
outputsas we advance through G(n, k). To reduce the amount of space used sig-
nificantly, we use groups of O(n) pebbles each, and pebble the outputs of the subgraphs
C(n, log n) according to the technique of Swamy and Savage [13]. This is done by
treating a subgraph C(n, log n)in G(n, k)asa single node in the ladder graphs analyzed
in [13] which can be pebbled in O(n log n) moves using a group of O(n) pebbles. Thus,
T O(((k log k)/log t) (cn log n)) can be achieved when space S O(tn) and grows
much faster than log k. It is easy to see that when S 0(kVn) (3, a real constant between
0 and 1), T O(nk log n). Thus, a significant decrease in space can be achieved at
the expense of only a constant factor increase in time, i.e. G(n, k) has a favorable
tradeoff. Q.E.D.
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The next graph family that we consider is constructed by connecting the outputs
of ladder graphs to the inputs of a stack of superconcentrators. Again, since stacks of
superconcentrators can be used to form algorithms for natural problems, the graphs
we define here may be encountered in practice when the inputs of a stack of supercon-
centrators are the results of computations that are performed by a linear recursive
program.

DEFINITION 5. The graph H(n, k) consists of a single stack of superconcentrators
C(n, log n) and n ladder graphs Ik where the output of the ith ladder graph is connected
to the ith input of C(n, log n), 1 _-< <_- n. Figure 2 shows the construction of H(n, k).

Stack of

Superconcentrators

FIG. 2. H(n, k).

ladder networks

THEOREM 2. For k n c-1 (c > 2 and integral constant), the graphfamily {H(n, k)}
combines an extreme tradeoff with a favorable tradeoff.

Proof. We use the same techniques as in Theorem 1, relying on the fact that the
subgraph C(n, log n) requires superpolynomial pebbling time when space is suitably
restricted, while the space required to pebble the linear recursive networks Ik connected
to the inputs of C(n, log n) can be reduced significantly at the expense of a small
increase in time. Specifically, when S= O(nl-) O(N(-)/c) (0<e <1 a real con-
stant), T l) ((n/S)lgn) --I)(N(/c) log N), which is superpolynomial in N. H(n, k) can
be pebbled in linear time using k / n-1 pebbles, and it is easily seen using the
techniques of Savage and Swamy [13] that space can be reduced to S-O(Nv(c-l/c)
(0<3/<1 is a real constant and k>n, i.e. y>l/(c-1)) while time T=
O(nk + n log n) O(N) increases by only a constant factor. Q.E.D.

It is interesting to note that for the graph family {H(n, k)}, the results of Swamy
and Savage [13] would seem to imply that space can be reduced from O(k/ n) to
O(k’+ n) for any y>0. However, the subgraph C(n, log n) causes time to jump to
superpolynomial somewhere in the middle of this progressive reduction of space.

Next, we show that a favorable tradeoff can also be combined with an extreme
tradeoff that occurs over a very small change in space in the sense of van Emde Boas
and van Leeuwen [3]. The graphs we construct are based again on ladder graphs, but
the ladder graphs are augmented so that they have a larger minimum space requirement.

DEFINITION 6. The graph L(n, k) consists of k-1 subgraphs L,,2,""", Ln,k each
with a single output, where the output of L,, is connected to all inputs of Ln,i+l
2 <_- <-_ n 1. The graph Ln,k is composed of k spines, each having n nodes { Sk,, ", Sk,}
and edges {(Sk,, Sk,i+l)ll <- <--_ n- 1}. For 1 -< ]_-< k- 1, nodes s, are connected to inputs
of a pyramid graph Pk- (see Carlson and Savage [1] for a definition), the output of
which is connected to node Sk,n+l_ in spine k. Figure 3 outlines the construction of
L(n,k).

THEOREM 3. For k O(nC) (c > 1 an integral constant), the graphfamily {L(n, k)}
combines an extreme tradeoff with a favorable tradeoff.
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a) Ln,
FIG. 3

b) L(n, k)

Proof. We first show the existence of an extreme tradeott, relying on ideas from
van Emde Boas and van Leeuwen [3] and Carlson and Savage [1]. L(n, k) has been
constructed so that it has a minimum space requirement k (k pebbles are necessary
and sufficient to pebble its output). To pebble a node on the upward spine of the last
subgraph Ln,k, first the output of subgraphs Ln,1 to L.,k_l must be pebbled and then
k pebbles must be placed on L.,. It is possible to do this using only k pebbles, but
in this case, there is a point in time before an advance is made on the spine of L.,
when Ln, to Ln,_ are devoid of pebbles (since the space requirement of reaching
any node on the upward spine of L., is k-1). Thus, L., to L.,k_ must be pebbled
again in their entirety using k-1 pebbles (one pebble is devoted to the upward spine
of L.,). If T(k, S) is the time required to pebble L.,1 to L., using S pebbles, then
we have

T(k, k) >= n T(k- l, k-1) > rt t-1.

The size of L(n, k) is N O(nk3), thus T =f((N/S3)s) with minimum space. This is
superpolynomial in N as long as k is not O(1). For example, if k n, then N 0(n4)
and k=O(n /4) so that T--(N(1/4)NI/4), which is obviously superpolynomial in N.
Note that L(n, k) can be pebbled in time T O(Ne) with k + 1 pebbles by using the
extra pebble to hold the value of the output of Li as Li+l is being pebbled, and that
k can grow as any slowly increasing function of N with T remaining superpolynomial
when minimum space is used (this is a simpler proof of the result contained in Carlson
and Savage [1]).

L(n, k) can be pebbled in linear time when n(k-1)+ k + 1 pebbles are available,
since each subgraph L,i can be pebbled in linear time by placing pebbles on all n(i- 1)
nodes of downward spines and by using i-1 pebbles to pebble pyramids as a lone
pebble advances on the upward spine. To pebble L(n, k) with reduced space, the
results of Swamy and Savage [13] are again used. Assuming that we have O(nr(k- 1)+
k + 1) pebbles available (0 < 3’ < 1 a real constant), it is easily seen that Ln.i can be
pebbled in time O(ni + nie) (note that ni term is due to the necessary pebbling of
pyramids in Li once). Thus, L(n, k) can be pebbled in time O(N). If k n c, c some
small positive integral constant, then N-O(n3c/) and the above discussion implies
that space can be reduced from O(N(c+)/(3c+1)) to O(N(c+T)/(3c+)) while time remains
O(N). The smaller the constant c is, the more significant the reduction in space. If
k= 0(log n), then space goes from O(N/(log N)2) to O(Nr/(log N)3T-1), which is an
even more significant reduction. Q.E.D.

3. Upper and lower bounds on pebbling time. A large amount of research
concerning time-space tradeoffs has focused on the question of what is the maximum
amount of space reduction that can be made when pebbling an arbitrary directed
acyclic graph, and what is the penalty in time associated with such a reduction in space.
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It has been determined that space can be reduced to O(N/log N) (N denoting graph
size) [5], [9], and that superpolynomial time may be associated with such a reduction
[6]. Another similar question has concerned the cutoff point for superpolynomial time:
What is the value of space above which any graph can be pebbled in polynomial time.
Lengauer and Tarjan [6] also answered this question by showing that any graph can
be pebbled in polynomial time with space S >= ClN/log log N, while there exist graphs
that require superpolynomial time when S <= CzN/log log N (c2 < Cl).

Here, we consider an analogous question regarding the pebbling time of an
arbitrary directed acyclic graph, which simply stated is: what is the maximum pebbling
time of a general graph when S pebbles are available. We provide an upper bound
on the maximum pebbling time of a directe6 acyclic graph, and construct graph families
that come close to meeting this upper bound when pebbled with certain values of
space. The upper bound is stated in the following theorem.

THEOREM 4. When S pebbles are available, an arbitrary graph G with N nodes
can be pebbled in T <-_ N(eN/S) s moves.

Proof It is easily seen that the total number of moves made on the graph to reach
any output is less than or equal to the total number of configurations of _-<S pebbles
on G, which is Y0=j=s (7). Thus, T_-< N. o=j=s (7), so we desire an upper bound on
the sum of binomial coefficients. From the Chernoff bound (see [4]), it can be deduced
that when S < eN,

Y, (7) e(1 e)i Prob IX < S]
Oj-S

<-exp{NH(S/N)+(S/N) logee+(1-S/N) loge (1- e)}

where X is a random variable having a binomial distribution with parameter e and H
is the entry function H(x)= -x lOgeX--(1--X) 1Oge (l--x). Choosing e 1/2 yields

Y. () < exp {NH(S/N)} for S < N/2.
0Nj<_-S

From the definition of the entropy function,

exp {NH(S/N)}=exp {N[(S/N) loge (N/S)+(1-S/N) 1Oge (1-S/N)-I]}

NOW,
N--S

Since the exponential function is defined as eX =lim_> (1 +x/n) n, and the defined
sequence is increasing, it is obvious that (1 + S(N- S))N-s <- es. Thus

Y () < (eN/S)s. Q.E.D.
Oj<--S

We now concentrate on constructing graph families that come close to meeting
the bounds of Theorem 4.

THEOREM 5. There exist graph families that, for certain values of space S, require
T=I)((N/S)sly(N)) moves to pebble a member of the family having size N. Here,
f(N) w(1) is any slowly increasing function in N.
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Proof. In Lengauer and Tarjan [6], graphs that are stacks of superconcentrators
were analyzed to determine their time-space tradeoff behavior. We have seen earlier
that a single superconcentrator with n inputs and outputs requires T l)(n2/S) moves
to pebble all outputs using S pebbles [14]. Iterating this argument shows that for a
stack of k superconcentrators (outputs of the (i- 1)st superconcentrator are connected
to inputs of the ith), T- f((n/S) k) moves are required when S pebbles are available.
Lengauer and Tarjan [6] improved the lower bound on time to T=I((nk/S)k), and
since superconcentrators of size O(n) exist [16], T D.((N/S)’). As noted by Lengauer
and Tarjan, this implies that graph families exist for which superpolynomial time is
required when space O(N/log N) is used. Such graph families are constructed by
choosing k log n.

Here, we analyze the time required to pebble stacks of superconcentrators with
different values of k, with the intent of realizing the largest amount of time required
for certain values of space. It is easily seen that the minimum space requirement of a
stack of k superconcentrators, each having n inputs and outputs, is klog n. For such
a stack, T =I)((N/S)), but since space S is at least klog n, k<_-S/log n. Thus, we
cannot match the upper bound of Theorem 4 exactly, but can come close by pebbling
the stack with its minimum space requirement. Pebbling the stack with more available
space implies that the match with the bound of Theorem 4 is not as close as with
minimum space.

We now consider how close we can come to the bound T<-N(eN/S) s. First,
consider Lengauer and Tarjan’s stack of n-superconcentrators with k =log n and
T=II((N/S)). When such a graph is pebbled with minimum space (log n) 2, T=
I((N/S)S/lg N), since k 0(log N) and S 0((log N)2). When space S N/log N is
used, T I((N/S)lg N) )((N/S)s/(N/(lg u)2)) which is superpolynomial in N, but is
not close at all to T <= N(eN/S) s. Now, consider a stack of k 2 n-superconcentrators.
The minimum space requirement of such a graph is 2nlog n, its size is N n2", which
implies that log log N= 0(log n) and k Smin/log log N, so that when the graph is
pebbled with minimum space, T I)((N/S)S/lglgN) moves are required. Clearly, this
argument can be extended to show the existence of a graph family requiring T=
I)((N/S)s/(u)) moves when minimum space is used. Here, f(N)= log log.., log N,
and since any slowly increasing function in N grows at least as fast as some such f(N),
T=fI((N/S)S/(1)). Q.E.D.

4. Conclusions. The pebble game is a useful tool for studying the simultaneous
time and space requirements of a straight-line algorithm, and has been used by previous
authors to investigate the various types of tradeoffs associated with different straight-
line computations. In this paper, we have shown that a favorable tradeoff (large
reduction in space-constant factor increase in time) and an extreme tradeoff (reduction
in space-time increase to superpolynomial) can be combined in the same straight-line
algorithm. Thus, it is unclear whether a decrease in space that results in a small time
penalty should be followed by further decreases in space. We have also studied the
maximum pebbling time associated with a pebble game analysis of a straight-line
algorithm, and have provided close (but not matching) upper and lower bounds on
pebbling time when a certain amount of space is used.
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COMBINATORIAL ASPECTS OF THE ORRERY MODEL OF SYNTAX*
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Abstract. The orrery model of syntax offers an approach to language acquisition which requires minimal
assumptions. This paper counts the number of orreries on n words, and proposes a weighted generalization
which might allow quantitative prediction.
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Introduction. Linguists have long acknowledged that the syntax of human
language cannot be understood using a model which incorporates only word order
and bracketing. Traditional responses to this have been to inject directly into the
syntax model aspects of the observed complexity of language. This results in syntactic
structures which are difficult to construct and unwieldy to apply. In contrast, Moulton
and Robinson [4], [5] propose a theory of language in which syntax need only encode
scope and dependency. This paper is a combinatorial investigation of the Moulton-
Robinson model of syntax. Our results show that their syntax model is richer than
might be expected in its ability to draw distinctions. We also propose a model that
might prove useful in establishing a distance between syntactic structures as well as
between elements in a given syntactic structure.

1. Linguistic definitions. Two words which are directly related are said to be in
each other’s scope. The essential features of the scope relationship are that it is
symmetric with respect to the two words and that it can be applied recursively i.e. two
related words can be formally considered as a unit and this unit may be in the scope
of a third word or another compound unit. The notion of dependence is that in any
pair of words in each other’s scope one is considered the main component and the
other the dependent component.

The relations of scope and dependency can be modelled by an orrery, or
planetarium. Two words in each other’s scope can be linked by a horizontal bracket
hanging from a vertical strut. Dependency is indicated by placing the strut closer to
the main component than to the dependent component. This supplies a visual suggestion
that the main component is heavier. The bracketed pair may then be linked via the
strut to another word or compound unit. For example the language string BAMBOO
FISHING POLE can be represented by the following orrery:

I

BAMBOO FISHING POLE

indicating that FISHING and POLE are in each other’s scope and that POLE is the
main component. BAMBOO is then in the scope of FISHING POLE and is the
dependent component.

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on

the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

5 Department of Mathematics, Smith College, Northampton, Massachusetts 01063.
t Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70148.
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be:
If we meant instead to refer to a pole used in fishing for bamboo, the orrery would

BAMBOO

I

FISHING POLE

Here BAMBOO is in the scope of, and dependent on FISHING; BAMBOO FISHING
is then in the scope of and dependent on POLE.

It is only for convenience that these orreries are drawn with the words in their
natural order. Like the orreries that model the solar system--or like Calder mobiles--
they should be thought of as free to pivot about each vertical strut. Thus the following
are all representations of the same orrery"

etc.

2. Are there enough orreries? There can be no doubt that the orrery is simpler
than the base syntactic structure either for transformation theory or for case theory.
For the orrery model of syntax to be a viable alternative it is necessary that there be
enough orreries to distinguish fundamentally distinct language strings. Let f(n) denote
the number of orreries on n words. It is straightforward to see that f(1) 1, f(2) 2,
and f(3) 12. With a little patience one can exhaustively list the 120 orreries on 4 words.

THEORF.M, f(n) =(2n-2)!/(n- 1)!.
At the moment we know of four proofs of the above theorem. One can obtain

an inductive argument based on the recurrence [1]

f(n)=(4n-6)f(n-1).

If C(n, j) denotes the number of ways of selecting j objects from a set of n objects,
then standard techniques produce:

n--1

f(n) , C(n, j)f(j)f(n-j).
j=l

Given this recurrence, exponential generating functions can be used to obtain the
formula for f(n). A direct count for .f(n)/n! appears in Even [2]. The argument we
will present (due to Jim Henle [3]) is to our knowledge the simplest method which
directly counts these Catalan style numbers. It also produces an alternative geometric
model of the orrery. We begin by constructing and then counting circular schemes.
The second step will be to exhibit a one-to-one onto map, from the orreries to the
circular schemes.

Constructing the circular schemes: Given n characters A, B, C,... (which rep-
resent the words), we construct a circular scheme by arranging these characters around
the circumference of a circle. Next we insert (n-1) ^’s on the circumference. Our
only constraint is that no two of these (2n-1) symbols should be at the same point.
Finally we equally space the symbols around the circumference. Let g(n) denote the
number of distinct circular schemes on n characters. Two circular schemes will be
considered to be the same if there is a rotation of the first which is identical to the
second. Clearly we may ease the counting burden by forcing the character A to appear
at "noon". The remaining (2n-2) symbols may be arranged in (2n-2)! different
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ways. The ^’s are indistinguishable. Hence (n- 1)! of these objects are the same. Thus

g(n) (2n- 2)!/(n- 1)!.

The bijection: We first give an algorithm which will produce a circular scheme
given an orrery. Suppose A and B are two words or compound units which are in
each other’s scope and that B is dependent on A. Replace the two separate words
with the unit {AB} which will henceforth be considered as one character. Thus we
obtain an orrery on (n- 1) "words". Place (^AB) on the circumference of the circle
in clockwise order. We now take a pair of characters in each other’s scope in the
reduced orrery and repeat the process. If at least one of the two characters is not yet
on the circle we add the new symbols so that they are not within any pair of parentheses.
(The parentheses serve only this bookkeeping function and are erased once all the
characters are on the circle.) If both characters are already on the circle we need only
add and a pair of parentheses. We illustrate this step in Fig. 1.

{AB}

{C{AB}}

FIG. 1. From the orrery to the circular scheme.

Next we produce an orrery from a circular scheme. Since the circular scheme has
n characters and only (n-1) ^’s it must be the case that two of the characters are
adjacent. Further there must be two such characters which are immediately preceded
by a ^. Suppose some segment of the circumference has ^QR in clockwise order. Set
Q and R to be in each other’s scope with R dependent on Q. Replace ^QR by {QR}
obtaining a circular scheme with (n- 1) characters and (n- 2) ^’s. Proceed inductively.
We illustrate this in Fig. 2.

3. Combinatorial perspectives. Combinatorially it is more natural to consider
scope as a relationship possessed by an entire language string rather than as a relation-
ship between pairs of words or compound units. Thus we can also model the scope
relationship for an entire string as a rooted binary tree. The words are identified with
the leaves of the tree (i.e. the vertices of degree one). Two words or compound units
are in each,others scope precisely if the unique path joining them is of length two.
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/

{{OR}S}

FIG. 2. From the circular scheme to the orrery.

There is the natural generalization of allowing the scope of a language string to be
modelled by a rooted tree which is not necessarily binary. Moulton and Robinson
recognized this possibility, but their model does not appear to require this much
generality. At the moment we see no particular mathematical disadvantage in restricting
our attention to binary rooted trees.

The combinatorial view of dependency is of a labelling of the edges of the "scope"
tree with the designations heavy or light such that the two edges descendant from any
vertex are labelled differently. The mathematical generalization here is an assignment
to each edge a weight, a number chosen from the interval (0, 1), subject to the condition
that the weights assigned to the two edges descendent from a vertex must sum to 1.
The weight of a word is then defined to be the product of the weights of the edges in
the unique path joining the word with the root. We illustrate below:

Here the weight of A is .42, the weight of B is .28, and the weight of C is .3. Note
that the weights of the words sum to 1. This is no accident for we may view the weights
of each edge as probabilities and the words as independent outcomes which exhaust
the possibilities. It is linguistically reasonable to consider the weights of the words as
a measure of their relative importance in the language string. One can recover the
weights on the edges of the scope tree from the relative weights of the words.
Specifically, given a language string, a scope tree with a word assigned to each leaf,
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and the relative weights of the words in the string; there is a unique assignment of
weights to the edges of the scope tree which will produce the weights of the words.
We indicate how to construct this assignment. Begin with two words (or compound
units) say A and B in each other’s scope. If the weights of A and B are a and b
respectively, form a smaller tree (and language string) by deleting A and B, replacing
them with the word {AB}, and assigning this new unit to the common ancestor of A
and B. The word {AB} will be assigned the weight a + b. Find the weights on the edges
in the smaller tree. In the original tree the weight of the edge terminating at the word
A will be a/(a+b) and the weight of the edge terminating at the word B will be
b/(a+b).

The utility of this construction is that while mathematically it is more convenient
to examine the weights on the edges, these would seem to be difficult to determine
empirically. However, linguists have constructed experiments to measure the relative
importance of words in a language string [4].

These weighted binary trees offer the possibility of illuminating two linguistically
natural questions. The first of these is the distance between language strings. Given
two weighted binary trees T and T’, let (T, T’) denote the minimal binary tree which
contains both T and T’. It is important to note that we mean that there are isomorphisms
of T and T’ into (T, T’). Define a weighted binary tree S by adding to T those edges
of (T, T’) not already in T and assigning weights of 0 and 1 to the new edges to reflect
the dependency in T’. Similarly define S’. Note that S and S’ are both weighted
versions of the tree (T, T’). If w(e) and w’(e) denote the weights of the edge e of
depth j in the trees S and S’ respectively, define

z(e) abs(w(e)- w’(e))/2j.

Attach the weight z(e) to e in (T, T’). The distance between two weighted binary
trees is defined by

d( T, T’) Y, z(e).
ein(T, T’)

We illustrate with the example below"

T
root

.6/ ’.4
\

.4 / ’\ .6 {CD}

S
root

.6 ," ", .4

4/.6\ 0 / 1 \

.7,

root

%% o3

.4 ’\.6
\

BC D

(T, T’)
root
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In this example the weighted tree S’ is identical to the tree T’ so it is omitted from
the above diagram. Note that if e and f are common descendant edges of the same
vertex then z(e)= z(f). In the example above d(T, T’)=.45. In general the distance
between two weighted scope trees will be less than the larger of the depths. It is
straightforward to check that d is a metric on weighted binary trees. There are of
course many different such metrics. We chose this particular one because it emphasizes
differences in the weighting which are closer to the root.

Weighted scope trees also might help in the investigation of the distance between
words within a given language string. There are at least two potential pitfalls involved
in constructing such a definition. First, empirical evidence seems to indicate that the
distance between words is an asymmetric quantity [4]. Generally within a given pair
of words, say A, and B, if A is given more weight than B in the weighted scope tree,
then B will be closer to A than A is to B. Thus the distance function will not be a
metric. Second, the question arises as to whether the distance from A to B depends
only on that portion of the weighted scope tree immediately above A and B or on the
entire tree, i.e., distance may not even be a local property.

At this stage, the direction of investigation should be determined by linguistic
utility rather than mathematical esthetic.
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MULTIPLICATION OF GENERALIZED POLYNOMIALS,
WITH APPLICATIONS TO CLASSICAL ORTHOGONAL POLYNOMIALS*

STEPHEN BARNETT

Abstract. A simple scheme is presented for computing the product of two polynomials in generalized
form, i.e. expressed relative to a given orthogonal polynomial basis. If the polynomials have degrees rn and

(r<= m), then the method requires multiplications of vectors by a tridiagonal matrix of order rn + r. No
conversions to standard power form are involved. As particular cases, some explicit formulae are easily
derived for products of pairs of classical orthogonal polynomials.
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1. Introduction. Take as a basis the orthogonal polynomials pi(A) defined by the
standard relationships

(1.1) po(A) 1, pl(A) a,A

(1.2) p(;) (a,X +/3,)p,_(X) 7p,-2(,), i=2,3,...

with ai > 0, 7i > 0. Let a(A) be an nth degree generalized polynomial [7] expressed
in the form

(1.3) a(A) pn(A) + alpn-a(A) +’’" + anp0(A).

Many of the properties of a(A) can be investigated using the comrade matrix [5]:

O 19l
0 0

")12 --2 1
0 0

a2 01, 2 01. 2

--an

(1.4) A

It was shown in [4] that

’)/3 -3 1
01, 3 01, 3

an-- an--1

--a2 + Yn
a a

an-i

-al fin

(1.5) det (A/n-A)= a(A)/(ala2 an)

where In denotes the unit matrix of order n. A crucial step in previous work [5] has
been to construct the matrix b(A), where b(A) is a generalized polynomial:

(1.6) b(A)=pm(A)+ blp,,-l(A)+"" "+ bmPo(A).

A very similar construction will be seen to be a key step in this paper. It can be
assumed without loss of generality that m < n. It was shown in [4] that if the rows of

* Received by the editors February 1, 1983, and in revised form June 16, 1983.
? School of Mathematical Sciences, University of Bradford, Bradford, West Yorkshire, England.
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b(A) are denoted by pl, P2,""", On, then

(1.7) pl [b,,, b,,-1,’’", b,, 1, 0,..., O]

and subsequent rows satisfy the same recurrence formula as does the basis:

(1.8) pi--Pi_l(Oti_lA-l-fli_lln)-]/i_lPi_2, i=2,3,... ,n

with Po 0. Previous work has included computation of the greatest common divisor
d(X) of a (X) and b(X) [4]. A recent extension [6] permits, in addition, simultaneous
determination of a (X)/d(X), and the quotient and remainder on division of a (X) by
b(X). Throughout, all computations are performed relative to the given basis, and no
conversion of polynomials to standard power form is required. A further extension is
given in this paper, enabling the product of b(X), and another generalized polynomial
c(X) of degree r-<_ m, to be determined. The procedure is presented in Theorem 2 in
2, being a direct consequence of a result of [6], reproduced below as Theorem 1. A

numerical example illustrates the simplicity of the algorithm, which involves the
computation of r vectors using a formula like (1.8), but with A replaced by a tridiagonal
matrix Ao obtained by setting a =0, ’i, in (1.4). The problem of determining the
product p, (X)Pr(A is considered in 3 for some special cases where explicit expressions
can be obtained. These include formulae for Chebyshev, Hermite and Legendre
polynomials.

2. The multiplication procedure. Suppose that in (1.3) the degree of a(X) is equal
to re+r, where r<=m, and write the division of a(X) by b(A) in (1.6) in the form

(2.1) a(A) (m + r, m)[b(A)c(A)+f(A)]

where

(2.2) c(A pr(A q- lPr-I(A +’’’-t- rPo(A ),

(2.3)

(2.4)

f(A) fop,- (A) +fPm-2(A +’’" +f,-po(A),

[,[,(m---r m)--(0102... Olm+r)/(OllOl2"’" Om)(O102""" Or)

"--(Om+lOm+2""" Om+r)/(OlO2 Or).

The main result in [5] is conveniently expressed for present purposes as follows"
TnzoRza 1. The rows p,. Pr+l of

b(A) p,,(A) + blPm-l(A) -I-... + b,,po(A)

where A is the comrade matrix (1.4) of order m + r, satisfy the relationship

(2.5) Or+l"]-ClPr "dr’’" "+CrPl-t-[fm-,,fm-2, ,fl,f0, 0,""", 0] =0.

Suppose now that b(A) and c(A) are given polynomials in the forms (1.6) and
(2.2) respectively, and in (2.1) set f(A) equal to zero. The problem is then to determine
a(A), i.e., the product b(A)c(A), and this is given by

THEOREM 2. Let Ao denote the tridiagonal matrix of order m + r obtained by setting
ai=O, li, in (1.4). The rows R1, R2," Rr/l of b(Ao) satisfy

(2.6) Rl=[b,,b,,_l, bl, 1,0,... ,0],

(2.7) Ri-’Ri-l(Oti-lAo+i_llm+r)-Ti_lRi_2, i=2,3,’’. ,r+l
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with Ro =0, and the product of (1.6) and (2.2) is

(2.8) b(A)c(A)= al" ar pm/r(A)+xlp,/-I(A)+’" "+xm/po(A)
tm+ Ogre+

where

(2.9) [x,+,,..., x2, xl] R+I / ciR,+" + crR1.

Proof. Recall that in (1.4) we have set n m / r. Since A0 is still in comrade form,
it follows that R is identical to/91 in (1.7), and that the rows of b(Ao) must satisfy a
relationship (2.7) having the same form as (1.8).

Furthermore, it follows from (1.8) that the ith row pi of b(A) has its last r-i
elements equal to zero, and that P,+I is the first row of b(A) to involve the coefficients
ai in A, so that p--Ri, i=2, 3,..., r.

By considering (1.7) and (1.8), it is easy to verify that the last element of Pr is

(2.10) l "-(ffll’2""" t:ir--1)/(1m+lm+2""" ffm+r-1)-

Hence it follows from (1.8), and (2.7) with i= r+ 1, that

p,+l R,+ + a,R,(A-Ao)
(2.11) =R,+a+a,6[ --a-----+’ -a2 -___al

[.. Olm+r Ogm+r Olm+r

Since f() 0, (2.5) becomes

Pr+l / ClPr /" / CrPl 0

and substituting from (2.11) and (2.4) produces

(2.12) Rr+ + cR+" + cRa [a+, -., al]/I(m + r, m).

In (2.1) we now have

b(A)c(A) a(A )/l(m + r, m)

[p+r(A) + apm+-l(,X)+"" "+ a,,+po(,)]/l(m + r, m),

and this reduces to the required expression (2.8) on setting x=a/l(m+r, m),
whereby (2.12) becomes (2.9).

Example. Choose as the basis the Legendre polynomials P(A), for which

2i-1 i-1
(2.13) ai- i --0, Yi--, i>--1.

Suppose that

b(A) P3(A) + 2P2(A) + P,(A) Po(A),

c(A) P2(A) 2P,(A) + 3Po(,).

Here m 3, r= 2, and from (1.4) and (2.13)

0 1 0 0 0

0 0
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Equations (2.6) and (2.7) give

RI [-1, 1, 2, 1, 03,

R2 RIAo [, _, 2321, -, -],
R3=R2Ao-1/2RI=[, 23

35

and from (2.9)

IX5, X4, X3, X2, Xl] R3-2R2+ 3R1
_[ 49

The leading coefficient in (2.8) is CelCe2/a4oe5 10/21, so Theorem 2 gives

b(A)c(A) 10 22 7lEe(A) _t_ 1420 49
i-P5 A 5Pn(A +P3(A -+- gi- 35 "1(/

Remark 1. The argument used to prove Theorem 2 remains valid if yi 0, V i. If
in addition we set ai 1,/3i =0, then formally p(h)= ;t , and b(A) and c(h) reduce to

b(A) Am+ E bim-i C(} 1 "Jr" Ci) r--io
i=1 i=1

The matrix Ao has a superdiagonal of l’s with all other elements zero, so by (2.6) and
(2.7)

Ri--[0,’’’ ,O, bm, bm-l, bm-2," "].
(i-1)

It is trivial to check that in this case Theorem 2 is equivalent to collecting powers of
in the expression

A rb(A + Cla r--1 b(A) +... + cb(A).

Remark 2. If a more general polynomial basis is used [5], then the method carries
over with Ao replaced by a lower Hessenberg matrix, obtained from the so-called
confederate matrix in the same way that Ao is obtained from the comrade matrix.

3. Products of two orthogonal polynomials. For certain special cases it is possible
to obtain explicit expressions for the product pm(A)pr(A), m >-r. In Theorem 2, set
b(A) =p,(A) and c(A)=pr(A). The first row R1 of p,,,(Ao) is seen from (2.6) to be
just the (m + 1)th row of I,,+r, and will be denoted by em+l. Also, (2.9) shows that
the vector of coefficients in the product p,,(A)p(A) is just

(3.1) [Xm+r, X2, X1]-" Rr+l.

It is convenient to record at this point that the ith row of Ao has the form

(3.2) eiAo
l

yie,_l_ 13,e, + ei+l),
t

i=2,3,-.., re+r-l,

(3.3) em+rAo
Om+

(’)lm+rem+r-l-- m+rem+r).

Case 1. al 1,/31=0; a=2,/3 =0, y= y, i_>-2. From (2.7) we have

R2 RIAo em+lAo 1/2(Tern + era+2)
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on applying (3.2), and similarly

R3 2R2Ao TR (Ye,-,Ao + em+2Ao) ye,,.,+

(/e.,_ + era+l) +1/2(Yem+l + e,.+3)- ,e.+

1/2( ,y2 era-1 + era+3).

It is easy to verify by induction that the (i+ 1)th row of p(Ao) is

(3.4)

In order to apply (3.1), set i= r in (3.4) and formally ignore the term e+r+a (this is
justified by (3.3)). Hence

yr
[X+r," ,X,]=e-r+,

and Theorem 2 implies

2- yr
P (X)Pr(X) + r

In fact, the pi(A) are essentially Chebyshev polynomials of the first kind, as the
parameter 7 can be removed by rescaling. Thus on setting y 1 in (3.5), the well known
result [1, p. 782] for Chebyshev polynomials is recovered.

The procedure set out above is followed identically in all the following cases, so
only the statements of the results will be given. In each case the expression for Ri+
is established by induction. The desired sum for p(A)p(A) can then be written down
using Theorem 2, the coefficient of e (=X+r-+l) being equal to the coefficient o
p_ () in the sum.

Case 2. i=2, i=0, yi=y, il. The (i+l)th row of p(Ao) is

Ri+l i-1Y em-i+l + m-i+3 +" + Tem+i- + em+i+l

so by Theorem 2

3.6) P X)PrX)
k=0

Again by rescaling, y could be removed, so setting y 1 in (3.6) gives a result for
Chebyshev polynomials of the second kind [3].

Case 3. i 1, i , Yi Y, 1.

Ri+l= Yem+i-2+,
k=o

(3.7)
P X)PrX)

Notice that (3.7) is independent of
Case 4. Hermite polynomials Hi(X), a 2, =0, y 2(i- 1), i 1.

Ri+l- k=0 2kk’ ()()e’+i-zk+l

where () i!/k!(i- k)!,
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Case 5. Legendre polynomials Pi(,X). These were defined in the numerical example
in 2.

7rkTr-ki!(m+i--k) (2m+2i-4k+l)e’+-k/
Ri+I k=o(2m+2i-2k+l)(2m+2i-2k-1)... (2m-2k+ 1)

where

7" 0203 ar, r >-_ 2, 7" 1, ro 1,

the ci being given by (2.13).

(3.9)
7rkzr_kr!(m+r--k)(2rn+2r--4k+l)P.,+_2k(A)

Pm(A)Pr(A)=
k=0 (2m+2r-2k+l)(2m+2r-2k-1) .

The formulae (3.8) and (3.9) are known; see [2] and [3, Lecture 5] for discussion
and references. As pointed out in [3], one approach to obtaining such expressions is
to find the coefficients for small values of m and r, guess the general formula, and
prove it by induction. The method of derivation outlined in this paper, whilst also
involving an induction step, is simpler and more systematic. The purely algebraic nature
of the procedure seems attractively straightforward.

Acknowledgment. The author is grateful to the referees for their helpful sugges-
tions which improved the presentation.
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HAMILTONIAN CYCLES IN STRIPED GRAPHS:
THE TWO-STRIPE PROBLEM*

R. S. GARFINKEL? AND P. S. SUNDARARAGHAVAN$

Abstract. For a directed graph G=(N,A), the kth stripe of G is Rk ={(i,[i+ kin)} where lain is a
(modulo n) and n is the number of nodes. A graph is striped if A consists of a set of stripes. The t-stripe
problem is to determine whether a graph containing stripes is hamiltonian. Necessary and sufficient
conditions are provided for t-< 2, although the problem is still open for >-3.

AMS(MOS) subject classifications. 05C38, 05C45

1. Introduction. Consider a directed graph G (N, A) with nodes indexed by
I={0, 1,..., n-l}. For kL the kth stripe of G is defined by Rk ={(i, [i+k]n),

I} where [a],, denotes a (modulo n). G is striped if A {Rk, k I*} where I* c L
In this paper we develop conditions for the existence of hamiltonian cycles in

striped graphs. Our interest in these graphs was motivated by [1], [3], where traveling
salesman problems are solved on graphs having striped distance matrices (i.e. constant
distances over the stripes of the graph). Naturally, solution techniques have evolved
which entail combining low cost stripes of G.

In [1] it was shown that if I*= { k}, gcd (k, n)= 1 is necessary and sufficient for
G to be hamiltonian. If card (I*) > 1, we are interested in the possibility of combining
stripes into an h-cycle. Thus we say that an h-cycle is a (nondegenerate) combination
of {R, k I*} if it contains at least one arc from each stripe.

In this work we establish necessary and sufficient conditions for the case 2
which can be checked simply in polynomial time. We also present a necessary condition
for the case => 3, although we have not established that the 3-stripe problem is solvable
in polynomial time. Sufficient conditions for that problem are given in [3]. We also
present a polynomial algorithm for finding all h-cycles when 2.

2. Necessary conditions. A striped graph having card (I*)= is denoted by
LEMMA 1. Gt is harniltonian only if w gcd ({ k I*}, n) 1.
Proof. Consider the nodes of G, to be elements of the abelian group Hn with

group operation being addition modulo n. Now, suppose w > 1. Then the subgroup
Hn(0, w) of H,, which contains 0 and is generated by w, is not the full group Hn;
therefore it follows that the elements of H(0, w) are a component of Gt so that
is disconnected in the strong sense.

Attention is now focused on the two-stripe problem. Let I*= { p, q}, and denote
G2 by G(p, q). For an arbitrary h-cycle in G(p, q), let the number of arcs of stripes
p and q be P and O respectively. Also let g gcd (p-q, n).

LEMMA 2. P is an integral multiple of d n/ g.
Proof. For any k, [k + Pp + Oq] k and from P+ O n it follows that

(1) (p-q)P=-O (mod n).

Thus (1) has g incongruent (mod n) solutions for P in the interval [0, n). It is easily
seen that any integer multiple of d n!g solves (1). Since there are g such solutions
in [0, n) the lemma is established.

* Received by the editors April 26, 1983, and in revised form June 27, 1983.
Management Science Program, University of Tennessee, Knoxville, Tennessee 37916., Computer Systems and Production Management, University of Toledo, Toledo, Ohio 43606.
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From Lemma 2 it follows that stripes p and q can be combined only if g -> 2. Also
if n is prime, all stripes are h-cycles, but no two stripes can be combined into an h-cycle.

Before we state and prove the main result of this paper, namely necessary and
sufficient conditions for G(p, q) to be hamiltonian, some useful results about circular
permutations are introduced in the next section.

3. Binary circular permutations. A "binary" circular permuation is a clockwise
arrangement of two kinds of elements, namely p’s and q’s which number P and n-P
respectively, around the perimeter of a circle. Let S represent a subsequence of length
c of a binary circular permutation, corresponding to consecutive (ordered) elements,
where c is an integer in [1, n). Define So(p) to be the number of elements in Sc equal
to p and SS to be the sum of the elements in S. Also let S(p)=ESc(p)/n and
SS ESSc/n, where in each case the sum is taken over all n consecutive sequences
of cardinality c. A binary circular permutation is said to be symmetric with period e, if
Se(p) is the same regardless of the choice of the set Se, and if e is the smallest integer
with that property.

Clearly not all circular permutations correspond to h-cycles, but if the correspon-
dence does exist, it should be clear to the reader how to derive the h-cycle from the
permutation and vice versa.

Remark. A necessary and sufficient condition for a binary circular permutation
to correspond to an h-cycle in G(p, q) is that it contains no subsequence S, where c
is an integer in [1, n), such that

(2) SS 0 (mod n).

4. Necessary and sufficient conditions.
THEOREM 1. G(p, q) has a nondegenerate h-cycle if and only if

(3) gcd(p, q, n)= 1,

g _>- 2, and there exists an integer m [1, g- 1] such that

(4) gcd(m*, n) g

where m* =pm + q g m
Proof.
Sufficiency. An algorithm is given for construction of a symmetric circular permu-

tation which yields an h-cycle. Suppose there is an m satisfying (4) and further assume
that (3) and g _-> 2 hold.

ALGORITHM 1. Choose a straight.line permutation Sg with S(p)= m. Repeat Sg
n/g times around a circle to get a symmetric circular permutation, whose period is
a divisor of g. Use this permutation to obtain an h-cycle.

Now it will be shown that there is no sequence Sc in the permutation such that
(2) and hence

(5) SS kin*+ hp+ lq =-0 (mod n)

holds, where k is the integer part of c/g and h / l- c-kg. It follows that

(6) h+l<g.

Rewrite (5) as

(7) km*=--(h(p-q)+(h+l)q) (mod n),
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which has a solution for k if and only if g= gcd(m*, n) divides h(p-q)+(h+ l)q. By
definition glP-q and (7) holds only if gl(h+ l)q. Then (6) implies gcd(g, q)> 1 and
therefore since gin, gcd(n, g, q)> 1. But glP-q, which yields gcd(n, p-q, q)> 1, so
that gcd(n, p, q) > 1 contradicting (3). It follows that (7) has no solution and therefore
Algorithm 1 yields an h-cycle.

Necessity. Suppose there does not exist m [1, g-1] satisfying (4) and let Sn be
a binary circular permutation corresponding to an h-cycle. It follows from Lemma 2
that

(8) S,,(p)=mn/g

where m _-> 1 and integer. Since m [1, g 1 and since g m* and g n, it follows from
the statement of the theorem that

(9) u gcd(m*, n) > g.

Define

(10) s=u/g

so that s is an integer in [2, n/g]. We will show that there exists S,,/ corresponding
to a subtour.

From (8), S,,/(p)= mn/gs and it follows that there exists S’,,/s such that

(11) S’/s(p)= mn/gs.

Now

(12) SS’/s nm*/gs

and from (9) and (10) it follows that SS’,/s= 0 (mod n) and Sn does not yield an h-cycle.
Theorem 1 gives necessary and sufficient conditions for the existence of a non-

degenerate h-cycle in G(p, q) as well as an algorithm to find one if it exists. The next
theorem establishes that the h-cycles constructed by Algorithm 1 are the only ones
possible.

THEOREM 2. All binary circular permutations corresponding to h-cycles obtained
by nondegenerate combinations of stripes p and q in G(p, q) are symmetric with period
g or some divisor of g.

Proof. Suppose there is a circular permutation S, corresponding to an h-cycle
which is not symmetric with period g or any of its divisors. Let p-q zg where
z [1, (n/g) 1] and integer. From Theorem 1

(13) gcd(zg, n) g gcd(m*, n).

Define rh [m*], so that

(14) gcd(m*, n) gcd(rh, n) g.

Let Q(n) be the abelian group, consisting of integers modulo n, with group
operation being addition modulo n. Also let G and G’ be the subgroups of Q(n)
generated by g and fit respectively. From (14), G=G’ and there must exist
1, n/ g) 1 such that

(15) zg =- rfi (mod n).

We focus attention on Sg and note that Sg S since g [g, n g].
From (13), (15)

g gcd(zg, n) gcd([zg]n, n)= gcd([rfi], n),
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and with (14)

(16) g gcd(,rh, n) gcd(g, n).

From (16) it follows that Sn is not symmetric with period fg or any of its divisors.
From (8) and (15)

=m,^S--eg z =- zg (mod n),

so that there exists an integer a such that

(17) SS e, an + zg.

Since Sn is not symmetric with period zg or any of its divisors, it follows that
there exits S’g such that

Sg(p) Sg(p) 1
so that

SS’g S--g p + q.

Then (17) and the definition of z yield SS’g =-0 (mod n), so that S’g satisfies (2),
contradicting the assumption that Sn yields an h-cycle.

5. Example. Consider the example given by n 12, p 7, and q 3 where (3)
is clearly satisfied. Now g =4 and (4) holds for m 1, 2 but not for m 3. Thus all
h-cycles in this graph correspond to the binary circular permutations (written linearly)
7333 7333 7333, 7733 7733 7733, and 7373 7373 7373. The corresponding h-cycles
are of the form 1-8-11-2-5-12-3-6-9-4-7-10-1, 1-8-3-6-9-4-11-2-5-12-7-10-1, and
1-8-11-6-9-4-7-2-5-12-3-10-1 respectively. Note that for m =5, the subsequence
7773 yields the subtour 1-8-3-10-1.

6. Conclusions. We have established simple necessary and sufficient conditions
for a 2-striped graph to be hamiltonian. Essentially these can be checked by calculating
on the order g-1 greatest common divisors each of which can be done in O(log n)
time using Euclid’s algorithm as discussed in [2]. Since g < n, the resulting algorithm
is no worse than O(n log n).

The problem of extending these results for three or more stripes is an intriguing
one which the authors are pursuing. The question of the computational complexity of
the t-stripe problem is an open one for >-3.
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COMPLEMENTARITY IN ORIENTED MATROIDS*

MICHAEL J. TODDf

Abstract. We extend many of the results and algorithms of linear complementarity theory to the
abstract combinatorial setting of oriented matroids.

AMS(MOS) subject classifications. 90C33, 05B35

1. Introduction. The linear complementarity problem is to find w and z satisfying

(1.1a) w=Az+b,

(1.1b) w>=O, z>=O,

(1.1c) wTz =0,

for given n n matrix A and n-vector b. Results concerning this problem and dis-
cussions of its importance in mathematical programming, game theory and other fields
appear in [6], [8], [18], [19], [21]. Generally, the given data A, b and the solution
vectors w, z are assumed to be real, but any ordered field suffices to prove the known
results and establish the validity of the usual algorithms. In this paper, we will attempt
to show that the natural setting of the problem is that of oriented matroids, the study
of abstract combinatorial properties of signed linear dependencies introduced by Bland
[1], Las Vergnas [14] and Lawrence, whose thesis [17] presents and extends work of
Folkman. See also Bland and Las Vergnas [4], Folkman and Lawrence [10]. To justify
this assertion, we will extend several important results and algorithms of linear com-
plementarity theory to the context of oriented matroids. This extension is proper, since
there are oriented matroids that are not representable over any ordered field [4]. Our
proofs must therefore avoid any dependence on monotonicity. To some extent, our
task is simpler than that of Bland [2] or Edmonds and Fukuda (see [11]) in extending
the theory and algorithms of linear programming to oriented matroids, since the usual
complementary pivot algorithms rely very little on monotonicity. However, they do
rely heavily on nondegeneracy (or lexicographic resolution of degeneracy) and we
need to extend such techniques to oriented matroids.

The two results we have chosen to extend are the characterizations of those
matrices A for which there is exactly one solution for each b and for which there is
at least one solution for each principal submatrix of A and each commensurate b. Such
matrices are called P-matrices and completely-O matrices respectively and were
characterized by Samelson, Thrall and Wesler [22] and Cottle [5].

Samelson, Thrall and Wesler showed that the following are equivalent:

(1.2a) The linear complementarity problem (1.1) has exactly one solution for
every b;

(1.2b) the matrix A has positive principal minors; and

(1.2c’) if el, ez," , en are the columns of the identity matrix, and al, az," , an
the columns of A, then

Received by the editors October 5, 1982, and in revised form May 5, 1983. This research was partially
supported by a Fellowship from the Alfred P. Sloan Foundation and by the National Science Foundation
under grant ECS-7921279.

" School ofOperations Research and Industrial Engineering, College of Engineering, Cornell University,
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(i) if ui e {ei, -ai} for 1, 2,. , n, then the ui’s are linearly independent,
and

(ii) if ui e {e, -ai} for 1, 2,. , n, then for each ], ej and -aj lie on opposite
sides of the hyperplane spanned by ul," , ui_l, ui/,. , un.

This result was rediscovered independently by Ingleton [13] and Murty [21]. Other
equivalent conditions are known. For instance, Murty [21] showed that the condition
below suffices:

(1.2fi) The linear complementarity problem (1.1) has at most one solution for every b.

It is also obvious that the following is equivalent:

(1.2b’) The matrix -AT has alternating principal minors, i.e. its principal submatrices
of order k have determinants with the same sign as (-1) k.

We shall see that there is a duality relationship between (b) and (b’). There is
also a dual version of (1.2c’), in which (ii) is replaced by

(ii) If u e {e,-a} for i= 1, 2,..., n, and for some ], {u, u}= {e,-aj}, then the
linear dependence among u,..., u_, u, u, u+a,..., un involves uj and
u} with the same sign.

We will call the resulting condition (1.2c).
Gale and Nikaido [12], in investigating the class of matrices with positive principal

minors, provided another equivalent condition:

(1.2d) There is no nonzero x with y Ax and xiYi <: 0 for all i= 1, 2,..., n.

If y Ax, then y-Ax 0 so that (1.2d) is related to dependencies among the ei’s and
-ai’s; it is easily seen that (1.2d) implies (1.2c). There is a dual version of (1.2d), also
equivalent:

(1.2d’) There is no hyperplane H such that for each i-1, 2,..., n, ei and -ai lie
in one of the two closed half-spaces associated with H.

If any of (1.2a)-(1.2d’) holds we say A is a P-matrix. Note that all the conditions
involve sign properties rather than numerical values. Indeed, they can all be expressed
as properties of the signed linear dependencies among the columns of the matrices

(1.3) [I,-A] and [I,-A,-b]

or the signs of vectors in the row spaces of these matrices. (Note that if (x, y) 0 is
in the row space of [I,-A], then there is a hyperplane H with x(y) zero, positive or
negative according as ei(-a) is in H, on the positive side or on the negative side of
H.) Thus it is natural to ask whether these conditions remain equivalent in the context
of oriented matroids. Theorem A states that they do.

Among the algorithms designed to solve (1.1) are those of Lemke [18] and Van
der Heyden [26]. Both are known to yield a solution whenever A is strictly semi-
monotone, i.e., whenever 0 x_->0 implies that for some k xk>0 and (Ax),>O.
Indeed, Cottle [5] has recently shown that the following conditions are equivalent:

(1.4a) (1.1) has at least one solution for each b, and so does every principal subprob-
lem (i.e., a linear complementarity problem whose matrix is a principal
submatrix of A);

(1.4b) A is strictly semi-monotone.
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Eaves [7] had previously shown that the following is equivalent to (1.4b)"

(1.4c) For every b_>-0, (1.1) has precisely one solution.

Theorem B asserts the equivalence of combinatorial versions of (1.4a), (1.4b) and a
slightly strengthened form of (1.4c) that asserts that the condi.tion holds for all principal
submatrices of A also. We will prove Theorem B constructively, using algorithms that
generalize those of Lemke and Van der Heyden. These algorithms will therefore be
guaranteed to find a solution if our translations of conditions (1.4b) or (1.4c) hold,
and hence if our versions of any of conditions (1.2b)-(1.2d’) hold. Another algorithm
that can be applied to the linear complementarity problem is the principal pivoting
method of Cottle and Dantzig [6]. The usual argument that guarantees convergence
for this method involves monotonicity of the chosen negative basic variable--this
reasoning is no longer valid in the context of oriented matroids. However, when A is
a P-matrix, the principal pivoting method can be seen to be equivalent to the algorithm
of Van der Heyden--see [26, p. 339].

Our main purpose is to show precisely what structure is sufficient to establish the
major results of linear complementarity. (In a related vein, Bland [3] has shown that
oriented matroids are the most general combinatorial objects for which the Farkas
property together with certain natural symmetry and closure properties holds. Thus
this structure is in some sense necessary as well as sufficient to prove the main results
in linear programming.) We also show that related constructions, such as lexicographic
rules, can be extended to oriented matroids, using results of Las Vergnas on extensions
of matroids [15].

However, we also provide insight into the linear complementarity problem itself.
Since the way in which (1.1) arises from linear or quadratic programming problems
incorporates both primal and dual problems, it has been believed that there is little
duality applicable to (1.1) itself (apart from the use of Farkas’ lemma to establish
infeasibility). However the arguments we use rely heavily on the dual oriented matroid
and thus stress the importance of duality. Indeed, (1.2b’)-(1.2d’) are conditions on
the dual oriented matroid, and all arguments involving hyperplanes containing columns
ei and -aj and with columns ek and -at on various sides (in particular, discussions of
complementary cones) use duality. Our combinatorial versions of conditions (1.2b)-
(1.2d’) will exhibit this duality very clearly. Next, we show that Van der Heyden’s
variable dimension algorithm (when it succeeds, or when a strong nondegeneracy
assumption holds) is a special case of Lemke’s, where the artificial column is d
(n, n-1,..., )T for sufficiently small positive 3. This provides some answer to
Cottle’s first question [5] concerning the applicability of Van der Heyden’s algorithm;
it will process only problems which Lemke’s algorithm will process for some positive
d, and it will process all "strongly nondegenerate" problems which Lemke’s algorithm
will process for all positive d.

Finally, our development raises the hope that quadratic programming can be
studied in the context of oriented matroids, just as linear programming was by Bland
[2] and Edmonds and Fukuda [11]. We may also be able to derive a new algorithm
for linear programming in oriented matroids, related to Dantzig’s self-dual parametric
algorithm [7, pp. 245-246] as is Bland’s [2] to Dantzig’s simplex method. Indeed,
linear and quadratic programming duality results for oriented matroids can be proved
constructively using the ideas of this paper--see [24].

We conclude this section with an outline of the remainder of the paper.
Section 2 is an introduction to the theory of oriented matroids, containing the

concepts and many of the results we shall need later. In 3 we state our generalizations
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of the theorems ol Samelson-Thrall-Wesler and Cottle. Section 4 establishes an
important "unique pivoting" result. We show in 5 how lexicographic extensions can
be used to cure the ills of degeneracy. Section 6 proves our first main result, while 7
proves the second and also describes two algorithms that can be considered as extensions
of those of Van der Heyden and Lemke. The paper concludes with a result relating
the former algorithm to a special case of the latter, and a discussion of the orientation
of the solution found by our algorithms.

2. Oriented matroids. We follow [4]. Let E be a finite set. A signed set in E is
a pair X (X+, X-) with X+c__ E, X-c_ E and X+ X-= ;. The opposite of X
(X+, X-) is the signed set -X (X-, X+) and the set underlying X is _X X+ U X-.
We say that X contains e if e e _X and that e and f appear in X with the same sign
(opposite signs) if e, f e X+ or e, f e X- (e e X+ and f e X-, or e e X- and f e X+).

The pair -(E, ) is an oriented matroid if E is a finite set and a collection
of signed sets in E, called circuits, satisfying

(, ) %
(C1)

C, C’ c and _C
_

_C’C C’ or C =-C’;

C, C2 c and e (C f3 C) LJ (C]- f3 C)
(C2) imply that there exists C3 c with

C c__ (C: U C)\{ e}, C; c__ { CT U C}\{ e}.

(C2) is the so-called "signed elimination property." If we let

_
={_C" C } then

=(E, _) is an unoriented matroid as introduced by Whitney [27], and (CI) and
(C2) become the usual circuit axioms.

Let M be a matrix over an ordered field, with its columns indexed by E. Then
M gives rise to an oriented matroid /(M) as follows. Let _C c_c_ E index a minimal
nonempty linearly dependent set of columns. Thus Mx 0 where x is nonzero only
on indices in _C. The minimality condition implies that x is unique up to scalar
multiplication. Let the signed set C be defined by setting C+(C-) to be the index set
of the positive (negative) components of x. Clearly -x gives rise to the signed set -C.
The collection of all signed sets arising this way is the set of circuits of (M). We
can also view as the collection of signed supports of elementary vectors (i.e., vectors
of minimal nonempty support) in the null space of M. It is then natural to consider
the oriented matroid obtained similarly from the orthogonal subspace, the row space
of M. This gives rise to another oriented matroid in the representable case, called the
dual of /(M).

Note that there are oriented matroids which are not representable over any
ordered field, i.e. which cannot be written as /(M) for any M. However, corresponding
to every oriented matroid /= (E, ) there is a uniquely defined dual oriented matroid
denoted /*= (E, ). The circuits of /*, also called cocircuits of /, are signed sets
D, satisfying the orthogonality property (2.1) below, which have minimal nonempty
underlying sets"

(2.1) for all C e % either
_C CI _D , or C+ fl D+) U C- 71D-) # and C+ f’l D-) U (C- D+) # .

Further, (/*)* /.
In the oriented matroid , a subset of E is called dependent if it contains (the

underlying set of some circuit, and independent otherwise. A maximal independent



COMPLEMENTARITY IN ORIENTED MATROIDS 471

subset of E is called a base of At (cobase of At*). For any F c_ E, all maximal independent
subsets of F have the same cardinality, called the rank of F. In particular, all bases
have the same size, called the rank of At. The bases of At* (cobases of At) are just
the complements in E of the bases of M. If B is a base of At and e B, then there is
exactly one circuit C with e C+ and _C c_ B U {e}; we call it the fundamental circuit
associated with B and e.

If D is a cocircuit of At, then E\_D is a maximal subset of E of rank one less than
the rank of Atmit is termed a hyperplane. The elements of _D can be viewed as lying
on one side or the other of this hyperplane according as they belong to D/ or D-.

All of this notation arises from and is a natural generalization of the representable
case. Next we show how to obtain new oriented matroids from old, by reorienting
certain elements or taking minors.

Let At (E, c) be an oriented matroid and At* (E, ) its dual. Let F be a subset
of E, and let C(F)={((C/\F)(C-fqF)), ((C-\F)t.J(C+tqF)) C c} and (F)
be defined similarly. Then clearly ’ (E, CO(F)) is an oriented matroid, and (At’)*=
(E, (F)) its dual. We say At’ is obtained from At by reversing signs on F. In the
representable case, this merely corresponds to negating the columns indexed by F.

To describe oriented matroid minors, we need some terminology. For F
___
E and

C a signed set in E we denote by C\F the signed set (C/\F, C-\F). For a collection
of signed sets in E we say C c is a minimal nonempty member of
and for no C’ c is _C’ _C. Now let F, G c__ E with F t’) G . Let c\F/G denote
the collection of minimal nonempty signed sets in {C\G" C qg, _C F }. Then
(E\(F U G), C\F/G) is an oriented matroid, written t\F/G and called the matroid
minor of obtained by deleting F and contracting G. We have
We write At\F (At/G) for At\F/ch (At\oh G). If C is a circuit of At and G c__ _t_C, then
it is easy to see that C\G is a circuit of At/G. A useful result [4, Prop. 4.4] is that
even if G _C, there is a circuit t of /G with t+ c__ C+\G, -___ C-\G.

If p E and At (E, q), (ELI {p}, ) are oriented matroids with \{p}
we say is a point extension of At. Las Vergnas [15] has studied such point extensions
and characterized those with rank equal to that of At. (There is only one trivial point
extension with rank one greater than that of At.) Henceforth by a point extension of
a matroid we shall mean one with equal rank.

Again, minors have straightforward interpretations in the representable case.
Deleting F corresponds to removing from M the columns indexed by F. To contract
G, we first project each remaining column orthogonal to the subspace spanned by the
columns indexed by G, and then delete the latter columns.

All the material above (except point extensions) can be found in Bland and Las
Vergnas [4]. The final concept we need, orientation of ordered bases, was introduced
in the context of oriented matroids by Las Vergnas [16]. In the representable case,
each ordered basis of a subspace can be given a sign, depending on the sign of the
determinant of its representation in terms of a canonical positive ordered basis. Clearly,
this is related to our interest in matrices with positive principal minors. Note that if
/3 is an ordering of the basis B, and C is the fundamental circuit associated with B
and e, with f B fq _C, then the ordered basis/3’ obtained from/3 by replacing f with
e has the same sign as/3 if and only if e and f appear in C with opposite signs. Las
Vergnas [16] proved that such an assignment of signs was possible also in the nonrep-
resentable case.

Call any two orderings of the same set equivalent if they can be obtained from
each other by an even permutation, opposite otherwise. Las Vergnas showed that there
are precisely two assignments e of signs to orderings of bases in an oriented matroid
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(one being the opposite of the other) with the following properties:

(2.2)

(i) if/ and/3’
equivalent;

are orderings of a base B, then e(/3)= e(/3’) iff/3 and/3’ are

(ii) if/3 and/3’ are orderings of two bases B and B’, and/3 and/3’ agree in
all but one position, then e(fl) e(fl’) iff the two elements of B/B’ appear
in the circuit C with _C

___
B U B’ with opposite signs.

We call such an e an orientation of the bases of . If e* is an orientation of the bases
of *, we also call e* an orientation of the cobases of .

3. Main results. In this section we translate conditions (1.2) and (1.4) into the
language of oriented matroids and state our main results.

We will assume

S-"{S1, S2,’’" ,Sn}, T={tl, t2,"" ,t,}, SfqT= and E=SUT;
pC:E and/ =EtA{p};
A/--(E, ) is an oriented matroid with dual At*= (E, ) and S is
a base of .

We say a set F _/ is complementary (almost-complementary) if F contains both si
and ti for no (for at most one i). A signed set X is complementary (almost-
complementary) iff its underlying set is. We say X is positive on a setF E if X- f) F
and positive if it is positive on E itself. Finally, we call X sign-preserving (sign-reversing)
if for each 1, 2,..., n, if si and ti both belong to _X, they appear in X with the
same sign (opposite signs).

To view the conditions (3.2a)-(3.2d’) below as extensions of (1.2a)-(1.2d’), think
of and as the oriented matroids represented by the matrices [L-A] and
[L-A,-b], with S, T and p indexing the columns of/, of -A, and -b respectively.

(3.2a) Every point extension of to E contains precisely one positive com-
plementary circuit.

Every point extension of to/ contains at most one positive complemen-
tary circuit.

(3.2b) Every complementary subset U of E with cardinality n is a base of .
Furthermore, there is an orientation e of the bases of with e(o) (-1) IUcqTI,
where o is the natural ordering (Ul, u2,’"", un) of the complementary base
U with ui {si, t} for each i.

(3.2b’) Every complementary subset U of E with cardinality n is a cobase of A/.

Furthermore, there is an orientation e* of the cobases of with e*(o) +1,
where o is the natural ordering (ul, u2," "’, un) of the complementary cobase
U with u {s, ti} for each i.

(3.2c) There is no almost-complementary sign-reversing circuit in At.

(3.2c’) There is no almost-complementary sign-preserving cocircuit in .
(3.2d) There is no sign-reversing circuit in ://.

(3.2d’) There is no sign-preserving cocircuit in .
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THEOREM A. Given (3.1), conditions (3.2a)-(3.2d’) are all equivalent.
Let us make a few comments about the relationship of conditions (3.2) to conditions

(1.2). First, the positive complementary circuit in whose existence is claimed in
(3.2a) must include the element p. Otherwise, contains a positive complementary
circuit, and then the extension of to by p=0 would contain two positive
complementary circuits, that in and ({p}, ). (We will discuss extensions of by
various p’s, including p 0, in 5; however, the meaning should be clear at this stage.)

Second, we have stated all the conditions in terms of circuits (minimal dependen-
cies) rather than members of the "signed span" K() of the circuits of J/ (dependen-
cies), and similarly with cocircuits. However, the equivalences are straightforward
using the conformal decomposition of members of the signed span (see Bland [2, Thm.
3.23).

Third, we have stated the conditions (3.2b)-(3.2d’) in "dual pairs" to stress the
symmetry between conditions on circuits and bases and those on cocircuits and cobases.
In the representable case, this symmetry can be expressed by noting that A has positive
principal minors itt its transpose has; for generalizing to oriented matroids, we stated
this in the rather less transparent form of (1.2b) and (1.2b’)wnote that (L -A)
iff *= (AT, I). There is also a natural symmetry between si and ti, that is obvious
in conditions (3.2b’)-(3.2d’) and easily derived in (3.2b). In the representable case,
this symmetry corresponds to the fact that A has positive principal minors iff every
principal pivot transform of it has (Tucker [25]).

In order to state conditions generalizing (1.4a)-(1.4c), we need to define various
important minors of .

DEFINITION 3.3. Let I and J be disjoint subsets of {1, 2, , n}. Then /J denotes
the oriented matroid minor obtained by deleting all ti, e/, and all sj, j e J, and
contracting all s, e L and tj, j J. We write I for and s for . We call i
a principal submatroid of .

We can now state conditions extending those of (1.4).

(3.4a) For every I {1, 2,. , n}, every point extension i of i contains at least
one positive complementary circuit containing the new element of i.

(3.4b)

(3.4c)

contains no sign-reversing circuit that is positive on T.

For every I
_

{1, 2,..., n}, if /i is a point extension of i containing a
positive complementary circuit C with _C f-] T , then i contains no other
positive complementary circuit.

THEOREM B. Given (3.1), conditions (3.4a)-(3.4c) are equivalent.

4. Preliminaries. Our aim in this section is to prove a pivoting result, (4.2), that
is closely related to Bland’s Claim 4.3 [2] and crucial to the algorithms we shall develop.
To prove this, we require the following apparent strengthening of the signed elimination
axiom (C2)"

THEOREM 4.1 ([4, Thm. 2.1]). Under the condition (C1), the elimination property
(C2) is equivalent to

C C2C,e(C+ fq C-) (C- fq C) and

(C3) f (C\C-() U (C\C() imply that there exists
C3 with f _C3, C_ (C-U C-)\{e} and
C-d c_ (C? U C)\{ e}.

From this we obtain the important theorem.
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THEOREM 4.2. Let C1 and C2 be circuits of the oriented matroid l (E, c). Let
f _C2\ _C1, and suppose (C t-I C) U (C-(f) C) # J. Then there exists a circuit Ca such
that

(i) C+ + +
3 - C1 [.] C2 and C

_
C- U C-;

(ii) C+
3 [-) C- C C- ’ and

(iii) f (C- f3 C) U (C f’) C).
Furthermore, if C_2

_
_C U { f}, then such a C3 is unique and satisfies

(iv) _C\_C
Proof. For the first part, we use induction on d(C, C) =-I(C f3 C) U (C- fq C-)I.

If this is one, then condition (C3) yields a circuit C3 that is easily seen to satisfy (i)-(iii).
Suppose the result is true whenever d(C, C2)< k, and consider the case where
d(C1, C2) k. Choose any e in (C f’l C) U (C- f’l C-) and apply (C3) to get a circuit
C. If C3- C satisfies (ii) we are done. Otherwise, C and C satisfy the hypotheses

C’ d(C1, C) is strictly smallerand disagree in sign only where C and
than k. Thus we may apply the inductive hypothesis to obtain C3 satisfying (i)-(iii)
with respect to C1 and C, and hence also with respect to C and Ce. This completes
the inductive step.

For the second part, assume first that (iv) fails. Then apply the elimination property
to C2 and -C3 to eliminate f. This yields some C4 e (- with C4 C1, a contradiction.
To prove uniqueness, suppose C5 and C6 both satisfy (i)-(iv), with es ..C5\.C6
and e6 .C6\ .C5. Obtain C7 by eliminating f in C5 and -C6. Then _C7\ _C1, so C7 + C1.
But e5 appears in C1, C5 and thus C7 with the same sign, whereas e6 appears
in Cx, C6 and thus -C7 with the same sign. This contradiction establishes
uniqueness.

We will usually apply Theorem 4.2 when the final hypothesis, C2 C1 -J {f}, is
also satisfied. In this case we say that C3 is obtained by applying the unique pivot
result Theorem 4.2 to the circuits C1 and C2.

Suppose that Ci is the fundamental circuit associated with a base B and ei, 1, 2
(with f=e2). In order that C2__ C1 [--J{f} be satisfied, it is sufficient that C1
B U {el}this assumption is related to a nondegeneracy assumption that is customarily
made in complementary pivot theory. In that context it is justified by the use of
lexicographic rules. We shall also employ such techniques to handle degeneracy in 6.
The next section treats lexicographic extensions.

5. Lexicographic extensions. We require lexicographic extensions of a matroid
for two reasons: first, they allow us to resolve the problems of degeneracy in algorithms
to generate positive complementary circuits; and second, they provide a sufficiently
rich class of extensions of a matroid that we may prove not only the sufficiency of
conditions (3.2b)-(3.2d) for (3.2a) and (3.2), but also their necessity.

The basic result we need follows from Theorem 1.2 and the lemma of 3 in Las
Vergnas [15]. We state it as a theorem.

THEOREM 5.1. Let =(E, ) be an oriented matroid, and let {el, e2," ek} E
be independent and p : E. Then there is precisely one point extension
with/ E U {p} and dual * (, ) satisfying

Jife and {el, e2,’’’ ,ek}f’lO=, and

if/)\{p} D and {el, e2," , ek} 0 _D fg, with p appearing in with
the same sign as the first ei in D.

Moreover, each cocircuit of containing p is of the latter form.
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Note that in the representable case, such an extension arises if we set the vector
p to be el + ee2+’" + e k-lek for some suitably small positive e. Motivated by this,
we make the following definition.

DEFINITION 5.2. Suppose arises as above from . Then, if k > 0, we say
p lex (el, e2," , ek) extends to and call a lexicographic extension of t. If
k 0, then p lies in no cocircuit of and thus is a loop (forms a one-element circuit).
We therefore say p 0 extends to and call the zero-extension of . If k > 0
and is obtained from by reversing the sign of p, we say p =-lex (el, e2," ,
extends to . Similarly, if we reverse the sign of el in :g to get , then extend
to , then reverse the sign of el to get J/t, we say p lex (-el, eE,’" ", ek) extends
to J/, and so on.

Now we establish some important properties of lexicographic extensions. The first
shows that they can be used to resolve degeneracy, which corresponds to circuits of
cardinality smaller than the rank of plus one.

PROPOSITION 5.3. If p lex (el, e2," ek) extends to t, then every circuit

of containing p contains at least k + 1 elements.
Proof. Suppose t , p _, and I(?l _<-k. Let I be the independent (in t) set

_\{p}
_

E. Then since I has fewer than k elements and {el, e2," ek} is independent,
there is some e I with I U {e} independent. Let B be a base of t containing I t.J { e}.
Let ei be the first ek in B\I (note that e is some such ei), and let D be the
fundamental cocircuit associated with the cobase E\B and e. Then D gives rise to a
cocircuit of with p _/3. However, and then intersect only in p contradicting
orthogonality.

Next we show that contains the obvious circuit.

PROPOSITION 5.4. If p=-lex (el, e2,’’’, ek) extends t to , then there is a
positive circuit Cof [/t with

_
{p, el, e2,’"", ek}.

Proof. Let C -({p, el, e,. , ek}, b). Then it is easy to see that t is orthogonal
to every /3 containing p. Suppose /3 does not contain p, is positive on
{el, e2," ’’, ek} and contains ei as its first e. There is a cocircuit D1 of t eeting
{el, ee,..., ek}^just in ei with eis D-(. This gives rise to a cocircuit /l of . Now
apply (C3) to D and Ol eliminating e, to get DE with p _DE. But p D1, so p DE
and e _/:3E im]lies e /-. This contradicts Theorem 5.1. Thus is orthogonal to all
cocircuits of t. Since it can contain no circuit by Proposition 5.3, it must itself be a
circuit of .

Our final proposition is concerned with recognizing circuits involving p in the
lexicographic extension by knowing the circuits and cocircuits of . As a corollary
we show how lexicographic perturbations can be removed. For simplicity we only
consider the case where k rank .

PROPOSITION 5.5. Let p lex (el, e2,’" ", ek) extend to , where has rank
k. Let be a circuit ofl with p / and let B be the base

_
\{ p} ofl. Then e

or e B (3 C- according as the fundamental cocircuit D of associated with the cobase
E\B and e has ei D- or ei D/, where e is the first ej in _D.

Proof. Associated with the fundamental cocircuit D is a cocircuit/3 of , with
D t.J {p} since D contains at least one ej. Then/3 is orthogonal to 7 and meets

it only in e and p. Hence e B f3 / iff p /-, which holds exactly when e D-,
where e is the first e in _D.

COROLLARY 5.6. Let p lex (el, e2," ek) extend to l, where has rank k.
Let (; be a circuit of with p + and el : _. Then there exists exactly one circuit C
of with el C/, C+\{el} ’+ and C- -.
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Proof. Let B be the base _\{p} of and let C be the fundamental circuit of
associated with B and el. Consider any e e B and let D be the fundamental cocircuit
of associated with the cobase E\B and e. Then e e ’+ implies el e D- or el _D,
which implies, by orthogonality of C and D, that e e C/ or e _C. This proves existence.
Moreover, any circuit C’ satisfying the conditions has _C’ c_ B U {el}, so must be the
unique fundamental circuit C.

6. Proof of Theorem A. Throughout this section we assume that (3.1) holds, and
abbreviate conditions (3.2a)-(3.2d’) by (a)-(d’). For many of the arguments, the reader
may find it helpful to represent circuits pictorially, so that a circuit 0 with
{sl, s4, p}, 7-= {t2} could be represented as"

S2 S3 S4 P

tl t2 t3 t4

For reasons of space we have given the arguments concisely, avoiding such diagrams.
The proof is divided into several parts. First, we note the trivial implications

(6.1) (a)(fi), (d)(c) and (d’)(c’).

Next we prove the following lemma.
LEMMA 6.2. (b) :> (b’) <=> (c) :> (c’).
Proof. Since has rank n, the nonexistence of a complementary cocircuit (circuit)

implies that every complementary subset of E of size n is a cobase (base), hence a
base (cobase), and thus that there is no complementary circuit (cocircuit). Further,
given that every complementary n-set is a base, the nonexistences of almost-
complementary sign-reversing circuits and sign-preserving cocircuits are equivalent by
orthogonality of fundamental circuits and cocircuits. Hence (c)=>(c’).

Now assuming (c), we have seen that every complementary n-set is a base. Let
e be the orientation of bases of such that e(sl, s2,"" ", sn)= +1. Then (b) is true
when U f’l rl 0. If (b) is true when U f3 wl < and U is a complementary n-set
with ]Uf-I Tl=k, we choose tie U and let U’=(U\{ti})U{si}. Then by the induction
hypothesis, e(o’)=(-1) k-1. Now apply (2.2ii) and (c) to find e(o)=(-1) k. This
establishes (c)=> (b). The reverse implication follows similarly. An analogous argument
proves (c’) <=> (b’).

LEMMA 6.3. (fi)=>(c).
Proof. Suppose () holds. If .g contained a positive complementary circuit C, then

the O-extension of would contain two positive complementary circuits, namely
C and ({p}, ). Now suppose contains a complementary circuit C with C+, C-
both nonempty. Let _C --{el, e2," ek, ek+l} with ek+l C+. Let p
-lex (el, e2,’", eg) extend :g to . Then by Proposition 5.4 there is a positive
complementary circuit 01 in with ={p, el, e2,""’, ek}. Now apply the unique
pivot theorem, Theorem 4.2, to C1 and C to obtain a circuit C with ek+l C3. Also,
C3 is positive and complementary, contradicting (a). Hence :g has no complementary
circuit.

Next assume that C is an almost complementary circuit in with S C+, ti C-
for some i= 1, 2,..., n. Then _C\{s} is complementary, so it can be extended to a
complementary base B, say {e, ez,. -., e,_, ti}. Let p=-lex (e, e2," e_, ti)
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extend A/ to . Then, again, Proposition 5.4 gives a positive complementary circuit
1 with a B t.J {p}. Now use the signed elimination axiom (C2) (eliminating ti) to
get a circuit 2 of J with _2

_
(1_ J{si})\{ti}, si ’ and p 7+2. Supposeei

By Proposition 5.3, p 7 impl}es 1_21 n + 1, so that _2 _1 t.J { si})\{ ti} and _C2\{ p}
(B t3 {si})\{ti} is a base B’ of J. Let D be the fundamental cocircuit of J associated
with E\B and,, e]. Then ej D and since B/^ { ej, ti}, p But C2 [’) 0 { P,
implies that C2 and D are not orthogonal. Thus C2 is a positive complementary circuit
which together with tl contradicts (). Hence we have proved ()(c).

Recall that if/, J c__ {1, 2,..., n} with I f’l J , then the matroid At\{ti"
{s" j J}/{si" I} t3 {t" j J} is denoted .

LZMMA 6.4. If (C) or (c’) holds for , it holds for all minors of the form also.
Proof. It is sufficient to prove the conclusion for i ) and . But if
contains a complementary circuit C, then contains a complementary circuit C

with _C
_

_C {s}. Similarly if i contains an almost-complementary sign-reversing
circuit Ci, then contains a similar circuit C with _C _Ci t3 {s}. The argument is
analogous for J.

LEMMA 6.5. (c):=:>(d) and (c’):=>(d’).
Proof. We show (c)(d); (c’)=:>(d’) follows by duality, reversing signs on T. The

proof is by induction on n; for n 1, the implication is clear. Thus suppose the result
is true for n < k and consider the case n k. We assume (c) is true for , and hence
for all . Suppose C is a sign-reversing circuit in , i.e. if {s, t} _C, s and t appear
in C with opposite signs. If for any i, I{si, t} fq _C] 1, then we find a sign-reversing
circuit C in / (if s _C) or (if ti _C). The induction hypothesis then implies that
(c) fails for or , a contradiction. Thus n=[{s, ti}f’l _CI=0 or 2 for all i. If n=0
for all i, _C is empty, a contradiction. If n 2 for just one i, then (c) is violated. Since
I_CI<= n + 1, if n 2 for more than one i, then ni=0 for some j. If I_CI < n + 1, then
rank (_C)< n so there is some s cl (_C) (the closure cl (_C) of _C is _C together with
all e E such that _C U { e} contains a circuit containing e). Thus C is also a sign-reversing
circuit in i, and again a contradiction arises. Suppose now I_CI n + 1. Let Ca be the
fundamental circuit associated with the base _C\{s} and si, where n 2 and ni 0. By
the arguments above Ca is not sign-reversing; thus for some k with n 2, s and
t appear in Ca with the same sign (and in C with opposite signs). Now apply the
unique pivot theorem, Theorem 4.2, to C and Ca to obtain a sign-reversing circuit C3
with I{si, ti}fq _C31 1 for some j. As in the first part of the proof, this leads to a
contradiction.

To prove Theorem A, it only remains to prove the implication (c)(a). This
entails two partsexistence and uniqueness. We will prove existence using an inductive
.proof that is the basis of our algorithms in the next section. Uniqueness will follow from"
LZA 6.6. (d):=>().
Proof. Suppose (d) holds but some point extension of has two positive

complementary circuits 1 and 02. Apply the signed elimination axiom (C2) to Ca
and -C2, eliminating p. The result is a circuit C of , and it is easy to see that C is
sign-reversing.

We prove existence of a positive complementary circuit in inductively. The
result is trivial for n =0, for the empty matroid has rank 0, and the only point
extension of it with the same rank is the 0-extension, with the positive complementary
circuit ({p}, ). (If the reader dislikes the case n 0 as a basis for the induction, the
proof for n 1 is straightforward" indeed it is the inductive step we prove below.)

So we assume that (c)=:>(a) for n < k and consider the case n k. Let be a
point extension of . If p lies in some circuit of of size smaller than n + 1, we
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proceed as follows. Let si lie in the fundamental circuit associated with S and p; without
loss of generality, i=1. Then {p, s2, s3,’" ,s,,} is a base of . Let q=
lex (p, s2, s3," -, s,,) extend to , and let \(p}. Then is a point extension
of , and every circuit of containing q contains n + 1 elements. Moreover, if we
find a positive complementary circuit,, t in , then Corollary 5.6 will yield a positive
complementary circuit C in . Hence we may assume without loss of generality
that is an extension such that every circuit of containing p contains n + 1
elements.

Now consider the principal submatroid M,, and its extension l=t\{t}/{s}.
By Lemma 6.4, if (c) holds for it holds for A,, so by the induc.tion hypothesis there
is a positive complementary circuit in ,, and thus there is a complementary circuit
7 in with - {s,}. If s, -, is the desired positive complementary circuit.
Thus assume s, -.

(If we did not wish to give a constructive proof, we could derive (c)=:>(a) simply
from here. Indeed, a similar argument involving " eit.her gives., the desired positive
complementary circuit or gives a complementary circuit C2 with C {t,}. In the latter
case the signed elimination axiom (C2) applied to 0 and -02 to eliminate p gives a
sign-reversing circuit in , thus contradicting (d) and hence by Lemma 6.5 (c).
However, we wish to motivate the algorithms of the next section.)

We will attempt to convert C1 into a positive complementary circuit by performing
a sequence of (complementary) pivots. The circuits we construct are of the following
form.

DEFINITION 6.7. A signed subset of/ is n-distinguished if X’- {s.}, s /,
p+ and _\{s.} is comp,,lementary. Two n-distinguished circuits (1 and 02 of
are adjacent if (01 C-, C]-t_J C) is a signed set that is n-distinguished.

The algorithm we use will construct a sequence of n-distinguished circuits of
with each consecutive pair adjacent. The Lemke-Howson argument that precludes
cycling in linear complementarity [18], [19] is also valid in oriented matroids"

LEMMA 6.8. Assume (c) holds and consider the graph whose nodes are n-distin-
guished circuits with adjacency as defined above. In this graph, a node has degree 1 if
it is complementary and 2 otherwise.

Proof. Let ( be a complementary n-distinguished circuit. Then I_ n + 1 and
so contains precisely one of each pair {si, t} together with p. Suppose s t- Then
consider the fundamental circuit C of M associated with the base _C\{p} and t,. We
have s C+ by (c). Thus we may apply the unique pivot result Theorem 4.2 to
and C to obtain an adjacent n-dtinguished circuit C’. Moreover, t)’ is unique, since
the only possible member of _C’\_C is t so that _0’

_
C U {t} and Theorem 4.2 applies.

If s. C-, so that t (+, the argument is similar using -C, where C is the fundamental
circuit of M associated with _C\{p} and s(s (-C)-, t (-C)- by (c)). Thus 0 has
degree 1.

Now let C be an n-distinguished circuit that is not complementary. Then, since
I_ l-n / 1 and {s, t}_ _, there is precisely one index such that t) contains neither
s nor t. Let B be the base \{p} and let C be the fundamental circuit of M associated
with B and s. Then si C+ and C contains s and t,, with the same sign by (c). Thus
the unique pivot result,, Theorem 4.2 applie to C and C gives an adjacent n-
distinguished circuit C. It is easy to see that C is the only such circuit containing s.
A similar argument using t instead of s throughout gives another adjacent n-distin-
guished circuit Ct, the only such containing t. But if ,.’ is an n-distinguished circuit
adjacent to t), the only choices for the member of _\ are s, and t. Hence t) has
degree 2. This completes the proof.

We are now ready for the next proposition.
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PROPOSITION 6.9. Assume (c) holds and that (;1 is a complementary n-distin-
gflished circuit of that is not positive. Then there is a unique maximal chain
C, Ca,"’, Ck of distinct n-distinguished circuits o.f with each consecutive pair
adjacent. Moreover, is a positive complementary circuit of.

Pro@ By Lemma 6.8 the graph of n-distinguished circuits of is a disjoint union
o,,f paths and cycles, and C is the endpoint of a path. Let the nodes on the patch be
C, C,..., C. This is clearly the unique maximal chain desired. Moreover, C is

complementary and unequal to C. If sne C then C\{s} is a positive complementary
circuit in other than C\{s}. But (c) and hence (d) and (a) hold for , and thus
there cannot be two positive complementary circuits in . Hence sn and thus
C is a positive complementary circuit as claimed.

Theorem A follows from (6.1), Lemmas 6.2, 6.3, 6.5, 6.6 and Proposition 6.9.

7. Proof of Theorem B and algorithms. Here we will abbreviate conditions
(3.4a)-(3.4c) by (a)-(c). We first have this lemma.

LEMMA 7.1. If (b) holds for , it also holds for all principal submatroids
The proof follows that of Lemma 6.4 and is omitted.
LEMMA 7.2. (b)(c).
Proof. By Lemma 7.1 it is sufficient to prove that (b) implies the truth of (c) for

I . Suppose (c) fails. Then there is an extension of t that contains the positive
complementary circuits C1 and C2 where _C1 f’) T . Now apply the signed elimination
property to C2 and -C1, eliminating p. The result is a sign-reversing circuit in that
is positive on T, contradicting (b).

LEMMA 7.3. (c)=:>(b).
Proof. By induction on n. If n 1 and (b) fails, then either contains a positive

complementary circuit in which case the zero-extension of violates (c), or
C ({tl}, {Sa}) is a circuit of . In the latter case, let p=-lex (Sl) extend
Then C1 ({p, Sl}, ) is a positive complementary circuit by Proposition 5.4. Moreover,
the signed elimination property applied to C1 and C to eliminate Sl gives C2
({p, tl}, ) as another positive complementary circuit, violating (c). This proves the
case n 1.

Now suppose the lemma is true for n < k and consider the case n k. Suppose
(c) holds but (b) fails, so that contains a sign-reversing circuit C that is positive on
T. If for any i= 1, 2,..., n, ti _t_C, then C\{si} contains a sign-reversing circuit in
that is positive on T. But since (c) trivially holds for ti we have a contradiction to
the induction hypothesis. Thus T _C. If T _C, then the zero-extension of violates
(c), and so _C T t_J {s} for some s, and s C-, T C/. Now let p -lex (s) extend

to . Then C1 ({p, s}, ) is a positive complementary circuit in , and applying
the signed elimination property to C1 and C eliminating Sl gives another positive
complementary circuit C2; but this contradicts (c).

LEMMA 7.4. (a)==>(b).
Proof. Again, by induction on n. Suppose n 1. Let contain thecomplementary

circuit ({ h}, ). Then if p lex (s) extends to, the only circuits in t are ({ p}, { Sl}),
({tl} ) and their negatives, so that (a) fails. If contains the circuit ({t}, {sl}) then
let p=lex (t) extend to . Then the only circuits in are ({p}, {tl}), ({tl}, {Sl})
and (by the signed elimination property applied to these) ({p}, {Sl}) together with
their negatives, and again (a) fails. Thus (a):=>(b) if n 1.

Assume the lemma is true for n < k and consider the case n k. Suppose (a) is
satisfied but C is a sign-reversing circuit that is positive on T. If for some 1, 2,. , n,
t _C, then C\{s} contains a sign-reversing circuit in i that is positive on T. But then
our inductive hypothesis implies that (a) fails for , hence for . Thus T _C.
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Case 1. For some , s e C-. Then T is a base of . If for every i= 1, 2,-.-, n,
we have t C, where C is the fundamental circuit associated with the base T and
&, then the fundamental cocircuit D associated with the cobase S and t is positive.
But then if p=lex(h) extends to , (D/U{p},) is a positive cocircuit in ,
which then has no positive circuit containing p by orthogonality, contradicting (a).
Thus for some i, we have tl e C. Now apply the unique pivot result Theorem 4.2 to
C and -C to get a sign-reversing circuit C’ in that is positive on Tnote that
t e C/ f) (-C)-. But T g _C’, and this leads to a contradiction to (a) as above.

Case 2. C_ T. Then _C\{t} is independent, so there is some s, i= 1, 2,..., n
such that B =(C_U{si})\{tl} is a base of . Let C, j i, be the fundamental circuit
associated with B and s. If si C;. for every j, then the fundamental cocircuit D
associated with the cobase E\B and s is positive, and we are led to a contradiction
to (a) as in Case 1. So let s C;. If T f-)C; , then -C is a sign-reversing circuit
that is positive on T, and tl (-XC). This leads to a contradiction to (a) as above. If
T fq C; , then we may apply the first part of Theorem 4.2 to C C and Ca =-C
to obtain a circuit C3 that is sign-reversing but does not contain T. Once again a
contradiction to (a) results. This completes the inductive step and hence the proof.

It is now only necessary to prove (b)(a), and thus we do constructively. The
algorithm is that of 6, suitably extended, and corresponds to the method of Van der
Heyden [26] in the representable case. Note that it is only necessary to prove (a) for
I , in light of Lemma 7.1. Thus let p extend :g to ; we seek a positive complemen-
tary circuit involving p. As in 6, we may assume without loss of generality that every
circuit of containing p contains n + 1 elements. While we do not prove (a) completely
with just one application of the algorithm, we will in fact construct positive complemen-
tary circuits in each i (the appropriate minor of ) for a nested set of n I’s, which
we may take to be {i+l, i+2,..., n} for l_-<i<-_ n, the last set being . For the
following definition, it is convenient to let Sk and Tk denote {Sl, s2,’’’, Sk} and
{t, t2,’’’, tk} respectively. Also, let () denote as above, i.e. the minor of
obtained by deleting all t’s and contracting all s’s for i< j-<_ n.

DEFINITION 7.5. A signed subset 3 of E is i-distinguished, 1 <- <= n, if s -___
{s, s+,..., s,} _, pe J/, and J\{s} is complementary. It is (n + 1)-distinuished
if it is positive and complementary and contains p. An /-distinguished set X and a
j-distinguished set J’ are adjacent if J’, (_U _’)\{Sk} is complementary, and
no element of Sk U Tk appears in ) and in J’ with opposite signs, where k min { i, j}.

We seek an (n + 1)-distinguished circuit t of . Let 71 be the fundamental circuit
of associated with the base S and p; we call 1 the initial circuit. If (1 is positive,
it is (n + 1)-distinguished and we are done. Otherwise, it is /-distinguished, where s
is the first s in C]-. Note that any /-distinguished circuit , since it contains p, has
cardinality n + 1. Thus either it is complementary, or there is exactly one h <i with
C containing neither Sh nor th.

The algorithm to generate an (n + 1)-distinguished circuit proceeds to construct
a sequence of adjacent distinguished circuits from C. It can only fail when the next
circuit cannot be found. As we shall see, the following definition captures this possi-
bility.

DEFIIa’IO 7.6. Let be an /-distinguished circuit of and C a circuit of .
We say that C is the endpoint of the ray C if either

(i) ff is complementary, and either C is the fundamental circuit associated with
the base \{p} and t with s C+ and C positive on S_ U Ti-1, or, where th is the
last t in , C is the negative of the fundamental circuit associated with the base _\{p}
and sh with C positive on (Sh U Th)\{Sh}; or
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(ii) t contains neither Sh nor th, and C is the fundamental circuit associated with
the base (?\{p} and either Sh or th with si C/ and C positive on (Si (.J T)\{s}.

Note that in each case the ray C is sign-reversing and positive on T. Hence we
obtain the following proposition.

PROPOSITION 7.7. If (b) holds there are no rays.
LEMMA 7.8. Consider the graph whose nodes are all i-distinguished circuits of Jr,

1 <= <-_ n + 1, with adjacency as defined, in Definition 7.5. If1 is positive or the endpoint
of a ray, it has degree O, and otherwise its degree is 1. If a node (not 1) is (n +
1)-distinguished, it is either the endpoint of a ray with degree 0 or it has degree 1. All
other nodes are either endpoints of rays, with degree 0 or 1, or have degree 2.

Proof. First consider the initial circuit 1. If 1 is positive, it can be adjacent to
no other (n + 1)-distinguished circuit (which would necessarily be contained in S U { p})
nor to any j-distinguished circuit with j < n, since sj t)/1. Hence it must have degree
0 in this case. Suppose it is /-distinguished, =< n. By the argument above, it can be
adjacent to no j-distinguished circuit with j<i (sj (;). If it is adjacent to a j-
distinguished circuit, j >= i, then this must be contained in _1 (-J {t}. Thus let C be the
fundamental circuit of associated with _l\{p} and ti. If C is positive on (S (_J T)\{s}
and si C/, then tl is the endpoint of the ray C, and it is easy to see that t)l has
degree 0. Otherwise, 1 and C differ in sign somewhere in S t_J T/. Let 1 and C
result from removing elements Si/l, si+2,’", sn from 1 and C. Then (1i and C
are circuits in i (in fact, fundamental circuits with respect to the base S) which
disagree in sign somewhere. Hence we may apply the unique pivot Theorem 4.2 to

1 and C to get a circuit t)i. The corresponding circuit C2 of is/-distinguished
if it contains s and j-distinguished for some j > otherwise. Moreover, Ce is adjacent
to C and is the unique distinguished circuit adjace,nt to C1.

Next consider an (n + 1)-distinguished circuit C C1. Since f) T , let ti be
the last t,in and let C be the negative of the fundamental circuit associated with
the base _C\{p} and s. If C is positive on (S (_J T)\{s}, then (? is the endpoint of the
ray C and one can check that it has degree 0. Otherwise, define C and Cias above,
and apply the unique pivoting Th,eorem 4.2 to C and C in to get C. Then
the corr,esponding circuit (7’ of is the unique distinguished circuit adjacent to 0.

If C is /-distinguished and complementary, where i< n + 1 and C C1, then a
combination of the arguments above shows that t is either the endpoint of (at least)
one ray, with degree 0 or 1, or has degree 2.

Finally, suppose t) is /-distinguished but not complementary, and let h < be
chosen so that t) contains neither sh nor th. It is easy to see that any adjacent
distinguished circuit must contain either Sh or th but not both. Thus let Cs and Ct be
the fundamental circuits associated with the base \{p} and Sh and th respectively. If
C Cs or C Ct satisfies si C/ with C positive on (S (_J T)\{s} then C is the endpoint
of (at least) one ray. In this case, (? has degree 0 or 1. Otherwise, by defining t),
Csi and C, as above and performing pivots in i, we find exactly two adjacent
distinguished circuits. This completes the proof.

PROPOSITION 7.9. There is a unique maximal chain (;1, (;,’", (;k of distinct
distinguished circuits of with each consecutive pair adjacent. Moreover, (;k is either
the endpoint of a ray or a positive complementary circuit involving p, and in the latter
case, for each 1 <= < n, there is some with (?l\{Si+, s+2, , sn} a positive complemen-
tary circuit of J[i involving p.

Proof. By Lemma 7.8 the graph of distinguished circuits of & is a disjoint union
of paths and loo,ps, and 1 is the endpoint of a path (possibly trivial). Let the nodes
on this path be C1, Ce,..., t)k. This is clearly the unique maximal chain. Since tk has
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degree 1 (0 if k 1), it must be the endpoint of a ray or (n + 1)-distinguished, i.e.
positive and complementary and containing p. Finally, we may take for C the first t,,
that is j-distinguished for some ] > i.

Theorem B follows from Lemmas 7.2-7.4 and Propositions 7.7 and-7.9.
Another corollary of Propositions 7.7 and 7.9 is that, when (b) holds and p is

"nondegenerate", i.e., lies in no circuit of size smaller than n + 1, then there is an odd
number of positive complementary circuits involving p. This follows from the fact that
any graph has an even number of nodes with odd degree.

Clearly, thee algorithrnto seek such a positive complementary circuit is to trace
the sequence Ca, Ca,’", Ck of distinguished circuits. The proof of Lemma 7.8 shows
how each is obtained from its predecessor by a pivot. This is precisely the extension
of the algorithm of Van der Heyden [26] to the oriented matroid setting. The algorithm
terminates either with the endpoint of a ray or with a solution. If (b) holds, the latter
must occur.

Note that it is possible for the algorithm to proceed from an/-distinguished circuit
to a j-distinguished circuit, where ] < i, i.e., it need not be monotonic. If t satisfies
any of the conditions (3.2b)-(3.2d’), however, the algorithm will be monotonic; this
follows from the uniqueness of the solution to all subproblemsmsee the proof of
Proposition 6.9, which shows that regression cannot take place for n-distinguished
circuits. Given that regression does not take place, our algorithm can also be viewed
as an extension of the principal pivoting algorithm of Cottle and Dantzig [6], in which
the possibly negative variables Wl, w2,’’ ", wn are made nonnegative in that order.
However, our algorithm has a wider validity, in that it requires only condition (3.4b)
or (3.4c) and allows regression.

Another algorithm that can be extended is that of Lemke [18]. For this we are
given an extension t of t to / E U {p}. It is not necessary to assume that p is
nondegenerate. Let be an extension of to/ E U {q}, q /, such that every
circuit of involving q contains at least n + 1 elements and that S U {q} is the underlying
set of a positive circuit. For example, we can let q--lex (Sl, s2,’- ", sn). Now we call
a circuit C of special if it is positive, complementary and includes p. We can find
one as follows. Let e and (q be the fundamental~ circuits associated with the base S
and p and q. Then Co is positive. If Cp is positive, it is special and moreover is a
positive complementary circuit involving p in , so we are done. Otherwise, 71, and we may apply the unique pivot Theorem 4.2 to Cq and Cp to obtain a special
circuit 1. Note that, for some i, _1 f){si, h}- . Let B1 be the base _I\{P} and t
the fundamental circuit associated with/}1 and t. If is positive then t and tq show
that (c) is violated. Otherwise we may apply the unique pivot results to C and C to
obtain t2. If q _2 we are done; otherwise there is some ] with 2 f’l {sj, tj} . One
of sj, tj just left _C2" we proceed to bring in the other. Thus we may continue to generate
a sequence t, ’2,’", tk Of special circuits; as long as (c) holds we must
terminate with a special circuit not containing q, which is our desired circuit C. More
formally,

DEFINITION 7.10. A circuit t of is special if it is positive and complementary
and contains p. Two such are adjacent if the union of their underlying sets is complemen-
tary. k is an endpoint of a q-ray if both are positive circuits of , pc _k\_,
_C f’l T and _Ck U _C is complementary.

One can prove"
PROPOSITION 7.11. If (C) holds there are no q-rays.
LEMMA 7.12. Consider the graph whose nodes are all special circuits of with

adjacency as defined in Definition 7.10. If t , then node 1 is the endpoint o]’ a
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q-ray or has degree 1, and every other node containing q is the endpoint of a q-ray or
has degree 2.

PROPOSq:ON 7.13. Suppose f. Then there is a chain (21, 2,’", k of
distinct special circuits ofl with each consecutive pair adjacent and ? the endpoint of
a q-ray or a positive complementary circuit of containing p.

The proofs are similar to those of Propositions 7.7-7.9 and are omitted. Note
that, if (c) holds, then C is our desired circuit. If, furthermore, p is nondegenerate
then any special circuit that does not contain q has degree 1 (we must force in q) and
we can stipulate that the chain in Proposition 7.13 is unique and maximal; moreover,
Lemma 7.12 implies that there is an odd number of positive complementary circuits
of :g involving p in this case.

Clearly, the algorithm to find such a circuit is to trace the sequence 1, 2," ",

of special circuits. It terminates either with the endpoint of a q-ray or with a solution,
and if (c) holds the latter must occur. This method is a generalization of Lemke’s
algorithm [18]; here the element q indexes the column -d, where w Az + b is changed
to w dzo + Az + b to assure feasibility, and d is positive. The two algorithms seem
to be rather different, prompting Cottle [5] to ask for the classes of linear complemen-
tarity problem which Van der Heyden’s algorithm will process (i.e., find a solution or
demonstrate that none exists); much work has been done on this question for Lemke’s
algorithm, see for instance Eaves [8]. In fact, we will show below that when it succeeds
or a strong nondegeneracy condition holds, Van der Heyden’s algorithm is just a
special case of Lemke’s, corresponding to the choice d=(8n, 8n-1, 8) for all
sufficiently small positive 8. Note that such a d corresponds to an extension t of t
by q =-lex (s,, s,-1,’’’, Sl).

TIazOrtZM 7.14. Let l be an extension of eg to :, where p lies in no circuit of
of size smaller than n + 1. Let q -lex s,, S,-l, , sl) extend to . Pick 1 <= <- n
and let G Si-1 t.J Ti be complementary. Then (i) implies (ii) below. Moreover, if has
no almost complementary circuit of size smaller than n + 1, the converse is true.

(i) There is a circuit ? of with pe +, si C- {si, si+1,-’’ sn}c= _, _\{si}
complementary and C_ fl (Si-1 t.I Ti) G.

(ii) There is a positive complementary circuit " of l with p +, q +, si +,
{s,+l, s,+,""", s,}c_ + and _f-I(Si-lU T) G.

Proof. Suppose (i) holds. Then B _\{p} is a base of , hence of . Let ’q be
the fundamental circuit of associated with B and q, and let/ be the fundamental
cocircuit of associated with the cobase/\B and si. Then si is the last sj in/, so
q /3-. Thus by orthogonality, s +. We may therefore apply the signed elimination
property to C and Cq, eliminating si, to get a circuit C. Thus p +, q / and

_
contains exactly the elements desired. It remains to show that it is positive.

Consider sj for j > i. Since \{q} is a base, there is a cocircuit/3 meeting in
just q and s. By choice of ocq and s appear in/) with opposite signs, hence in
with similar signs. Thus.s C/.

Next consider e xC fq (Si-1U T) G. There is a cocircuit/ meeting in just q
and e. Thus/3 meets C in just s and e. By orthogonality, s and e appear in/ with
the same sign. By definition of q, si and q appear in D with opposite signs. Thus q
and e appear in /3 with opposite signs, hence in with the same sign. We have
established that C is positive, i.e. (ii) holds.

Conversely assume that (ii) holds and that has no almost complementary circuit
of size smaller than n + 1. Then/ \{p} is a base of d. Let i be the fundamental
circuit associated with B and s and note that the nondegeneracy condition implies
that q i. Let be the fundamental cocircuit associated with the cobase/\/ and
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q. Then by orthogonality of i and 3, S E _D’ hence S 1- and so q . Now ap]?l+y
the signed elimination property to ’ and -i, eliminating to q, to get . We have p C
si - and

_
contains exactly the desired elements. We must show that is positive

on S_l t_J T/.
Choose e e

_
fq (Si-1 t.J Ti) G. There is a cocircuit/ meeting in just e and s.

Thus D meets C in just e and q, and hence D contains e and q with opposite signs.
By definition of q, D contains q and s with opposite signs, hence e and si with the
same sign. Now orthogonality of and/3 gives e E ’+ as desired. This completes the
proof.

If we extend the correspondence of distinguished circuits of and special circuits
of in the theorem so that positive complementary circuits of containing p
correspond to themselves, we obtain by a straightforward argument the following result.

COROLLARY 7.15. Let , and be as in the theorem. Then the chain of
distinguished circuits in in Proposition 7.9 corresponds to an initial segment (possibly
all) of the chain of special circuits of in Proposition 7.13. If At has no almost
complementary circuit of size smaller than n + 1, then the chains correspond exactly.

Note, however, that it is possible (if the latter condition does not hold) for the
distinguished-circuit algorithm (Van der Heyden’s) to fail while the special-circuit
algorithm (Lemke’s) succeeds. For an example, take the matroids for the linear
complementarity problem with A (_0 ), b (-).

To conclude, we note that the concept of orientation in complementary pivot
algorithms extends to the oriented matroid settingmsee Eaves and Scarf [9], Todd
[23] and Van der Heyden [26]. Indeed, the general proofs of [23] apply directly, and
one obtains"

THEOREM 7.16. Let the positive complementary circuit of be generated by one

of the two algorithms above, and suppose contains n + 1 elements. Then the complemen-
tary base U \{p} satisfies e(o)=(-1)ItnT"l, where e is the orientation of bases that
satisfies e(Sl, s2,""", s,,)= 1 and o is the natural ordering (Ul, u2,""", un) of U with
ui { si, ti} for each i.
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NONTESTABLE HYPOTHESES IN LINEAR MODELS*

SHAYLE R. SEARLEf, WILLIAM H. SWALLOWer AND CHARLES E. McCULLOCHf

Abstract. Nontestable hypotheses in linear models are formally defined and proof given that they
cannot be tested. Consequences of carrying out calculations as if they were testable are considered.

AMS(MOS) subject classifications. 62F03, 15A09, 15A03

1. Introduction. We represent the general linear model under normality as

(1) y--- N(Xb, cr21tv)

where y is a vector of N observations with mean Xb and dispersion matrix Cr21N, where
lt is an identity matrix o order N. Estimation of the parameter vector b is often
made by using the principle of least squares, or using maximum likelihood, both of
which lead in the case o (1) to what are called the normal equations X’Xb= X’y. A
solution o them is taken as

(2) b =GX’y

for G being a generalized inverse of X’X, meaning that it satisfies

(3) X’XGX’X X’X, from which X XGX’X.

G’ is also a generalized inverse of X’X. If G satisfies both (3) and

(4) GX’XG G

it is said to be a reflexive generalized inverse; if G is not reflexive then

(5) G* GX’XG

is.

2. Defining testable hypotheses. A linear function q’b of the elements of the
parameter vector b is said to be an estimable function when q’ =t’X for some t’, i.e.,
when q’ lies in the row space of X. The best linear unbiased estimator of the estimable
function q’b is q’b, a function of b that is invariant to whatever G is used for b in
(2), i.e., to whatever particular solution, b, of the normal equations is used.

A linear hypothesis concerning elements of b is defined as

(6) H: K’b in

for a known matrix K’ and vector in. It will be assumed throughout that K’ is of full
row rank. There is no loss of generality in making this assumption (Scheff (1959,
p. 29)) and it is also a practical requirement. K’ is derived from the statistical problem
at hand and redundant or inconsistent equations would not normally be specified as
part of any hypothesis of interest.

When all elements of K’b are estimable, K’b is said to be estimable and

(7) K’ =T’X

for some T’. The hypothesis (6) is said to be testable when K’b is estimable. The

* Received by the editors May 13, 1983, and in revised form August 9, 1983.
f Biometrics Unit, Cornell University, Ithaca, New York 14853.
t Department of Statistics, North Carolina State University, Raleigh, North Carolina 27650.
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F-statistic for testing (6) is well known to be

(8) F(H) Q/rK$2

where

(9) Q (K’b-m)’(K’GK)-I(K’b- m),
(10) rK rank of K’ number of rows in K’,

and

(11) t2 y’ (I XGX’)y/(N rx).

All of the preceding development is well known. What is not so well known is
the treatment of the hypothesis H: K’b m when not all elements of K’b are estimable,
i.e., when K’b is not estimable. Generally speaking we simply say that such a hypothesis
is not testable and leave it at that. The purpose of this paper is twofold. First, nontestable
and partially testable hypotheses are formally defined and proof given that a nontestable
hypothesis cannot be tested. Second, in cases where K’ and G are such that (K’GK)-1

exists, thus enabling O of (9) to be calculated and used in F(H) in (8), it is shown
what is being tested.

3. The general procedure for hypothesis testing. The residual sum of squares
after fitting the model (1) is well known to be

(12) SSE (y Xb)’(y Xb).
To derive the residual sum of squares under the hypothesis we fit the model

(13) y- N(Xb, rl) and K’b m.

Using Lagrange multipliers 20 to account for K’b= m in minimizing (y-Xb)’(y-Xb)
subject to K’b m, leads to the well-known equations

(14) X’Xb+K0 X’y
and

(15) K’b -m
for b and 0. The error sum of squares under the hypothesis is then

(16) SSEH (y Xb)’(y Xb0),
and the F-statistic for testing H is

(17) F SSEH SSE)/rKt2.

4. Testable hypotheses. H: K’b m is defined as testable when K’b is estimable.
A solution to the minimizing equations (14) and (15) is then (see, e.g., Searle (1971,
p. 191))

(18) 0 (K’GK)-1 (K’b-m)

and

(19) b. GX’y- GK(K’GK)-l(K’b-m)

where, when K’ has full row rank and K’b is estimable, (K’GK)-1 always exists,
ensuring that bH of (19) and Q of (9) can be calculated. On substituting b into (16)
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it will be found that

SSEH SSE + (K’b-m)’(K’GK)-I(K’b- m).

Hence for (17)

SSEH SSE (K’b- m)’(K’GK)-I(K’b- m),

(20) SSEH SSE Q

for Q of (9). Thus, when H: K’b=m is testable, F of (17) is F(H) introduced in (8).

5. Nontestable hypotheses.
5.1. Definition. We define a linear hypothesis H" K’b m as being nontestable

when every element, and every linear combination of elements, of K’b is nonestimable.
For example, in the case where b [I,* a a2 a3]’ as in the subsequent example ( 6),
this precludes describing

(21) H’{a1=7a2=4
as nontestable in a situation where al and a2 are each nonestimable, but al-a2 is
estimable.

In our definition of a nontestable hypothesis the nonestimability of elements of
K’b means that K’ must be such that there is no T’ such that K’= T’X; and, more
generally, nonestimability of linear combinations of elements of K’b means that there
must be no R and T’ other than both null such that

(22) RK’ =T’X.

The reason for defining a nontestable hypothesis this way is that otherwise a hypothesis
such as (21), written in terms of nonestimable functions, could be rewritten as

H’{ al=7
al--O2= 3

where it is now in terms of a mixture of nonestimable and estimable functions. We
call such a mixture a partially testable hypothesis and formally define it in 5.6.

5.2. A nontestable hypothesis cannot be tested. Equations (14), (15), and (16)
apply whether or not H: K’b- m is testable; when it is, (18) and (19) are a solution
and (20) follows.

But when H: K’b= m is nontestable, we find the solution differs from (18) and
(19). To see this consider the following equations in elements of a vector u:

(23) K’(I- n)u m- K’GX’y,

where H is defined as H GX’X, with XH--X from (3). First note that when K’b is
estimable, K’ T’X and K’ (I H) T’(X-XH) 0 and equations (23) are inconsistent.
More generally, when K’ is such that (22) is true, pre-multiplication of (23) by R leads
to 0 Rm-RK’GX’y and again the equations are inconsistent. Indeed, RK’(I-H) 0,
if and only if (22) holds. Since (22) is assumed not to hold, we consider (23).

For X having order N x p and rank r, the matrices H and I-It are idempotent
of order p, and I-It has rank p-r. Therefore (l-lt)u in (23) has p-r arbitrary
elements. Furthermore, X has rows of order p and its rank is r; and K’, though having
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full row rank, has rx rows of order p which, by (22), have no linear dependencies with
the rows of X. Therefore rx -< p- r. Hence (23) consists of no more than p- r equations
in p-r unknowns, the p-r arbitrary elements of (l-H)u. Thus (23) has a solution
when H: K’b m is nontestable.

Now consider equations (14) and (15) for determining bH, when H: K’b=m is
nontestable. It is easily shown that they are satisfied by

(24) O=0

and

(25) b. GX’y+ (l-H)u

for u being a solution of (23), i.e.,

X’Xb+KO X’XGX’y+X’X(I-H)u+KO X’y+ 0+ 0 X’y,

thus satisfying (14), and, using (23),

K’b K’GX’y+ K’(I- H)u K’GX’y+m- K’GX’y m,

which satisfies (15).
We now use (25) in (16); because X=XIt we have XbH =XGX’y=Xb and so

in (16)

SSEn (y Xb)’(y Xb) SSE of (12).

Therefore

SSEH SSE 0

and so F of (17) is zero, i.e., there is no test of H: K’b in for nontestable hypotheses.

5.3. Alternative forms for b. To eliminate u from b of (25) we solve (23) as

u [K’(-n)]-(m- K’GX’y)

and get

(26) b GX’y+ (I- H)[K’(I- H)]-(m- K’GX’y)

where, in general, A- is a generalized inverse of A. Rearranging (26) gives

(27) b {G- (I- H)[K’(I- H)]-K’G}X’y+ (I- H)[K’(I- H)]-m.

Define the coefficient of X’y in (27) as Gr:
(28) Gr G- (I- H)[K’(I- H)]-K’G.

Then, because X(I-H)= 0, it is easily seen that Gr is a generalized inverse of X’X.
Furthermore, for

l-Hr I- GrX’X,

(I- Ur)(I- H) I-H-GrX’X/GX’XGX’X I-H

so that in (27)

(29) b=GrX’y+(I-Hr){(l-n)[K’(l-H)]-}m=GrX’y+(l-Hr)w
for

(30) w= (I- H)[K’(I- H)]-m.
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Thus in (29) we have lln expressed in the general form of any solution to equations
X’Xb= X’y; and so we know at once that Xbn Xb, and hence SSEH SSE and
so F 0 as earlier determined.

Another form for b is obtained by dealing with equations (14) and (15) directly,
after writing them as

rx,x ,<][,,;,_.,] Ix,;,>,](31)
l K’ 0

Then, on defining

(32) L (X’X+ KK’)-,

which is a generalized inverse of X’X, it is easily verified that

rx,x(33)
L K’ K’L

If, without loss of generality, we assume that the first rx rows of X are linearly
independent and we represent them by Z, then [Z’ K]’ has full row rank. Augment
this with some matrix M of full row rank chosen so that [Z’ K M’]’ is nonsingular.
Then, on defining

[Z’ K M’]’-!=[A B C],

it is easily shown that

(34) B=LK, XLK=0 and K’LK=I.

It will then be found that a solution to (31) is

(35) 0=0 and bn=LX’y+LKm+[I-L(X’X+KK’)]z
for arbitrary z; and by using (34), Xb Xb, so that again SSEn SSE and F 0.
In this case a convenient solution for bn from (35) is

(36) bn L(X’y+ Kin) (X’X+ KK’)-(X’y+ Kin).

5.4. Comparing solutions for bn. The solution for bn when H is testable is (19),
which can also be written as

b [G GK(K’GK)-’K’G]X’y+ GK(K’GK)-’m.
But in this expression the coefficient of X’y is not a generalized inverse of X’X as it
is in (29) and (36) for nontestable hypotheses. Thus il for testable hypotheses does
not have the same general form that occurs for nontestable hypotheses. This difference
in solution to equations (14) and (15) is further accentuated by noting that for testable
hypotheses the solution for 0 is (K’GK)-I(K’b-m) of (18) which is nonnull, whereas
for nontestable hypotheses the solution in (24) and (35) is 0=0.

5.5. F(H) when H: K’b=m is nontestable. We showed in 5.2 that when
H: K’b in is nontestable it cannot be tested. Despite this, there are occasions when,
even for K’b nonestimable, G and K’ are such that (K’GK)-1 exists. This is so because,
although K’ having full row rank is a necessary condition for (K’GK)-1 to exist, K’b
being estimable is only a sufficient condition; it is not necessary. Therefore, for K’b
nonestimable there can exist full row rank matrices K’ with (K’GK)- existing and,
when this is so, O of (9) can be computed as can F(H) QrKt2 of (8). We emphasize
that one should not be calculating Q and F(H) when H: K’b-m is nontestable.
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However, in cases where O and F(H) can be (and perhaps have been) calculated
despite H: K’b=m being nontestable, the existence of F(H) prompts the question
"What hypothesis is F(H) testing?". A partial answer is contained in the following
theorem.

THEOREM. If, when H: K’b m is nontestable K’ and G are nonetheless such that

(37) Q (K’b-m)’(K’GK)-I(K’b-m)

can be computed, then, provided G is symmetric and reflexive,

(38) F(H) Q/ rK’2 is testing H" K’Hb m.

Proof. Because H GX’X, K’It K’GX’X and so K’Hb is estimable. Therefore,
from (20), we can use (8) and (9) to have

(39) Q (K’Hb-m)’(K’HGH’K)-I(K’Hb- m)

with

(40) K’Hb K’GX’XGX’y K’GX’y K’b.
Similarly,

K’HGH’K K’GX’XGX’XG’K

(41)
K’GX’XG’K

K’GX’XGK for G G’

K’GK for GX’XG G.

Substituting (40) and (41) into (39) gives (37) when G is symmetric and
reflexive. Q.E.D.

This theorem corrects an error implicit in Searle (1971, p. 195), which fails to
mention the requirements of G to be symmetric and reflexive.

Of course, the question will be asked "When, for a nontestable hypothesis, will
K’GK nevertheless be nonsingular?", thus permitting computation of Q and interpreta-
tion thereof by means of the theorem. There seems to be no universal answer to this:
nonsingularity of K’GK depends completely on the particular forms of K’ and G being
used. Illustrations of K’GK being nonsingular and being singular are shown in the
example at the end of the paper.

5.6. Partially testable hypotheses. As illustrated in 5.1 there are some
hypotheses in which some elements of K’b are nonestimable but for which some linear
combinations are estimable. To exclude this mixture from the definition of a nontestable
hypothesis we defined it as being a hypothesis for which no linear combination of
elements of K’b is estimable. Since linear combinations of estimable functions are
estimable, a similar definition, equivalent to that in 4, can be made for testable
hypotheses: A hypothesis H: K’b m is defined as testable when all linear combinations
of elements of K’b are estimable. The remaining forms of K’b m lead naturally to a
definition of a partially testable hypothesis: A hypothesis H: K’b=m is defined as
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partially testable when at least one linear combination of elements of K’b is estimable
and at least one linear combination of elements of K’b is nonestimable. Note that this
requires at least one element of K’b to be nonestimable. These three definitions provide
a complete categorization of the possible forms of K’b vis-a-vis estimable and nonesti-
mable elements.

Often a partially testable hypothesis can be partitioned as

where Hi" Kb=ml is testable and H2" Kb=m2 is nontestable. Suppose that K’GK
is nonsingular and G is symmetric and reflexive; then F(H) is testing K’Hb= m which
in this case is

KHb=ml equivalent to H: {Kb=ml(42) H:
[KHb m2 KHb m2.

This is so because for H testable,

K=TX and KH=TXH=TX=K.

Result (42) corrects an error implicit in Searle (1971, pp. 194-195) that if O can
be calculated for a partially testable hypothesis then F(H) is testing only the testable
part of it. That is not so; it is testing (42).

6. Example. To illustrate the preceding results we use the simple example of a
1-way classification (completely randomized design) given in Searle (1971, p. 165).
The model is

E(yi/)=l+OZi

for 1, 2, 3 with n 3, n 2 and n3 1, where y is the jth observation in the ith
class,/z is a general mean and a is the effect of the ith class. Data are as follows:

Class
2 3

101 84
105 88
94

32

300 172 32

Then, with y=[101 105 94 84 88 32]’ we have

Xb=

-1 1
1 1
1 1
1 1
1 1
1

and

V504
13oo/x’y=
/a72/
k 321
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with a dot in a matrix representing zero. Thus

X’X b GX’y

0
00
86
32

(43)

and H=GX’X=
1 1
1 1
1 1

And

Xb=[100 100 100 86 86 32]’.

The functions tz + ai for i= 1, 2, 3 are estimable, as are linear combinations of
them; and, for example, the numerator sum of squares, namely Q of (9), for testing
the testable hypothesis

H" { al- a2"-" 0
O2 O3 0

involves

K,bO [00 1 -1
0 1

and

(K,GK)_I= [ 10 -11

so that, from (9)

0

O] L 6-1

0 1 0

-1 1 1

1 0 -1

Now consider the nontestable hypothesis

H: al 7

with K’ [0 1 0 0]. Because it is nontestable we know that its SSEn SSE and F 0.
This is confirmed from (28) and (29) as follows. For (28)

[K’(I-H)]-= [0 1 0 0]-1 0
1
1

K’G=[0 - 0 0] and
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Hence (28) is

Gr

1 1

[0 0 01=1
1 1 -Then for (29)

1
1

so that (29) is

il -i
1 1

7 and l-lr 1 1
7 -1 1

Hence

1/2 ,|504
--1

/300 11-/
-172

+
3 1

-5 k 32 1

Xb=[lO0 100 100 86 86 32]’=Xb

and so SSEH SSE and thus F 0.
Similarly for (36)

(X’X+ KK’)- X’X+

0
1
0
0

[0 1

so that (36) is

8 -6

0 0]

-8 -8
6 6

11 8
8 14

6 3 2 1
3 4

2 2
1 1

b=- i
6 6 6 /300+7
6 11 8 [172+0
6 8 14 L_ 32+0 1-61_J

This is the same b as yielded by (29), but in general this need not be so. By the
nature of this simple example, K’ cannot have more than one row; but in cases where
K’ has less than its maximum number of rows, i.e., less than p- rx rows, (29) and (36)
do not necessarily yield the same bu; indeed X’X+ KK’ may not be nonsingular, as
it is here.

Although H" O 7 is nontestable and hence has F 0, we find that with K’=
[0 1 0 0] and G of (43), the O of (9) can be computed because K’GK 1/2 is nonsingular.
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Hence, with K’b-m 100- 7 93, Q 932(3) 25,947. This is confirmed from (38)"

(44) K’Hb=[0 1 0 0]
1 1
1 1 a2

1 1

so that

K’Hb-m 0+ 100 7 93

and

K’HG(K’H)’=[1 1 0 0]G[1 1 0 0]’-3-1

and hence

Q 932(3) 25,947

as before.
In contrast to K’GK being nonsingular for the choice of G above, if we choose

2 -2 -2

5 2
2 8

then K’GK is zero. This illustrates that for a given K’, the existence of Q depends on
the choice of G.

Finally, consider the partially testable hypothesis

H’{ a1=7
O1-- O2-" 3

for which

and

1 -1 0

Then

From (42), with Hi: Kb ml being Hi" al- o2 3 the testable part, and H2" Kb m2
being H2" O1 7 the nontestable part, (42) gives, using (44)
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with

and

so that

1 -1
K’b-m

1 0

0

(K’GK)-I
5

[ 2 -2)[11)=39,395Q=[ll 93]
-2 5 93

as before. Again, using the G in (45) gives a singular K’GK and leads to the nonexistence
of O.

Acknowledgment. Grateful thanks go to a referee for his perspicacious question
which led to the definitions of nontestable and partially testable hypotheses.
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THE APPROXIMATION OF ARBITRARY CLUSTERING FUNCTIONS BY
CLUSTERING FUNCTIONS WHICH SATISFY OVERLAPPING CRITERIA*

GERHARD HERDEN’I"

Abstract. Let (H, h) be an arbitrary hierarchy and let f be its corresponding clustering function. In
order to eliminate "chaining" complete characterizations of all minimal dominating hierarchies of (H, h)
and all minimal dominating clustering functions of f which satisfy some overlapping criterion in the sense
of Hubert are presented. These characterizations may be usedmat least in principlemto construct all minimal
dominating hierarchies of (H, h) and all minimal dominating clustering functions of f which satisfy a desired
overlapping criterion. Finally the "classical" case that f is the diameter-function of some dissimilarity
coefficient is considered. All overlapping criteria are characterized such that at least one of the minimal
dominating clustering functions of f which satisfy one of these criteria is the diameter-function of some
(weakly) k-ultrametric in the sense of Jardine and Sibson.

Introduction. In 1977 Hubert [5] studied extensively real valued (isotone) func-
tions on a finite set S of data which measure the homogeneity of the subsets of S.
These "clustering functions" correspond in a natural way bijectively to the "generalized
hierarchies" on S (cf. Herden [3, Thm. 1.4]). Often one is interested in clusters
("maximal linked" sets, elements of the generalized hierarchies on S) which satisfy
some overlapping criterion. In order to avoid "chaining", Jardine and Sibson [8]
introduced for example the already very well-known and often discussed cluster-
methods "Bk" which approximate a given dissimilarity coefficient by its uniquely
determined maximal subdominating (weakly) k-ultrametric.

There are two natural "lattice-theoretical" possibilities to approximate an arbitrary
clustering function f by some clustering function f/ which satisfies an overlapping
criterion Ak in the sense of Hubert [5] or more generally OK in the sense of Herden
[3].

1. Determine all maximal subdominating clustering functions f/<= f of f which
satisfy A or 0K!

2. Determine all minimal dominating clustering functions f/ >- f of f which satisfy
A or 0K!

If f is the "diameter function" of some dissimilarity coefficient the first possibility
was studied extensively by Jardine and Sibson [8] (cf. the cluster-methods B). Their
results may easily be generalized to arbitrary clustering functions. Hence we studymfor
the sake of brevitymonly the second possibility in this paper.

Throughout the literature a special cluster-method to construct a minimal dominat-
ing clustering function is well known in only one case, namely the "complete linkage
method" (CLM). The CLM produces for a given diameter function f some minimal
dominating clustering function of f which is the diameter-function of an ultrametric.
But even the CLM does not allow constructing all possible minimal dominating
diameter functions of f which are diameter functions of ultrametrics (cf. Bock [2,
39]). No examples of other dominant methods are well known. In [8, p. 75], Jardine

and Sibson wrote:

Another way in which other types of non-hierarchic methods could arise is by the consideration
of methods which are not subdominant methods. No examples of methods of this type are known,
and it seems likely that they would be difficult to work with.

* Received by the editors December 14, 1981, and in revised form August 10, 1983.
Fachbereich fiir Mathematik und Didaktik der Mathematik, Universitit/Gesamthochschule, Essen,

West Germany.
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In contrast to the terminology of this paper Jardine and Sibson called a method "non-
hierarchic" if the clusters may satisfy some overlapping criterion.

Theorem 2.4 characterizes all hierarchies and all clustering functions which satisfy
some overlapping criterion and which are minimal dominating hierarchies or clustering
functions on S. These characterizations allow usmat least in principle--to construct
all these minimal dominating hierarchies or clustering functions.

We should mention the most important points in which subdominant and dominant
methods differ:

1. The clustering functions which may be constructed by subdominant methods
are uniquely determined (cf. Jardine and Sibson [8]) while many different clustering
functions may be constructed by dominant methods. This fact is at least implicitly
well known (cf. Bock [2, 38]).

2. The subdominant methods which were introduced by Jardine and Sibson do
not really cut down on chaining. This fact has been pointed out for example by Matula
[9] and Rohlf [10]. To be more precise we consider an arbitrary clustering function f.
The clusters of some maximal subdominating clustering function f- of f are always
unions of clusters of f. Hence chaining cannot be eliminated by any subdominant
methods.

In contrast, the clusters which are obtained by some minimal dominating clustering
function f/ of f are always contained in the original clusters of f. Hence chaining of
clusters is surely eliminated if one uses dominant methods as characterized in this
paper instead of subdominant methods.

In the last section we study the classical case where f is the diameter function of
some dissimilarity coefficient on S. In general no minimal dominating clustering function
of f which satisfies some overlapping criterion is the diameter function of some (weakly)
k-ultrametric (cf. the example of 2).

Hence it is an interesting problem to determine all overlapping criteria such that
at least one minimal dominating clustering function of f which satisfies one of these
criteria is the diameter function of some (weakly) k-ultrametric. This problem will be
solved completely in Theorem 3.1 of this paper.

The reader is assumed to be familiar with the basic concepts of hierarchical
clustering due to Jardine and Sibson [7], [8], Hubert [4], [5] and Janowitz [6]. Many
papers on the more classical concepts of hierarchical clustering may be found in the
bibliography of Hubert [4].

We develop our theory within the mainstream of the theory of partially ordered
sets. The reader should consult the account of Blyth and Janowitz [1] or the paper of
Herden [3] whenever necessary.

1. The background.
1.1. The basic situation. Let (L, <- be a finite lattice and let (M, <- be a linearly

ordered complete meet semilattice. In all classical concepts of hierarchical clustering
(L, -< is the power set of a finite set S of data partially ordered by set inclusion and
(M, -< is the set of nonnegative reals partially ordered in the usual manner.

Of particular interest within our concept of hierarchical clustering is the lattice
(L, c of order ideals of L. For every nonempty subset K

_
L we denote by In the

order ideal of L which is generated by K.
Following the notation of Janowitz [6], Res/ (M,/S) denotes the set of residual

mappings g" M/S and Res (L-, M) denotes the set of residuated mappings g"/S M.
One may conclude from Herden [3] that every isotone mapping f" L M with

f(0) 0 is a clustering function and that a pair (H, h)(H L, h" H M) is a hierarchy
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iff it satisfies the following conditions:
H0" {a Hlh(a) =0} ,
H+I IH,
H3" a<bh(a)<h(b) for all a,bH.
Let Clus (L, M) be the set of clustering functions f" L M and let Hier (L) be

the set of hierarchies on L. Because of Herden [3, Thm. 1.4] there exist natural
bijections between any pairs of the following sets: Clus (L, M), Res (L-, M), Res/ (M,/S)
and Hier (L).

1.2. Overlapping criteria. Let K be a nonempty subset of L. In order to study a
generalized version of Hubert’s monotone K-clustering functions (cf. [5]) within our
model of hierarchical clustering we consider the order filter F/ of L which is generated
by K. It is easy to see that a clustering function f: L M is a K-clustering function in
the sense of Herden [3] iff for all a, b L the following condition holds:

OK: if inf {a, b}FK then f(sup {a, b})-<max {f(a),f(b)}.
Furthermore a hierarchy (H, h) is a K-hierarchy in the sense of Herden [3] iff it

satisfies the following additional condition:
HK" if inf { a, b} e F/ then a <= b or b <= a for all a, b H.
We now consider the set L- := {I e/SI sup {a, b} I for all a, b I such that

inf{a,b}eFr}.(Lr, c) is a sublattice of (L, c) and for every 1eL there exists a
uniquely determined smallest order ideal Ie/S: such that I c I:. Moreover the
mapping I I is a closure operator on

Let Clus: (L, M) be the set of K-clustering functions f" L M and let Hier (L)
be the set of K-hierarchies on L. In addition to Herden [3, Thm. 2.3] we now present
a short proof of the following proposition.

PROPOSITION 1.1. There are natural bijections between any pairs of the following
sets" Clus: (L, M), Res (L-:, M), Res/ (M, ff_.:) and Hier/ (L).

Proof. Because of Herden [3, Thm. 2.3] it is sufficient to establish a natural
bijection between Clus: (L, M) and Res+ (M,/S). The reader may easily verify that
this bijection is given by the following maps"

g" Clus: (L, M) Res/ (M,/SK) defined by
gr(m) := {a Llf(a) <= m} for all f e Clus (L, M) and all m e M;

f" Res/ (M,/S:) Clus (L, M) defined by
fg(a):=inf {meMlae g(m)} for all geRes+ (M,/S) and all aL.

1.3. K-cluster-methods. We define a K-cluster-method to be a function
T’ Clus (L, M) ClusK (L, M). Because of Proposition 1.1 a K-cluster-method may
also be thought of as a function F’Res/ (M,/S) Res/ (M,/S/) or/’Res (/S, M)
Res (L:, M) or as a function G’Hier (L) Hier: (L).

As we already mentioned in the introduction two types of K-cluster-methods are
of particular interest"

The first associate every f Clus (L, M) with its uniquely determined maximal
subdominating K-clustering function or respectively every F Res/ (M,/S) with its
uniquely determined minimal dominating residual mapping F/" M

If f is the diameter-function of some dissimilarity coefficient these methods were
studied extensively by Jardine and Sibson [8] (cf. their methods Bk). Their results may
easily be extended to the general case.

Hence we study in this paper only the second type of K-cluster-methods which
associate every fClus (L,M) with some, not necessarily uniquely determined,
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minimal dominating K-clustering function or respectively every F e Res/ (M,/2) with
some maximal subdominating residual mapping F-’M L:.

2. The approximation theorem. Let (H1, hi), (H2, h2) be arbitrary hierarchies
with corresponding clustering functions fl, f2:L M and corresponding residual.map-
pings gl, ge:M L. We define (H1, hi)-< (H2, h2) <=>fl -<-f2c, g2 <- gl.

In order to prove the main result of this section we need three lemmas.
LEMMA 2.1. The following conditions are equivalent:
(i) (H1, hi) -<-
(ii) For all be He there exists some a ell1 such that b<-_a and hl(a)<=he(b).
Proof. Recall from Herden [3, Thm. 1.4] that (H, hl)_-<(He, h2) iff fx(c)=

min {hl(a)la e H1, c <- a} --< rE(c) =min {he(b)lbe HE, c <- b} for all c e L.
LEMMA 2.2. Let (H, h) be a hierarchy with corresponding clustering function

f L M; then (H, h) <= (H’, h’) for every hierarchy (H’, h’) such that h’ flu’.
Proof. Let f’ :L-M be the (H’, h’) corresponding clustering function. Because

of f(a) -<_min {f(b)lb e H’, a <= b} =f’(a) for all a e L the desired inequality follows.
LEMMA 2.3 (key lemma). Let (H, h) <-_ (He, he) be hierarchies and let fl L-M

be the (HI, h) corresponding clustering function. If (He, he)eHier: (L) then there
exists a hierarchy (H3, h3) which satisfies the following conditions:

(i) (Ha, ha) e Hier/ (L),
(ii) (HI, hi) -<- (Ha, ha) --< (He, he),
(iii) ha fll,3.
Proof. Let a be an arbitrary element of H2. We set O(a) := {b<alC’l(a)<-fl(b)}.

Then we define (Ha, ha) by Ha := He\ U an2 O(a) and ha:= f11,3.
We now show in a first step:
(+) For every b e He there exists some a e Ha such that b <_- a and fl (a) _-< fl(b) <=

he(b).
Let b be an arbitrary element of He. We set bl := b. Let b, >_- b be defined for e N.

We consider the following two cases:
Case 1. bt e Ha. Then we set bt+l := bt.
Case 2. bt Ha. Then there exists some b+ e He such that b e O(bt+l).

A routine induction argument shows that bt- b,+ if b e Ha and that b < b+l if bt Ha
for all teN. Moreover we may conclude that fl(bt)<=fl(b)<-he(b) for all teN.

L is a finite lattice. Hence there exists some e N such that b, e Ha and (+) follows.
In a second step we show that (H3, h3)e Hier/ (L).
H0" This is an immediate consequence of (/).
H/1: Trivial.
H3: Let a<b for a, beH3. If fl(b)<=f(a) then aeO(b). Hence ae!H3 which

contradicts our assumption.
HK" This follows from the inclusion Ha c He.
It remains to verify condition (ii). The inequality (HI, hi)--< (H3, ha) follows with

the help of Lemma 2.2 from the definition of h3. On the other hand the inequality
(Ha, h3) <- (H2, he) is an immediate consequence of Lemma 2.1 and (+).

Before we are able to formulate and prove the "approximation theorem" we need
some more definitions and notation:

DEFINITION 1. Let (V, <_-) be an arbitrary partially ordered set and let (U, <_-),
(W, <_-) be subsets of V. An element w e W is a maximal subdominating element
of U if w=<u for all ueU and if w=w’ for all weW such that w -<w’-<u for
all u e U. If w e W satisfies the "dual" conditions it is called a minimal dominating
element of U.
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DEFINITION 2. Let f’L-M be an arbitrary clustering function. tK denotes the
set of all subsets N c L such that the following conditions hold:

MKI" For all a, b N such that inf {a, b} FK there exists some c N such that
sup{a, b}<-c and f(c)_-<max {f(a),f(b)}.

MK2: N N’ for all subsets N’c L such that fin’ satisfies condition MK1 and
NcN’.

DEFINITION 3. Let g’M L be an arbitrary residual mapping. An isotone family
{I,},,M of order ideals I,, Lr is called maximal subdominating with respect to g
iff it satisfies the following conditions"

LKI" I, g(m) for all m M.
LK2" If {J,.},,M is another isotone family of order ideals J, Ln which satisfies

condition LK1 and if I,, c J,, for all m M then I,, Jm for all m M.
We now consider the hierarchies (HI, hi) and (HE, hE) with corresponding cluster-

ing functions fl, fE’L-M and corresponding residual mappings gl, gE’M- L and
prove the following theorem.

THEOREM 2.4 (approximation theorem). The following conditions are equivalent:
(i) (H2, hE) is a minimal dominating K-hierarchy of (Hi, hi).
(ii) fa is a minimal dominating K-clustering function of fl.
(iii) g2 Res/ (M,/Sn) is a maximal subdominating residual mapping of gl.

(iv) (Ha, hE) satisfies condition HK and the following conditions"
(a) hE flln2;
(b) an element a of L is in H2 provided it satisfies the following pair of

conditions"
(bl) fl(a)<h2(b) for all a<bH2,
(b2) if inf {a, b} F then a <- b or b <-_ a for all b H2.

(v) There exists some NvgK such that f2(a)=min{fl(b)[bN,a<=b} for all
aL.

(vi) There exists some maximal subdominating family {I,}m of order ideals
I, Lr with respect to gx such that ga(m) I,, for all rn M.

Proof. It is sufficient to prove the equivalence of (i) and (iv), (ii) and (v) and (iii)
and (vi).

(i)=>(iv). We have to verily the conditions HK, (a) and (b)"
HK" definition.
(a)" Use Lemma 2.3.
(b)" Let a L satisfy the conditions (bl) and (b2). We define a K-hierarchy

(H3, h3) by H3:=(H21,.J{a})\{b<alfl(a)<=fl(b)} and h3:---fltna. (H3, h3) is indeed a
K-hierarchy as the reader will immediately verify. With the help of Lemmas 2.2 and
2.1 it is easy to see that (H1, hi)<= (H3, h3)=< (n2, h2). On the other hand (H2, h2) is
a minimal dominating K-hierarchy of (H1, hi). Hence we may conclude that (H2, h2)
(n3, h3) and that a H.

(iv)(i). With the help of Lemma 2.2 condition (a) implies that (HI, hi)-<-
(HE, h2).

We now assume the existence of some K-hierarchy (H3, h3) such that (H1, hi)-<
(n3, h3)< (n2, h2). Let f3"L M be the (H3, h3) corresponding clustering function.
We consider the set N:= {ceLIf3(c)<]’.(c)}. Because of our assumption N is not
empty. On the other hand L is finite. Hence there exists some a e Nc L such that
f3(c)<=f3(a) for all ceN. We may assume without loss of generality that a eH3 (cf.
the proof of Herden [3, Thm. 1.4]). Because of f21,_--_ h2=fl, the inequalities
fl(a) -<f3(a) <fa(a) imply that a H2. But a e H3. Hence the following inequalities
hold for all a <beL: fl(a)<=f3(a)<f3(b)<=f2(b). Hence a satisfies condition (bl).
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But a H2. Hence there exists some b Ha such that inf { a, b} FK but a b and
ba.

We now consider an element al H2 such that a-<a1 and f2(a)=f2(al) (cf. the
proof of Herden [3, Thm. 1.4] and we may conclude that inf {al, b} F/<. Hence al <- b
or b al. If al -< b then a al -< b which is a contradiction. Thus we have proved the
inequalities b<al and (+)f2(b)<f2(al). In the next step we consider some baH3
such that b <- ba and f3(b) = f3(b2).

Because inf {a, ba} Fn we may conclude that a =< b2 or b2 -< a. But b a. Hence
a < ba. This implies the inequalities f2(a) -< f2(b2) and f3(a) < f3(ba). On the other hand
we just proved the following inequalities" f3(ba) f3(b) -< fa(b) < f2(al) fa(a) <- f2(b2)
(cf. (+)). Hence b2 N and f3(a)<f3(b2) which contradicts our assumption on a.

(ii)(v). The characterization of (Ha, h2) implies together with Herden
[3, Thm. 1.4] that f2(a)= min {fl(b)lb H2, a-< b} for all a eL. Because of condition
HK fll, satisfies condition MK1. Hence there exists some set N :gn such that Ha c N.

We now define an isotone mapping .f3"L--> M by

f3(a):=min{fl(b)lbN,a-<b} for all a L.

This definition implies immediately the following inequalities: fl -< f3 =< f2. With the
help of condition MK1 one may easily verify that f3 is a K-clustering function. But
is a minimal dominating K-clustering function of fl. Hence f2 f3.

(v) :=> (ii). Let N be an arbitrary element of . Because of MKl.the clustering
function f3"L-->M defined by f3(a):=min{fl(b)lbN,a<-b} for all aL is a K-
clustering function.

We now define a K-hierarchy (Ha, ha) by H4:={bNlfl(b)<fl(c) for all b< c
N} and ha := flln4.

The reader will immediately verify that (Ha, ha) is indeed a K-hierarchy. Let
fa’L---> M be the (Ha, ha) corresponding K-clustering function then fl -< f3 -< f4. Hence
it remains to prove that (H4, h4) is a minimal dominating K-hierarchy of (H1, hi). As
we already know that (Ha, ha) is a K-hierarchy and because of the definition of ha
we only have to verify condition (b) of (iv). Therefore we consider an arbitrary element
a of L which satisfies the conditions (bl) and (b2). In a first step we show that
satisfies condition MK1. Hence we consider an arbitrary element b of N such that
inf {a, b} Fn. The definition of Ha implies the existence of some. bl Ha such that
b -< bl and f(b)=fl(bl). Because of inf {a, b}Fr, condition (b2) implies that a <-

or bl -< a.
If a -< b then sup {a, b}-< bl and .fl(b) fl(b) -<max {f(a), fl(b)}. On the other

hand the inequality bl -< a implies that b -< a. Hence sup {a, b}-< a and fl(a)
max{fl(a),fl(b)}.

Condition MK2 now implies that N [_J {a } N. Hence we may conclude that a N.
With the help of condition (bl) the definition of Ha implies that a Ha. Hence (H4, h4)
is indeed a minimal dominating K-hierarchy of (H1, hi).

(iii) :> (vi). The reader may immediately verify that the equivalence of the condi-
tions (iii) and (vi)follows if we are able to prove that for every maximal subdominating
family {I,},,M of order ideals 1,, L: with respect to gl the isotone mapping
g3" M --> L: defined by g3(rrt) := Im for all m M is actually residual. Because of Blyth
and Janowitz [1] or Herden [3] we thus have to show that L Im (g3) and that arbitrary
meets are preserved by g3" The relations L Im (gl) and L Ln imply with the help
of condition LK2 that L Im (g3). It thus remains to prove that arbitrary meets are
preserved by g3: Let {m} be an arbitrary family of elements of M. We set n :=

infm. Clearly I =g3(n) I"lj.g3(mj). If we assume that g3(n)C-f"lj.g3(m) then
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we may define an isotone family {J,},M of order ideals J, L: by

J, := I,,, for all m M\{n} and Jn := f) g3(my).

It is easy to see that {J,},M satisfies condition LK1. Hence condition LK2 implies
immediately the equality of g3(n) and f’)yj g3(mj) and nothing remains to prove.

COROLLARY 2.5.
(i) For every K-hierarchy (H3, h3) --> (H1, hi) there exists some minimal dominating

K-hierarchy (H2, h2) of (HI, hi) such that (H3, h3) --> (H2, h2) --> (HI, hi).
(ii) For every K-clustering function f3 >- fl there exists some minimal dominating

K-clusterihg function f2 of f such that f3 >-- f2 >-
(iii) For every gl >- g3 Res/ (M, /() there exists some maximal subdominating

g2 Res+ (M, f_,r) of gl such that g3 <= g2 <- gl.

Proof. It is sufficient to prove assertion (ii). In order to prove this assertion one
may use Lemma 2.3 and the implication (ii):=>(iv) of Theorem 2.4.

COROLLARY 2.6.
(i) inf {(H’, h’)[(H’, h’) is a minimal dominating K-hierarchy of (H1, hi)}

(H1, hi).
(ii) inf {f’[f’ is a minimal dominating K-clustering function of fl}
(iii) sup {g’[g"M L-I< is a maximal subdominating residual mapping of gl} gl-

Proof. We prove equality (ii). For every a L the mapping fllta,l satisfies condition
MK1. Hence there exists some N :g: which contains a and we may conclude that
fl(a) =min {fl(b)lb N, a <-_ b}.

Remark and example.
1. A K-cluster-method which associates every clustering function f" L M with

some minimal dominating K-clustering function f’ of f or every g Res/ (M,/_S) with
some maximal subdominating g- Res/ (M,/]/<) of g clearly selects only one minimal
dominating K-clustering function of f or one maximal subdominating g-
Res/ (M, /() of g.

2. We illustrate Theorem 2.4 by the following example" Let M be the set of
nonnegative reals. We consider the set S := {01, 02, 03, 04} and define a dissimilarity
coefficient d" S x S M by

d(Oi, Oj):--]i-jl for all 1 -<_ i, j<_-4.

The d corresponding clustering function diama" P(S)- M is defined by

0
diama (A) :=

max {d(0i, 0j)[0i, 0j A}
if A=,
else

(cf. Jardine and Sibson (8)).
The diama corresponding hierarchy (Ha, ha) may be described in the following way:

ha 3: {01, 02, 03, 04}

ha 2: {01, 02, 03} {02, 03, 04}

ha 1: {01, 02}, {02, 03}, {03, 04},

ha O: {0,}, {02}, {03}, {04}.
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Hence the diama corresponding residual mapping ga" M P(S) is defined by

P($) if 3 =< m,

(+) gd(m) := I{{0,,02,03,{02,03.0,} if 2--<_ m < 3,

I{{0,,02},{02,03}{03.04}} if 1 <= m < 2,

I{{0},{02},{03},{04}} if 0 =< m < 1.

Let K be the set of all subsets A c S such that IAI 2. In order to determine all
minimal dominating K-clustering functions, all minimal dominating K-hierarchies and
all maximal subdominating residual mappings g’:M LK of diama, (Ha, h,) and ga
respectively, we determine the set tK of all subsets N P(S) which satisfy the
conditions MK1 and MK2 with respect to diama. consists of

N1 P(S)\{{0I, 02, 03}} and Nz P(S)\{{02, 03, 04}}.

Hence the minimal dominating K-clustering functions fl, f3:P(S)--> M of diama are
defined by

and fl({01, 02, 03})= 3flln := diamulN,
faiN2: diamul and f2({02, 03,04}) 3.

The minimal dominating K-hierarchies (H1, hi) and (Ha, ha) of (Hu, hu) may be
described by

and

hi 3" {01, 02, 03, 04},

hi 2: {02, 03, 04}, {01, 03},

h 1" {0,, 02}, {02, 03},{03, 04},

hi 0" {01}, {02}, {03}, {04),

h2 3: {01, 02, 03, 04),

h2 2: {01, 02, 03}, {02, 04},

h2 1: {01, 02}, {02, 03}, {03, 04},

h2 O: {0,}, {02}, {03}, {04}.

Finally the maximal subdominating residual mappings gl, g2" M P(S) of gd are
defined analogously (cf. (+)).

3. Characterization of order filters. Henceforth we assume that (L, <_-) is a finite
locally atomic boolean algebra, i.e. (L, _<-) is isomorphic to the power set of a finite
set S of data. Let AL L consist of all atoms and the least element of L. We set
ALV:= {aLI there exist elements a, a AL such that a sup {a, a}}. Since AL
and ALV are subsets of L they are canonically partially ordered. We repeat from
Herden [3] that a clustering function d" ALV--> M is called a dissimilarity coefficient
iff d(a) 0 for all a AL.

Let DC(L) be the set of dissimilarity coefficients on L. There exists a canonical
order monomorphism diam" DC(L) - Clus (L, M) defined by diama :=
max {d(b)lbALV, b<=a} for all aL. If DC<(L) is especially the set of (weakly)
K-ultrametrics on L (cf. Herden [3]) the image of diam" DC(L)->Clus (L,M) is
denoted by Clusa (L, M).
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We now consider an arbitrary dissimilarity coefficient d’ALV--> M. The example
of 2 demonstrates, as is easily verified, that it may happen that none of the minimal
dominating K-clustering functions of diam is the diameter function of some (weakly)
K-ultrametric d’. Hence we may formulate the following problem (cf. the
introduction):

Determine all order filters FK such that for every d DC(L) there exist minimal
dominating K-clustering functions f Clus (L,M) of diam,

In order to approach this problem we set:

K+ := FK CI AL, V := AL\FI, v:=sup(V), Ev := {a e Lla <- v}.

Furthermore we consider the following conditions on F::
FI: Ig/l-> 1 and a v or a F:/ for all a F/<.
F2: Ig/l >- 1, a F for some a < v and a v or a is a coatom of (Ev, <=) for all

a F f’I Ev.
F3: ]K/[->_ 1 and there exists some a FK Ev such that a v and a is not a

coatom of (Ev, ).
Some remarks.
1. In order to avoid trivial cases we assume that ]AL[->-4 and that M contains at

least two elements 0 < m.
2. If F L then the only one (weakly) K-ultrametric d :ALV-M is defined by

d(a) := 0 for all a ALV. Hence in this case no dissimilarity coefficient which is not
(weakly) K-ultrametric can be approximated by a.minimal dominating (weakly)
K-ultrametric and we assume therefore for the remainder of this paragraph that
F tL, i.e. 0K.

3. If ]K /] => 1 then it is easy to see that there exist always dissimilarity coefficients
d :ALV -M which are not (weakly) K-ultrametric such that all minimal dominating
K-clustering functions f of diam are diameter functions of (weakly) K-ultrametrics.

Indeed, let a, be an arbitrary element of K /. We may define a dissimilarity
coefficient d:ALV-M by

0 ifi-jorj-t
for all V.d(aq):= aij AL

m else

The reader will immediately verify that d DC (L) and that every minimal dominating
K-clustering function f of diama is in Clus (L, M).

The above remarks present together with the following theorem a complete
solution of our problem.

THEOREM 3.1 (characterization theorem). Let d :ALV--> M be an arbitrary dis-
similarity coefficient which is not (weakly) K-ultrametric then the following properties
are satisfied:

(i) If vl-<- 3 or if FI satisfies condition F1 then f Clusa(L, M) for all minimal
dominating K-clustering functions f of diama.

(ii) If F: satisfies condition F2 then
(a) there exist minimal dominating K-clustering functions f of diama which

are in Clus (L, M),
(b) there exist dissimilarity coefficients d’ ALV --> M such that

f e Clus (L, M) for at least one minimal dominating K-clusteringfunction
f of diama.

(iii) IfF: satisfies condition F3 then there exist dissimilarity coefficients d’: ALV -->

M such that no minimal dominating K-clustering function f of diama is in
Clusa (L, M).
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(iv) If ]K+I 0 then no minimal dominating K-clustering function f of diama is in
Clus (L, M).

Proof. (i) If we assume that [VI-<3 then Herden [3, Thm. 4.1] implies that
f Clus (L, M) for all minimal dominating K-clustering functions f of diamd.

Hence we now assume that F: satisfies condition F1.
Let N be an arbitrary element of and let f be its corresponding minimal

dominating K-clustering function of diamd. Condition MK2 implies together with our
assumption on (L,<-_) and condition F1 that EveN. Hence f(a)<-_
max{d(b)lbALV, b<-_a} for all aEv.

We now consider an arbitrary element a of L such that ap <-_ a for some ap K/.
Let at <- a be an arbitrary atom then we consider the element a’ :-
sup{alaAL, a <-_ a, a at}. f is a K-clustering function. Hence the following
inequality holds: f(a) _-<max {f(apt), f(sup {ap, a’})}. Moreover L is a finite set. Hence
a routine induction argument implies that f(a)<-f(ap) for some a _-< a. Especially we
may thus conclude that f(a) _<-max {f(b)[b ALV, b <- a}.

(ii)(a) Condition F2 implies that Ev satisfies condition MK1. Hence there exists
some N : such that Ev N. As in the proof of property (i) we may thus conclude
that the N corresponding minimal dominating K-clustering function f of diama is an
element of Clusa (L, M).

(b) Condition F2 implies that IV >_- 4. Furthermore there exists some a F: such
that a < v. We set A := {a ALla <= a}. Let a be an atom of V\A and let a2 be an
atom of AL\ V. We define a dissimilarity coefficient d’:ALV M by

m ifi-landajAL\V
d’(aij) := for all aij ALV.

0 else

This definition implies the following inequality:

(+) diamd,(sup{v, a2})=m>max{diamd,(V),diama,(sup{a, a2})}=O.

The proof of Corollary 2.6 shows the existence of some N : which contains
sup {a, a2}. With the help of (+) we may conclude that v N. Hence f(v) m for the
N corresponding minimal dominating K-clustering function f of diama,. On the other
hand it is easy to see that b N for all b ALV f3 Ev. Hence we have proved the
inequality f(v)=m>max{f(b)lbALV, b<=v}=O and we may conclude that

f Clusd (L, M).
(iii) Let a < v be an arbitrary element of F which is not a coatom of (Ev, <=).

As in the proof of property (iib) we set A:= {aiAL]ai<-a}. Now we define a
dissimilarity coefficient d’ ALV-M by

m if ai, ai AL\A
d’ ai) ".= for all aij ALV.

0 else

Our assumption on (L,-<) implies together with the properties of a that there exist
at least two atoms al, a2 V\A. Let N be an arbitrary element of ://K then the reader
may easily verify that sup {a, al} N or that sup {a, a2} N. On the other hand air N
for all atoms ai, atV. Hence f(sup{a, al})=m>max{f(b)lbALV, b<=
sup{a, al}}=0 or f(sup {a, a2}) re>max {f(b)lbALV, b<_-sup{a, a2}}=0 for all
minimal dominating K-clustering functions f of diama, and we may conclude that

f Clusan (L, M) for all minimal dominating K-clustering functions f of diama,.
(iv) If [K+[ 0 then ai N for all ai, ai AL and all N A/: (cf. the example of

2). Hence for every a L and every minimal dominating K-clustering function f of
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diama the following equality holds:

diama(a) =max {f(b)[b ALV, b <= a}.

This implies that f Clusar (L, M) for all minimal dominating K-clustering functions
of diama.

Supplementary remarks. 1. Let d:ALVM be an arbitrary dissimilarity
coefficient. Because of the characterization theorem the following problem is very
natural:

Determine all minimal dominating (weakly) K-ultrametrics of d. This problem will
be solved completely in a forthcoming paper.

2. The reader, especially the user of clustering techniques, may miss the consider-
ation of algorithms which realize methods which produce for a given clustering function
its minimal dominating K-clustering functions.

On the other hand the reader may perhaps notice that Theorem 2.4, especially
the conditions (iv) and (vi), can actually be used to develop the desired algorithms
the author is looking forward to describe these methods in a forthcoming paper.
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ON THE MAXIMAL NUMBER OF STRONGLY INDEPENDENT VERTICES
IN A RANDOM ACYCLIC DIRECTED GRAPH*

AMNON B. BARAK" AND PAUL ERDOS:I:

Abstract. Let Mn denote a random acyclic directed graph which is obtained from a random graph with
vertex set {1, 2,..., n}, such that each edge is present with a prescribed probability p and all the edges are
directed from higher to lower indexed vertices. Define a subset of vertices in Mn to be strongly independent
if there is no directed path between any pair of vertices in the subset. We show that the sequence 5(),
the number of vertices in the largest strongly independent vertex subset of Mn satisfies with probability
tending to 1,

as n c,
/lo--- /iog 1/q

where q p.

Key words, acyclic directed graphs, random graphs, independent vertices

CR categories. 5.32, 5.5

1. Introduction. A random graph is a graph with vertex set N, the set of natural
numbers, such that each pair of vertices is joined by an edge with a prescribed probability
p, independently of the presence or absence of any other edges. We assume no loops
or multiple edges. A random acyclic directed graph is a random graph in which all the
edges are directed such that there are no directed cycles.

In this paper we consider the class of random acyclic directed graphs which
are obtained from random graphs by directing all the edges from higher to lower
indexed vertices. In other words the random variables eij, 1-<_ j < i, defined by

1 if there is an edge from vertex/to vertex j in M,
eij 0 otherwise,

are independent random variables with P{ eii 1 } =p and P(eii 0} 1-p q. Let M,
denote a subgraph of M spanned by the vertices (1, 2,..., n).

DEFINITION. TWO vertices i, j of are called strongly independent (independent)
if there is no directed path (edge) from to j (i > j).

Notice that the transitive closure of our random graph is a partially ordered set
(poset). Two vertices in the graph are strongly independent iff they are incomparable
in this poset. A set of vertices which are pairwise strongly independent correspond to
an antichain in the poset and vice versa.

Let () denote the number of vertices in the largest strongly independent
subset of . Then in this paper we prove that with probability tending to 1, the
sequence () satisfies:

as n.
10n 4log 1/q

The applications of these results could be in the fields of operation research,
scheduling theory and parallel computation, since several problems which may be
formulated in terms of acyclic directed graphs have solutions which are specified by
the maximal number of strongly independent vertices.

* Received by the editors April 9, 1981, and in final revised form September 6, 1983.
Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary.
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We note that random (undirected) graphs of the kind used in this paper were
investigated in connection with cliques [1], coloring [3] and complete subgraphs [4].
Random graphs of a slightly different kind were investigated in detail in [2].

2. Strongly independent vertex sets. In this section we find lower and upper
bounds for k, the number of vertices in strongly independent subsets of

Lower bound. Consider the following subsets of k consecutive vertices in
{1,2,. , k}, {k+l, k+2,. ,2k}, {2k+l,2k+2,. , 3k},. . Then the number

of these subsets is In! k . The probability that a subset is independent is q Note
that in this case the subset is also strongly independent. The probability that a subset

is not independent is 1-q Also, the probability that none of the subsets are
independent is"

(1 q(2) r,/k1 (1 q(2) ),,/k.

Since 1 x e if x -> 0, we have

(1 q(2))/k <=exp (-q n/k).

This probability tends to zero if

which is implied if

q n/koo asn-oo,

log n-log k+()logq- as n-,

or

k(k-1) 1
log n log k log -- oo

2 q
as n-.

Let

k=

where e is a positive constant and

2 log n 1 1
(2.1) K.= log (l/q) ++.
Then

therefore

K.(K.- 1) 1
log n log 0,

2 q

logn logk
k(k-1) logl 1 e2+e 1

>-_ eK, log log log (Kn e) - oo as n --> oo,
2 q q 2

for every fixed value e > 0. We have proved:
THEOREM 1. Let be a random acyclic directed graph. Then the probability that
has no strongly independent vertex subset of size k <K tends to zero as n--> o.
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Upper bound. Let al < a2 <" < ak be a subset of k vertices in 4, and let Ep(n, k)
denote the expectation for the number of subsets with k strongly independent vertices
in

The strategy of the proof is to consider four different cases of distances between
ak and al. First, we assume ak-al > k4; next we consider Ck log k<=ak-al <--_ k4

where C is a constant. In the third case we consider ak- a < Ck log k and finally in
the fourth case ak- a <--_ Mk, where M is a positive constant. In each case we prove
that the probability that there is a strongly independent vertex subset of size k _-> K,,
tends to zero as n-* .

Case 1. Let ak--al > k4. In this case the number of subsets of k vertices in
is bounded by (). The probability that each subset is strongly independent is bounded
by the product of the probability that there is no directed path of length 1 from ak to
a and the probability that there is no directed paths of length 2 from ak to a, through
at least k4- k vertices which are not in the subset. These probabilities are q and 1- p2
respectively. Therefore,

Ep(n, k) < q(1-p2) k4-k <---q(1-p2) k4-k < nk(1--p2) k4-k

-k!

This expectation tends to zero as n- c if

k log n + k4 k) log 1 p2)
_
-c

Since

we must have

as n --- oo.
log (1 p2) =-]log (1 p2)l,

(k3 1)llog (1 pZ) log n

which is satisfied if

3 [ log n
k > /[log] 12p2)1 + 1.

Conclusion. If ak-al > k4, then even for values of k which are smaller than
the probability that a and ak are strongly independent tends to zero as n

Case 2. Let Ck log k =< ak al k4 where C is a constant. First, we find a bound
for the possible number of different subsets of k vertices. Clearly, for each vertex of
s4, there are at most kn different subsets, from which we can choose k vertices. As a
result, the number of subsets with k verices in sen is bounded by (4)nk4.

Next, we find the probability that each subset is strongly independent. This
probability is bounded by the product of the probability that the subset is independent
and the probability that there is no directed path of length 2 from a to al, through
any vertex j which is not in the subset {al, a2," , a}, for al < j < a.

The expectation for the number of strongly independent vertex subsets of size k
is bounded in this case by"

(1 p2) Ck og k-k

<_ k4knq(k-1)/:(1- p2)Ckog k-g.
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This expectation tends to zero as n- if

4k log k + logn-
k(k-1) logl+(k-Ck log k)llog (1-p2)[--

q

Let k => K,, where Kn is defined in (2.1). Then

Thus

provided that

as n.

k(k- 1) 1
log n log <_- 0.

2 q

4klogk+(k-Cklogk)llog(1-p2)[-- asn,

4
(.2) c>

Ilog (1 p2) l"
Conclusion. If Ck log k<-ak-al-<k4, where C is defined in (2.2), then the

probability that there is a strongly independent vertex subset of size k => Kn tends to
zero as n .

Case 3. Let ak al < Ck log k, where C > 4/[log (1 -p2)l.
(a) Suppose that the interval between the first r vertices and the last r vertices

in the subset {al, a2," , an} includes at least (1 + a)k vertices, where a is a positive
constant. In other words, we assume that

ak_r+l--ar>--(l+a)k,

Of which clearly, at least ak vertices of 4n are not in the subset {al, a2,""", ak}.
This subset is strongly independent if it is independent and for each pair (ai, ak-i+ 1)

for 1, 2,. , r, there is no directed path of length 2 from ai to ak-i/l through ak
vertices ], ar < ] < ak-r+l, which are not in the subset.

The expectation Ep(n, k) is bounded in this case by:

Ep(n, k)<-_( Ck lOgk k) nCk log kq(k)(1--p2)rk

<= (Ck log k)knqk(k-1)/2(1--p2) ’rk.

This expectation tends to zero as n o if

k log (Ck log k)+ log n
k(k- 1)

2
1

log -_- arkllog (1 p2) --q
as n.

Suppose that we choose k => Kn. Then

and

k(k 1)
log

1
log n

2 q

k(log C +log k +log log k-arllog (1-p2)[)-provided that

as n

arllog (1 pe)] > log k + log log k.
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It is therefore sufficient to choose a value of r such that

(2.3) r -> (log k) 1+,

where tr is a positive constant.
(b) Suppose that the conditions of (a) are not satisfied i.e., if r => (log k) 1+, where

tr is a positive constant, then

ak_r+l--a,.<--(l+a)k,

for every positive value of a. Suppose however, that at-al >- r + Qk or ak- ak-r+l >-
r+ Qk, where Q is a positive constant to be defined. Then the subset {al, a2," a,}
is strongly independent if it is independent and there is no directed path of length 2
from ak to al, through at least Qk vertices of 1, which are not in the subset.

The expectation Ep(n, k) is bounded in this case by:

(1 _p2)O.

Note that as n --> , for every 0 < a < 1 we can choose a positive constant fl such that

(2.4) ((l+a)k)<(l+fl)kk

Thus

Ep( n, k) <= Ck log k)2(1 + fl )knqk(k-1)/2(1-- p2) Ok.

This expectation tends to zero as n if

2 r log Ck log k) + k log (1 +/3) + log n
k(k-1) 1

log -_- Okllog (1 _p2)[
_ _.

q

Suppose that we choose k>-K. Then

Qkllog (1-p2)l-2r log (Ck log k)- k log (1 +/3)

provided that

log (1+/3)
Ilog (1 P2)I’(2.5) Q>

where/3 is a given positive constant.

as n,

Conclusion. If ak--al < Ck log k where C>4/llog(1-p2)l, and ak_r+l--ar>=
(1 + a)k, where r is defined in (2.3) and a is a positive constant, or ak-r+l- ar <- (1 + a)k
and ar-al>=r+Qk or ak-ak_r+>=r+Qk, where Q is defined in (2.5), then the
probability that there is a strongly independent vertex subset of size k => K, tends to
zero as n - .Case 4. Let ak--al <= Mk, where M is a positive constant to be defined. Suppose
that a- al <= r+ Qk, and ak-- ak-r/l <= r+ Qk, where r and Q are defined in (2.3) and
(2.5) respectively and that ak-r+l-a,, <= (1 + a)k for every value of a > 0. Then

ak-a-<_2r+2Qk+(l+a)k< k+2Qk+(l+a)k k(2+2Q+a).

Thus M 2 + 2Q + a.

DEFINITION. Let a < a2 <’’" < ak be a subset of k vertices in 4, such that
ak- a <= Mk. Then the subset is called nearly consecutive.
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THEOREM 2. Let ,fin be a random acyclic directed graph and let Kn be defined in
(2.1). Then the probability that
tends to zero as n

Proof. First, note that by the previous conclusions, it is sufficient to consider only
nearly consecutive subsets.

The expectation for the number of subsets with k strongly independent vertices
in ,fin is bounded in this case by

Ep(n, k)<((l+a)k)[(Ok+r)]e ()
nq

k r

Using (2.4) for some/3 > 0, we get

Ep(n, k) <- (1 + fl)k( Ok + r)2rnq k(k-1)/2.

This expectation tends to zero as n- if

k log (1 +/3) + 2r log Ok + r) + log n

Let

k(k-1) 1
2

log-
q

as n.

k= [Kn+],

where 6 is a positive constant. Then

k(k- 1)
k log (1 +/3) + 2r log Ok + r) + log n

2
1

log
q

2__ 1 1
<=(Kn+6) log(l+fl)+2rlog(QKn+Q6+r) 1/2 Jlog--6Kn log-

q q

Thus, the expectation tends to zero as n--> oo provided that

1
6 log > log (1 + fl).

Given 6 > 0, it is now sufficient to choose/3 > 0 so that

log (1 +/3)
8>

log 1/q

and the theorem is proved.

3. A maximal strongly independent vertex set. We now prove the main result of
this paper.

THEOREM 3. Let ,fi, be a random acyclic directed graph with vertex set { 1, 2, , n}
and let #(,fin) be the number of vertices in the largest (maximal) stongly independent
subset of ,fin. Then with probability tending to 1, the sequence #(,fin) satisfies:

Proof. Let

asno.
x/log n x/log 1/q

x/21og .n 1+.Kn Vlog 1/q
+
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Then by Theorem 1:

or

(3.1)

P{(M) < [K.- eJ} 0

P{5(.) > LK.- J}-> 1

for every e > 0, and by Theorem 2,

P{(/.) _>- [g. + 8J }- 0

or

(3.2) P{(M.) < [K, + 6]} 1

for every 6 > 0.

and

as noo,

as n --) c,

as noo,

as noo.

From (3.1), (3.2) and the Borel-Cantelli lemma follows that as n

<lim,_,sup x/log " x/log 1 / q’

and the theorem follows.

lim inf
--, lox/]-gn x/log 1/q’

COROLLARY. Suppose that the interval [Kn- e, Kn + e does not include an integer,
i.e., for every integer I, IK,- I > e, ]’or some 1 > e > O.

Then

P{(M.)=[K.]}I asnoo.

We note that there is an absolute constant D (0 < D < 1), so that the probability
that one of the maximal strongly independent vertex subsets is consecutive, is greater
than D. If K, is not close to an integer, this probability tends to 1, but if K, is close
to an integer then this probability does not tend to 1.

Finally, it is interesting to note that although the obtained results are asymptotic,
they hold even for small values of n. For example, for p-0.5, n 10, and K, -3.13,
less than 8% of a sample of random acyclic directed graphs had a maximal strongly
independent vertex subset larger than 3.
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TRIANGULATIONS OF ORIENTED MATROIDS
AND CONVEX POLYTOPES*

LOUIS J. BILLERAt AND BETH SPELLMAN MUNSONt

Abstract. We define the notion of a triangulation of an oriented matroid and show that, in the
representable case, oriented matroid triangulations yield triangulations of the underlying polytopes. We
then discuss a class of oriented matroid triangulations which can be generated by means of matroid lifts of
a specific form.

AMS(MOS) subject classifications. 05, 52

1. Introduction. Oriented matroids provide a generalization of the order proper-
ties of points in space and have recently been used to gain a better understanding of
convex polytopes [1], [12] and linear programming methods [7]. In this paper we show
how one can generate triangulations of convex polytopes by means of lifts of the
related oriented matroids.

In 2 we describe a lift (the opposite of a contraction) of an oriented matroid by
means of extensions, using an approach of Mason [13]. In 3 we define the notion of
triangulation for oriented matroids, and show that in the representable case, oriented
matroid triangulations yield directly triangulations of the underlying polytopes. Section
4 gives a class of triangulations obtainable by means of lifts. This class is given an
alternative description in 5.

An expository version of this paper has appeared in the Proceedings of the Silver
Jubilee Conference on Combinatorics [2].

For definitions, notation and general results concerning oriented matroids, see
[3], [6]. If M=(E, 7) is an oriented matroid, we will often denote the rank of M
(usually denoted p(E)) by p(M).

If M (E, ) is an acyclic oriented matroid, every element e E is contained in
some positive cocircuit of M, and hence ’c/(-), the set of all positive elements of
the signed cocircuit span of M, is nonempty. Let ={F_E[E\F=Y for some
Y ’/(+/-)}, and partially order by set inclusion. is then a lattice with F1 ^ F2
F1 fq F2 for every F1, F2 in . has some very nice properties, including many
properties of polytopal face lattices. Las Vergnas [9] has studied some of these
properties (see also [4]), and hence we will refer to this lattice, denoted L(M), as the
Las Vergnas lattice of a matroid. We will refer to the elements of as faces of L(M);
in particular, the points of L(M) will be called vertices and the copoints facets.

If M is an acyclic oriented matroid representable over some ordered field, then
(Mandel [11 ]) it is representable over the reals. Thus the elements of E can be viewed
as points in R for some n, and M will be the matroid of affine dependencies of the
points. L(M) is then isomorphic to the face lattice of the polytope which is the convex
hull of the set of points, and hence L(M) is polytopal. The converse is not true, i.e.,
it is possible to have a matroid M such that L(M) is polytopal but M is not represent-
able. An example of such will be discussed later.

In [9], Las Vergnas defines the notion of the convex hull of a subset of the elements
of a matroid: if M (E, tT) is an oriented matroid and A is a subset of E, conv A

* Received by the editors October 7, 1982, and in revised form September 2, 1983. This research was
supported in part by National Science Foundation grants MCS 77-28392 and MCS 81-02353 and by Office
of Naval Research contract N00014-75-C-0678 at Cornell University.

f Cornell University, Ithaca, New York 14853.
$ AT&T Bell Laboratories, Holmdel, New Jersey 07733.
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A U {e e E\A[there exists X ff with X-= {e} and X+ c__ A}. One can show that if/9/
is the oriented matroid defined by the affine dependencies among the elements of a
finite subset E of R and A is any subset of E, then x E\A is in conv A if and only

k
if x--i=1 Aiai, where i--1 hi= 1 and for every i= 1,..., k, aiA and hi >-0. As an
easy consequence of Las Vergnas’ work we have:

PRoPosrriorq 1.1. If M =(E, ) is an acyclic oriented matroid and V E is a
closed set of rank 1 in M, then V is a vertex of L(M) if and only if there does not exist
A E\ V and e V such that e conv A.

2. Extensions and lifts. An oriented matroid N (E, ) is said to be an extension
of the oriented matroid M if there exists E’ E such that N\E’= M. If IE’I 1, N
is called a point extension of M. The only such extension N of M with p(N) p(M) + 1
is the direct sum of M and the free matroid on one element p where E’= {p}, i.e.,
N=MIF(p}. In this case F is a face of L(N) if and only if either F=E(M) or
F G t_l {p} where G is a face of L(M). We note that this is a generalization to
oriented matroids of the construction of a pyramid with apex p and whose base has
L(M) as its face lattice.

We consider a slight generalization of the principal extensions described by Las
Vergnas ([10, Prop. 3.1]; see also Mandel [12]). For notation, see [10]. For any flat
F of M and base B-{el,’", ek} for F, the principal extension determined by
[e71, e], where ai{+,-} for i= 1,..., k, is the extension of M by a new
point p in general position on F such that if H is a hyperplane of M not containing
F, and j is the least index such that e H, then e c(H), where c is the localization
of the extension. Each principal extension of an oriented matroid M is associated with
some unoriented principal extension of the underlying matroid M.

Principal extensions can be used to form a large class of matroid constructions
which can be defined by means of bipartite graphs. Mason discusses these constructions
and looks at some specific examples for unoriented matroids in [13]; here we summarize
the method for unoriented matroids and discuss an extension to the case of oriented
matroids.

Let M (E, c) be any (unoriented) matroid on E, and let F be any bipartite graph
on V t_J E, with partition (V, E), for V some set of nodes disjoint from E. Then F
defines a matroid N on V t.J E in terms of independent sets: I

_
V U E is independent

in N if and only if I is matched in F to an independent set in M, i.e., there exists
J
_
E\I such that each element of I\E is linked in F to a distinct element of J and

J t.J (I f)E) is independent in M. (We consider each element e E to be linked to
itself and allow for these loops to be in the matching.) The matroid N can be shown
to be the matroid that results from doing a series of unoriented principal extensions,
lI1, I12, MIV N, where M Mo (Eo, 0) and for each 1,. , IV[, Mi is the
matroid on Ei_l tA { vi} defined by adding v freely on the flat of Mi-1 which is spanned
by Nb(vi)= {e El(v, e) is an edge of F}.

Clearly, by assigning an order to the elements of Nb(v) for each and assigning
to each edge from vi to ej an aj { +, }, we can use F to define a sequence of principal
extensions of oriented matroids. Although the resulting matroid N depends heavily
on the a’s, the orders given to the elements of the fiats and the order in which the
extensions are made, N, the (unoriented) matroid underlying N, is always the matroid
that would result from making the sequence of unoriented principal extensions defined
by F and starting with the matroid M underlying the oriented matroid M. Thus the
independent sets of N are defined just as in the unoriented case above.

As an example of this construction, suppose M (E, ) is the oriented matroid
defined by the affine dependencies of the points a, b, c and d in Fig. l(a). Let F be
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a b c

d

(o) (b)

0 4 b c,2

d

(c)

FIG. 1. An example of using a bipartite graph to define a matroid extension.

the bipartite graph in Fig. l(b), and suppose for each principal extension we choose
the base and the order for the base for the flat to be alphabetical and assign a positive
a to each element of each flat. The resulting matroid is shgwn in Fig. 1 (c).

This method of extending matroids can be combined with the operation of deletion
to result in a lift of a given matroid.

DEFINITION 2.1. A lift of an oriented matroid M (E, ) is an oriented matroid
N on E {p} for some p E such that N/p- M.

Just as any oriented matroid has many point extensions, it has many lifts. Here
we give an example of a lift which will be useful to us with regard to another construction.

Let M (E, ) be an oriented matroid on E {el,’", en}. We define 2Q to be
] =N\E, where N is a multiple-element extension of M on E J E’{p}, E’=
{e,..-, e’}, defined by the following sequence of extensions. Let Mo=M@:{p},
where, as before, :p denotes the free matroid on the element p. Let M1 (El, 1)
be the extension of M0 obtained by making the principal extension defined by [p/, e-]
with E E U {p} {e}. In general, for 2,- , n, let Mi (Ei, ) be obtained from
M-I by means of a principal extension defined by [p+, e] with E Ei-1 (3 {e} and
with localization c. Let N Mn.

To see that 2/is a lift of M we need to show 2l/p M. Since ]l/p (N\E)/p
(N/p)\E, we can first consider the set of cocircuits of N/p. Since contraction in a
matroid corresponds to deletion in its dual, the cocircuits of Nip are the cocircuits of
N which do not contain p. The cocircuits of M0 which do not contain p are precisely
the cocircuits of M. Then (see [12], [14]) { Y (-(Mi)Ip Y} A B -B U C,
where Ai { Y (Mi-1)IY fq { e, p} }, B { Y + (e)+l Y (?X(Mi_), p Y, e
Y/}, -B {ZI-Z B} and C { Y :((Z(M-I))I Y is the conformal union of Y
and Y2 in +/-(M-I), p(E\Y)=p(Mo)-2, ci(E_x\Yx)= YI, c(Ei_I\Y2)=-Y2, and
P Y1 t_J Y2}. (For Y a signed subset of E and e E\Y, Y + e/ denotes the signed set
having Y + e+)/= Y+U {e} and Y+ e/)-= Y-. Y+ e- can be defined analogously.)
But if (Y t3Y2) f){p}=, c(E_I\Y1) Y1 implies e Y, while c(E_I\Y2)=-Y2
implies ei Y-. Hence Y and Y2 are not conformal, so their conformal union is not
defined. Therefore C and { Y -(M)Ip Y} A 1.3 B 1.3 -Bi. This leads to the
result’that Y ’-(N/p) if and only if Y (7+/-(N) and pY which is the case if and
only if Y/= 7+t3 {elle #+} and Y-= -t3{ellei I7-} for some cocircuit I7 of M.
If Y Y-(N/p) is of this form, Y\E {(’-((N/p)\E)) has (Y\E)+ {ele 7+} and
(Y\E)-={ele 7-} for some I7 +/-(M), and we can identify these elements of
.{(-(]l/p)) with the cocircuits of M. Hence these elements must be all the cocircuits
of M/p, and 2Q/p M. Thus 2Q is a lift of M.

Note also that (el,’", e,,,p, e’,..., eL) is in the cocircuit span of N, so
(p, e,-.., eL) is in the cocircuit span of 2/, and hence A?/is acyclic.

It is easy to see that this lift can be induced by the graph F in Fig. 2. The matroid
on the elements on the right is M@IF{p}..1 is obtained from the matroid on E t_J {p} U E’
by deleting E. (See Mason [13].)
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FIG. 2. The graph F which induces the matroid lift as discussed in 2.

3. Triangulations. The lift defined above can be used to obtain a "triangulation"
of the Las Vergnas lattice of an acyclic oriented matroid. Here we extend the definition
of triangulation to this more general setting and show that in the case of a representable
matroid, each matroid triangulation does correspond to a triangulation in the usual
sense. We first recall the definition of a polytope triangulation.

DEFrIa’ION 3.1. Let P be a d-dimensional polytope. A collection A of d-
dimensional simplices is a triangulation of P if

(3.1.1) U T=P;
TA

(3.1.2) and T2 in A implies T1 f3 T2 is a face of both T1 and T2.

To parallel more closely the geometric terminology we will call an independent
set of cardinality n in M an n-simplex of M. (Note that if M is a representable matroid
of rank t9 defined by the affine dependencies of a set of points in R-1, A

_
E is an

n-simplex of M if and only if the points of Ro-1 corresponding to the elements of A
are affinely independent, in which case their convex hull is an (n-1)-dimensional
simplex in -1.) Any subset of a simplex A will be called a face of A and is itself an
m-simplex of M for some m.

DEFINITION 3.2. Let M =(E, ) be an acyclic oriented matroid of rank p such
that e e E implies e is a vertex of L(M). A collection r of p-simplices of M is a matroid
triangulation of L(M) if it satisfies

(3.2.1) U A=E;
Aer

(3.2.2) for every extension N of M on EU{q} and for every A, B in ’, qe
convNA f3 convN B implies q e convn (A fq B);

(3.2.3) if D is a face of rank p-1 of a simplex of , then if D is not contained in
any facet of L(M), D is contained in precisely two elements of -.

The first two properties of Definition 3.2 could be viewed as analogues in the
matroid case of properties (3.1.1) and (3.1.2). However, in order that a matroid
triangulation be a generalization of a polytope triangulation, the third property is also
required. (In the Euclidean case, the corresponding property follows from Definition
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FIG. 3. A partial triangulation of the pentagon.

3.1.) To see this, consider the following example. Suppose M (E, ) is the oriented
matroid of affine dependencies of the vertices of a pentagon in E2, and let o] { 1, 2, 3}
and r2 { 1, 4, 5} as shown in Fig. 3. Then {oh, o-} is a collection of 3-simplices of M
satisfying (3.2.1) and (3.2.2), but in the polytopal case, the pentagon P is not covered
by conv O" .J conv 0"2.

Another property exhibited by polytopal triangulations is an immediate result of
the definition of a matroid triangulation and is the content of the following proposition.

Pror’osIwiON 3.3. Suppose r is a matroid triangulation of the rank p oriented
matroid M (E, ). Let D be a face of rank p- 1 of some element of ’. Then if D is
contained in some facet of L(M), D is contained in precisely one simplex of -.

Proof. By the choice of D, D must be contained in at least one simplex of r,
say A. Suppose there xists Br such that D_B and BA. Assume D=
{e, ez,..., eo_}, A=DU{e,}, and B=DU{eo+a}. Since D spans a facet of L(M),
E\cl D is the underlying set of a positive cocircuit Y of M.

Now form the principal extension N= (E U {p}, ’) determined by
[e/ , eo_,/ e]. Since D, A and B are all simplices, any subset of D, A or B is

again a simplex. Therefore any (p-1)-set of A or B spans a hyperplane of M and
hence of N.

By the construction of N, {p, e,. , e,} A U {p} is the underlying set of a circuit
X. For any {1,. , p}, the hyperplane H =clu {e,. , e_, e/, , e,} corre-
sponds to a cocircuit of N, in which, by construction, e and p must agree in sign. Then
since (A U{p})f][(E U{p})\H]={e, p}, ei and p must disagree in sign in X. Thus,
without loss of generality, X/= A, X-= {p}, so p convu A.

Now consider the set B U {p}. As before, since p is placed in general position with
respect to M, and B is a simplex, this is the underlying set of a circuit X’. Defining
H as before for 1,. ,/9-1, we have X’ f3 [(E U {p})\H] {e, p}, so again ei and
p must have opposite signs in X’. Since (YU{p})fqX’ ={e,+l,p} and YU{p} is the
underlying set of a positive cocircuit in N, e,/a and p must also have opposite signs
in X’. Thus we have X’/= B and X’-= {p}, so p conv B.

Then by (3.2.2) pconvz,AFIconvuB implies p convu (AfqB)=convcD. But
this is impossible since by the construction of N, D U {p} is independent. Therefore
we have a contradiction, so B can not exist as supposed and D must be contained in
precisely one simplex of r. [3

One could define a "triangulation" on an arbitrary lattice L to be any lattice L’
with r(L’) r(L) such that the set of points of L’ is isomorphic to the set of points of
L, and L’ is the face lattice of some simplicial complex. However, in this abstract
setting, property (3.2.2) has no meaning, and it is (3.2.2) which makes a triangulation
interesting. We note here that being a matroid triangulation of L(M) depends on M
and not just on the lattice L(M). This will be illustrated by an example at the end of
the next section.
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A perhaps more obvious parallel to Definition 3.1 would be obtained by replacing
properties (3.2.1) and (3.2.3) with the following:

(3.2.1)’ for every extension N of M on E t_J {q},
q convN E implies q cOnVNA for some A in ’.

In fact, this definition can be shown to imply (3.2.1)-(3.2.3), but so far it is not known
whether the converse is true. Thus this alternative definition may be stronger than
Definition 3.2. Also, the lift construction described in the next section yields triangula-
tions in the weaker sense which have not been shown to satisfy this stronger property.
On the other hand, as will be seen in Theorem 3.4, even this weaker definition, when
applied to a representable acyclic oriented matroid, is sufficient to guarantee that a
triangulation of the associated polytope results.

Suppose P is a d-dimensional polytope and M is the oriented matroid defined by
the affine dependencies of the vertices of P. It is fairly straightforward to show that
every triangulation A of P such that the vertices of every d-dimensional simplex in A
are vertices of P corresponds to a matroid triangulation of L(M). One might hope
that if L(M) is polytopal, any matroid triangulation of L(M) corresponds to a
triangulation of any polytope P whose face lattice is isomorphic to L(M). As we will
show later, this is not generally the case; however, for representable matroids, we do
have the following:

TIaEOREM 3.4. Let P be a (p-1)-dimensional polytope with vertices
{Xl, X2,""" Xm} and let the oriented matroid defined by the affine dependencies of
{Xl, x2,"" ", x,,,} be the matroid M on {el, e2,"" ", era} with ei corresponding to xi for
i= 1, 2,..., m. Suppose is a matroid triangulation of L(M), and let

A= {conv {Xia," Xio}[{eil," ", eip} is a p-simplex of ’}.

Then A is a triangulation of P.
Proof. First note that the elements of A are (p- 1)-dimensional simplices corre-

sponding to p-simplices of z. Suppose T1 =conv {xl,..., xp} and T2 =conv {xjl,..., xj,}
are in A and x T1 f’l T2. Then the matroid of affine dependencies on {Xl," ",, x,,, x}
is an extension N of M on E t.J{px} such that pxConvN{eia,...,eio}ll
cOnVN {e, ., ei,}. By (3.2.2), px convN ({ei," ", ei,} fq {ei, ., eip})
convu {ell," , elk}, say. Then, in Rp-l, x conv {xi," xik}. Since {Xil, xi} is a
subset of the vertex sets of simplices T1 and T2, conv {xil,’’’, x} is a face of both
T1 and T2. Note, in particular, that every x T1 T2 must be in conv {xi1,. , xi } for
the same set of xj’s, and so T1 fq T2 is a face of each.

Suppose P t_J
"ra T. Then since P is the closure of the interior of P and each

T A is closed in P, there exists x (int P)\ tA Ta T. Choose y tA
7-a

int T) such that
y does not lie in any hyperplane H spanned by {x} [A F, where F isa (p-2)-dimensional
face of some T A. Since each T is full dimensional, y int P, and thus [xy] c__ p, where
[xy]= {,Xx +(1-h)yl, [0, 1]}. By the choice of y, [xy] intersects facets of members
of z only at interior points. Also y int T for some T implies that [xy] must intersect
some facets of members of . Since there are only finitely many such facets, there
exists one, say F, such that its point of intersection with [xy], say z, is closest to x.

Now z int P so F cannot be contained in any facet of P. By (3.2.3) and the
definition of M and A, F must be contained in two (p- 1)-dimensional simplices of
A, whose intersection, by the first part of this proof, must be F. Thus these two simplices
lie on opposite sides of the hyperplane spanned by F; one of them, call it T, must lie
on the same side as x. Since x T, the segment T f’l [xy] does not contain x. Furthermore,
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its endpoints are z and a point, call it w, which must lie between z and x on [xy]. This
contradicts the choice of z, and thus P U

4. Triangulations from lifts. To show that the previously defined lift h/of M can
be used to obtain a matroid triangulation, we first prove the following lemmas. Recall
that, by identifying the elements of E’ with those of E, we may consider//to be a
matroid on E U {p}, where M (E, 6).

LEMMA 4.1. H is a hyperplane of 1I not containing p if and only if H is a base

AProof. Let H be a hyperplane of//such that pH =cl H. Then p(HU {p})=
p(M), since pt(HU{p})> pI(H), and hence HU{p} contains a base of /Xg/, say
B ={el,’’’, ek, p}, where k p(37/)-1 p(M). Then in the graph F in Fig. 2, the
elements of {e, e,..., e,, p} must be linked to a base in Mo M(:{p}. Since p can
only be linked to itself, e must be linked to ei for each i=l,..., k. Thus
PMo{el,’’’, ek}=p(M), and H contains a base B={el,..., e} of M.

Suppose e e (E U {p})\B. In F, e can be matched to ei for i= 1,..., p(M), and
e’ can be linked to p. Since {el,... ,e,p} is independent in M@):{p}, BU{e}
must be independent in//. Thus e e (E tO {p})\B implies e H, so H B.

Conversely, suppose B is a base of M. Then p(B)= p(//)-1, and, as above,
pt(B U {e}) p(JQ)for every e e (/3 U {p})\B. Hence B is closed in M and therefore
is a hyperplane of M not containing p.

LZMMA 4.2. Let F be any facet of L(]I) not containing p, and let G be any face
ofF of rank p(Il) 2 p(M) 1. Let F’ be the facet of such that F f-) F’ G. Then
p e F’ if and only if G is a subset of some facet of L(M).

Proof. By results of Mandel [12, Thm. 2.IV.13], F’ is unique.
Suppose pe F’. Then the positive cocircuit YF’ with Yv, (E U {p})\F’ of iX?/does

not contain p and hence is a positive cocircuit of M. Thus G F fq F’___ E implies
G E\F,, so G is contained in a facet of L(M).

Conversely, suppose G
_
H for some facet H of L(M). Then Yn E\H is the

underlying set of a positive cocircuit of M. Since M is a lift of M, Y, is a positive
cocircuit of 2X;/. Therefore (E U {p})\Yn H U {p} is a facet of L(/X?/). Then H {p} # F,
(HU{p})f3F_G, and p((H{p})f-lF)<-p(M)-2, so (HU{p})fqF=G and F’=
HU{p}. [3

We need the following lemma"
LEMMA 4.3. Let M (E, ) be an oriented matroid. Let A, B c_c_ E and suppose

there exists Y e Y{(6-(M)) such that A\B c_ y+, B\A c_ y-, and A ffl B f3 . Then
in any extension N of M, convNA ffl convNB convt (A f3 B).

Proof. Let N be an extension of M on E U {p} such that p e cOnVNA f’l convN B.
Then there exist X, X e (C)(N) such that X-= {p}, X[ c__ A, X {p} and X c__ B.
For Y as in the hypothesis, there exists We Y{(6Z(N)) such that W\p= Y.

Suppose p e I. Then, since W and X must be orthogonal, p e W+. But this
contradicts the orthogonality of W and X. Thus p

Therefore X ffl W c_ X-f-/W+, which implies by orthogonality that
Thus X- c_ A\(A\B) A ffl B, and hence p e convN (A

We are now ready to prove:
TH.ORFM 4.4. Let (E U {p}, d) be the lift of M (E, 6) defined previously.

Let " {FIF is a facet of L(ff/I) and p F}. Then r is a matroid triangulation of L(M).
Proof. We may assume, without loss of generality, that each e e E is a vertex of

L(M).
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To show (3.2.1), we observe that since e is a vertex of L(M) for every e E, E\e
is the underlying set of a positive element in the cocircuit span of M and hence of
Then (E t3 {p})\(E\e) {e, p} is a face of rank 2 of L(]Q), so e and p must be vertices
of L(]/). Since they are distinct vertices, there exists a facet F of L(/Q) such that
e F and p F. Thus there exists an element of r containing e, so U T T E.

For property (3.2.2), suppose there exists an extension M’ of M on E U {q} such
that q conv4, F1 f-)convM, F2 for simplices F1 and F2 of -. Then F1, F2 - implies
there exist Y1, Y2 {(+/-) such that pc Yi Yf= E 13 {p}\Fi. By elimination on p
between Y1 and -Y in the cocircuit span, there exists Z :]((71) such that Z
Y1U Y\{P}, FI\Fe Z- and F2\F1 Z/ (see Mandel [12, 2.I.1.1]). Thus, by Lemma
4.3, q convv F1 convnF implies q conv (F1 f’)

Finally, to show (3.2.3), suppose D is a (p-1)-simplex of Z, so D_ F for some
p-simplex F of ’. D is a (p (]/) 2)-face of L(//), so we know that there exist precisely
two facets F1 and F2 of L(//) such that D_ F, i-1, 2. F is one of these facets; let
G be the other. By Lemma 4.2, D is contained in a facet of L(M) if and only if G
contains p. Thus D is contained in a facet of L(M) only if D is contained in precisely
one p-simplex of .

Figure 4 shows the polytopes corresponding to L(/Q) and the resulting triangula-
tions of L(M) for two different orderings of the vertices of a hexagon.

e
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FIG. 4. The polytopes corresponding to lifts ]:or two different orderings of the vertices of a hexagon, and
the resulting triangulations of the hexagon.

Now consider the Vimos matroid V, described in Bland and Las Vergnas [3].
L(V) is polytopal, being isomorphic to the face lattice of the polytope shown in Fig.
5, but V is not representable, since the set {1, 2, 3, 4} is not the underlying set of any
circuit of V, while {5, 6, 7, 8} is the underlying set of a circuit. Let M be a representable
matroid for which L(M) L(V). If we construct the lift V by forming V({p}, making
the principal extensions of the form [p/, e/] in the order in which the vertices are
numbered in Fig. 5, and deleting the original elements, we find that {1, 2, 3, 4} is a
facet of L(’) not containing p and hence is a p-simplex of the matroid triangulation
of " obtained from V. However, in P, the dimension of the affine hull of {1, 2, 3, 4}
is only two, so {1, 2, 3, 4} can not be the vertex set of a 3-simplex in P. Therefore
{1, 2, 3, 4} can not be in any triangulation A of P. If we form r’ by deleting from -the matroid simplex {1, 2, 3, 4}, there will be simplices of P obtained from the p-
simplices of r’ which will not satisfy the property that T1 fq T2 is a face of both T1 and
T2, so -’ does not correspond to a triangulation of P either. Thus matroid triangulations
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FIG. 5. The polytope of the pre-Vdtmos matroid.

of polytopal lattices of matroids do not necessarily correspond to triangulations of all
polytopes having the same face lattices. The reason for this is that the triangulation
(in particular, the notion of simplex) depends on the underlying matroid and not just
on its face lattice.

Note that in the case where M is representable and P(M) is the polytope whose
matroid is M, the triangulation of P(M) obtained from 2X7/can also be obtained directly
without using the matroid. To do this, form the pyramid K on P(M) with apex p. For
each vertex vi of P(M) insert a new point v on the line segment {Avi + (1 A)pl0 < <
1} so that vl and p lie strictly on the same side of every hyperplane spanned by subsets
of{v,..., ...,vi-1}. After choosing the points v, vn the facets of the convex hull
of {p, v,..., v’} which do not contain p are the simplices given by 2/ for the
triangulation of P(M).

One possible extension of the results thus far would be to consider the more
general notion of matroid subdivision which corresponds to subdividing a polytope
into smaller polytopes which are not necessarily simplices. These can be defined by
asking that the members of be (not necessarily minimal) spanning sets which satisfy
(3.2.1)-(3.2.3) and

(3.2.4) VA, B -, A B, is a face of both L(M\(E\A)) and L(M\(E\B)).

Such subdivisions would be obtained via general lifts as in Theorem 4.4.
Any lift of M is dual to an extension of M+/-. It seems likely that the lift used here

is dual to the principal extension determined by some base of M+/-, in fact, the first
base of M- given by the ordering (en, e-l,""", el), with each a being negative.

5. An equivalent triangulation. The lift triangulation can be shown to be
equivalent to the triangulation Ae which is a generalization to acyclic oriented matroids
of a polytopal triangulation suggested to us by Provan [15]. Let M be an acyclic
oriented matroid of rank p, and let Vl, re,’’ ", vn be an ordering of the vertices of
L(M) such that {Vm,. ", vp} is an independent set and hence a p-simplex of M. For
any independent set denote by (vii,’", vik) the lattice formed by all subsets of
{ vii," , vik }. In what follows we will often identify a simplex with its lattice of subsets.
Ae is constructed in steps as follows: let Tp be the set consisting of the p-simplex
{Vl,""" Vp}. For i=p + 1,..., n, define T by S T if and only if

(*) S Ti-1; or
(**) S=(vil,..., vip_, vi) where (Via,’", rip_x) is a face of rank p-1 of some

p-simplex of Ti-1 and the hyperplane H(vi,’", vip_) spanned by {vi,’", vi,_}
strictly separates vi from { Vl," , vi-1} in that { Vl," , vi-1} is contained in one closed
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half-space associated with H(vil,"’, rip_l) and vi is in the opposite open half-space.
(If H is a hyperplane of M and Y -(M) is such that Y E\H, the closed half-spaces
of M associated with H are Y/ H and Y- H, and the opposite open half-spaces
are Y- and Y/, respectively.) The triangulation hp of M is the set T of simplices.
Note that for every => p, S is a p-simplex of Ap contained in {Vl,’’’, vi} if and only
if S is in T.

THEOREM 5.1. Let M (E, ) be an acyclic oriented matroid of rank p such that
each v E is a vertex of L(M). Let Vl," vn be an ordering of the elements of E such
that {Vl," ,vp} is an independent set. Then the triangulation " of L(M) obtained by
constructing M is precisely the triangulation Ap.

Proof. Let Mi be the oriented matroid formed in constructing M by letting
M0 MZ{p} and then making the first principal extensions of the form [p/, v;.],
I" 1,. --, i. Let ci be the localization of M with respect to M-I. Denote by ’ those
p-simplices of z contained in {/)1,’’’, Vi}" Note that if i<=j,
{S "rilp S}. It suffices to show that z= T for every p,. , n.

By the construction of 53/, we know that F is a facet of L(//) which is con-
tained in {v,..., v} (and hence is an element of z) if and only if F is a facet of
L(M\E). (Again we identify the elements of M\E with v,..., vi.) Clearly
{(v,,..., v)}= T.

Suppose i> p and assume for every j< i, z T. Let F be a facet of L(M\E)
not containing p. If vie:F, F is a facet of L(M_\E) not containing p and hence
F 7"i-1 ri-1.

Now vF if and only if F spans a hyperplane of Mi such that one of the
corresponding cocircuits, call it Yz, has Yzfq(E(M)\E)c_ Y, veYz, and pc Y.
This is the case if and only if either a) Yz is a cocircuit of Mi-1 such that
c(E(Mi_l\Yz)) =, or b) Yz is the conformal union of cocircuits Y1 and Y2 of
such that ,OMi_a (E(Mi-1)\YF) PM,_I--2, ci(E(Mi-1)\Y1) Y1, ci(E(Mi-1)\Y2) Y2,
and p Y1 U Y2. Condition a) cannot hold since p rF and Me is the extension of Mi-1
determined by [p+, v-], and b) holds if and only if E(Mi-1)\(Yz U E)= G is a face of
L(M_\E) of rank p(Mi_l\E)-2=p(l)-2 and PY2. But this means that in Mi,
Y2+ v- is a cocircuit and the hyperplane H E(Mi)\(Y2 U {v}), spanned by G U {p},
strictly separates vl from {v,..., vl-1}. Thus in (Mi\E)/p, G separates v from
{vl,’", v-l}. Therefore F satisfies property (**) defining elements of Ti, and for
every i= p,..., n, F T if and only if F Ti. Thus the two triangulations are
equivalent.

One may note that the triangulation Ap, as stated, requires that in the ordering
Vl," , v of the vertices of L(M), {Vl,. , v,} must be an independent set, while in
the construction of M no such requirement is necessary. Therefore it may seem that
the set of triangulations of L(M) which arise from M for. different orderings of the
vertices of P properly contains the set of triangulations of the form Ap. However, this
is not the case, for one can show (Munson [14]) that if M (E, if) is an acyclic oriented
matroid with E-{Vl,..., v} such that vE implies v is a point of L(M), and
{Vl, v2, vi,..., vi,} is the lexicographically minimal base for M, then the triangulation
z of M obtained by constructing M with the ordering Vl,’’’, v of the elements of
E is precisely ", the triangulation obtained by constructing //’ by means of the
ordering /)1, /)2, /)i3," /)if,, /)3," /)i3--1, /)i3+1, /)ia--1, /)if,+l," /)n" This follows
from the definition of z and the fact that if M is as above and Mi is the partial lift of
M formed by doing the sequence of principal extensions [p/, v], , [p/, v], starting
with M0 Mt:{p}, then M\E M({Vl,’", vi}), the lift of M({Vl,’", v}) formed
with the ordering Vl," ", v. This last statement is an easy corollary of the fact that
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if e, f and g are three distinct elements of E such that p({e, f})= 2, then the matroid

M1 formed by extending M principally on [e/, f/] and then deleting g is the same as
the matroid M2 formed by extending M\g on [e/, f/]. We outline a proof of this result
along lines suggested by A. Mandel (private communication). First one can show that
if M1 and Me are any oriented matroids on the same set with ff’(7+/-(M1)) 9’c(Z(Me)),
then p(M1) <= p (Me); if, further, p(M1) p(Me), then M1 M2. For M1 and M2 as
above, we have p(M1)= p(M\g)= p(Me), and it is straight-forward to check that
.9’{(’+/-(M1)) .9’/(+/-(M2)). Thus M1 M2.

Acknowledgments. We acknowledge here helpful suggestions from Arnaldo
Mandel and anonymous referees.
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GRAPH COLORING USING EIGENVALUE DECOMPOSITION*

BENGT ASPVALL]’t AND JOHN R. GILBERT"

Abstract. Determining whether the vertices of a graph can be colored using k different colors so that
no two adjacent vertices receive the same color is a well-known NP-complete problem. Graph coloring is
also of practical interest (for example, in estimating sparse Jacobians and in scheduling), and many heuristic
algorithms have been developed. We present a heuristic algorithm based on the eigenvalue decomposition
of the adjacency matrix of a graph. Eigenvectors point out "bipartite-looking" subgraphs that are used to

refine the coloring to a valid coloring. The algorithm optimally colors complete k-partite graphs and certain
other classes of graphs with regular structure.

AMS(MOS) classifications. 05C15, 15A18, 15A48, 68E10

1. Introduction. Discrete mathematics and combinatorial algorithms have made
considerable contributions to numerical methods in recent years. Many of these
contributions have come from graph theory; for example, graphs can be used to model
sparse Gaussian elimination (Rose (1972), George (1977)) and graph coloring gives
efficient ways to estimate sparse Jacobian matrices (Coleman and Mor6 (1983)).

In this paper we will turn this around and apply some numerical analysis to a
problem in graph theory, namely coloring graphs. We will present two coloring
heuristics based on the eigenvalues and eigenvectors of a graph’s adjacency matrix.
For the present, we do not claim that these heuristics are effective or efficient enough
to compete with the various purely combinatorial coloring heuristics that exist. They
do, however, offer a new view of the area where numerical and discrete computation
overlap. Hence we believe that they are worth investigating further.

These heuristics are novel in that they use global information about the graph
rather than local information; indeed, a small enough change in the graph does not
change the behavior of the heuristics. We will discuss this point further in 5. It turns
out that the heuristics perform best on graphs with very regular structures; 4 goes
into more detail.

The organization of the rest of this paper is as follows. The next section reviews
some necessary background in graph theory and linear algebra. Section 3 presents the
basic ideas of the paper and uses them in an algorithm to find an approximately correct
two-coloring of a graph. Section 4 presents an algorithm to find a correct coloring
that may use more colors than necessary; it also describes some classes of graphs for
which this algorithm finds a minimum coloring. The last section considers questions
of stability" what happens if the graph changes slightly, and how accurate must the
numerical calculations be to get the correct discrete answer? In this section we also
discuss open problems and directions for further work.

2. Background. We begin with some standard definitions.
A graph G (V, E) consists of a set V of vertices and a set E of edges. An edge

is an unordered pair {v, w} of distinct vertices. If {v, w} is an edge, vertices v and w
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are adjacent. Edge { v, w} is incident on vertices v and w, which are its endpoints. The
number of edges incident on a vertex is its degree. If all the vertices in a graph have
the same degree, d, the graph is regular of degree d.

A path of length k between vertices v and w is a sequence of vertices v
Vo, Vl,’", Vk W such that {/)i--1, /)i} is an edge for 1 <= iN k and all the vertices
Vl," , vk are distinct. If every pair of vertices in G is joined by a path, G is connected.

A coloring of a graph is an assignment of a color to each vertex. It is a correct
coloring if every edge has different colors on its endpoints. We say that an edge violates
or satisfies the coloring condition according to whether its endpoints have the same
or different colors. A minimum coloring is a correct coloring with as few colors as
possibl.e; the number of colors in a minimum coloring of a graph G is its chromatic
number, written X(G).

If a minimum coloring can be found in polynomial time for every graph, then
P NP. We will be interested in polynomial time algorithms that find approximations
to a minimum coloring. There are two kinds of approximations. An approximate coloring
is a coloring that may not be correct; the fewer edges that violate the coloring condition,
the better the approximation. In Fig. 1, for example, eleven edges satisfy the coloring
condition and four edges violate it. Any graph with m edges can be two-colored so
that more than m/2 edges satisfy the coloring condition (Erd6s and Kleitman (1968))
and such a coloring can be found in polynomial time. If the graph is regular, the
coloring can be chosen so that half the vertices are of each color.

FIG. 1. An approximate two-coloring.

The other kind of approximation is an approximately minimum correct coloring,
which is a correct coloring; the fewer colors it uses, the better the approximation. In
Fig. 2, for example, we have used four colors to color a 3-colorable graph. Many
heuristics of this sort have been proposed (Welsh and Powell (1967); Matula, Marble,
and Isaacson (1972); Johnson (1974); Br61az (1979)). Garey and Johnson (1976)
showed that if a polynomial algorithm exists that always uses less than 2-e times the
minimum number of colors, for any positive e, then P=NP. Wigderson (1982) gave
a polynomial algorithm that colors any n-vertex k-colorable graph with no more than

k2n(k-Z)/(k-)

colors.
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FIG. 2. A correct but nonminimum coloring.

Another way to say that a graph has a correct k-coloring is that its vertices can
be partitioned into k sets V1,"’, Vk such that no edge has both endpoints in the
same set. Then the graph is called k-partite, the sets are called parts, and the graph
is sometimes written (V1, V2," ", Vk, E). A complete k-partite graph is a k-partite
graph in which every pair of vertices in different parts is joined by an edge.

If we number the vertices of graph G from 1 to n, the adjacency matrix of G is
the n by n matrix A A(G) whose entry aij is 1 if vertices and ] are adjacent, 0
otherwise. Finding a correct k-coloring of G is equivalent to finding a permutation
matrix P such that PAPT has a set of k square blocks of zeros that cover the diagonal.

The adjacency matrix is real, symmetric, and nonnegative. Therefore it has n real
eigenvectors Ul,’", un. (We shall use italic uppercase for matrices, italic lowercase
for scalars, and boldface lowercase for vectors. The components of the vector x are
xl,’"’, xn.) Furthermore, the eigenvectors can be chosen to be orthonormal, that is,
so that the inner product uuj is zero if i j (ui and u are orthogonal), and so that
uu 1 (u has unit length). The eigenvectors can also be chosen so the first component
of each is nonnegative. With each eigenvector u is associated an eigenvalue A such
that Aui Au. An eigenvalue is simple if it occurs only once. Since A is real and
symmetric, its eigenvalues are real. The eigenvalues are the roots of the characteristic
equation det (A-AI)= 0, which is a polynomial of degree n in A.

The spectral radius p(A) of A is max IAI, the largest magnitude of an eigenvalue.
An_ A 1" TheWe shall number the eigenvalues and eigenvectors so that An

sum of the diagonal elements of A is its trace, and is equal to the sum of the eigenvalues.
Since the diagonal elements of an adjacency matrix are all zero, the sum of the
eigenvalues is zero. Therefore A1 >-0 and An =< O.

A matrix A is reducible if its rows and columns can be permuted symmetrically
to place a block of zeros in the lower left-hand corner, that is, if there is a permutation
matrix P such that

0

The adiacency matrix of G is irreducible if and only if G is a connected graph with
at least two vertices.

There is a rich theory of nonnegative matrices; Varga (1962, Chapter 2) gives a
good exposition. The results we need are due to Perron, Frobenius, and Gerschgorin,
and we summarize them here along with the results mentioned above.
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THEOREM 1. Let G be a connected graph with n > 1 vertices and let A be G’s
adjacency matrix. Then

1. The eigenvalues A1 >- >--An of A are real.
2. The eigenvectors Ul,"" ", un can be chosen to be orthonormal.
3. i ii O.
4. A l>--IAkl for all k; that is, A1 is the spectral radius of A.
5. A > A2; that is, the largest positive eigenvalue is simple.
6. I11 can be chosen to have positive components (we write u > 0).
7. At increases when any entry aij of A increases.
8. Either A j aij for all or mini j aii < A < max/

All of these except (3) hold for any real, nonnegative, symmetric, irreducible matrix.
Remark. Inequality (8) says that the spectral radius (and the largest positive

eigenvalue) of G’s adjacency matrix is bounded by the maximum and minimum degree
of G’s vertices.

We can represent A in terms of its eigenvalues and eigenvectors as

A=ZAkUkU,
k

where the outer product UkU is an n by n matrix of rank one. If the sum is in
decreasing order of IAkl, then the ruth partial sum Am minimizes IIA-AnIII: over
all rank-m matrices, where [IBIIF (,i, b) 1/2 is the Frobenius norm of the matrix B.
In this case IIA--AIIF is equal to ( A2) 1/2, where the sum is over the n-m
eigenvalues of smallest magnitude. Stewart (1973) gives details.

The spectrum of a graph is the multiset {An," ", A 1} of eigenvalues of its adjacency
matrix. Cvetcovi6, Doob, and Sachs (1980) survey some known relationships between
a graph’s spectrum and chromatic number. Perhaps the most elegant is the following
inequality, in which the lower bound is due to Hoffman (1970) and the upper bound
to Wilf (1967).

THEOREM 2. Let G be a graph with n > 1 vertices and let A and An be its most
positive and most negative eigenvalues. Then its chromatic number x( G) satisfies

The proof of this theorem is not constructive, and does not seem to lead to an
efficient algorithm to color G with A1 + 1 colors.

Barnes and Hoffman (Barnes (1982), Barnes and Hoffman (1982)) have used the
eigenvalues and eigenvectors of a graph’s adjacency matrix to partition the vertices
into sets that have few edges between them. This is in a sense the dual of the coloring
problem. Gould and other geographers (Straffin (1980)) have used the eigenvectors
corresponding to positive eigenvectors to measure the "accessibility" of cities in trade
networks; again, this is in a sense dual to the coloring problem.

Our investigation of spectral coloring heuristics was suggested by an algorithm
due to Moler and Morrison (1983) that divides the letters of a cipher into vowels and
consonants based on the singular values and singular vectors of the matrix of digram
frequencies. They observed that, in English and several other languages, pairs of
adjacent letters (digrams) are more likely to consist of a vowel and a consonant than
two vowelhted directed graph corresponding to the matrix of digram frequencies is
approximately bipartite.

3. Two-colorings. The basic idea behind our coloring algorithm is best described
in terms of bipartite graphs. In this section, we show how to color any bipartite graph
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correctly by examining the eigenvalue decomposition of its adjacency matrix. (Of
course, bipartite graphs can be colored correctly in linear time using a simple depth-first
search.) We then show how to use the ideas for approximate two-colorings.

Let G V, E) be a bipartite graph with parts V1 and V2. By a suitable numbering
of the vertices, the adjacency matrix A(G) can be written in the form

A= BT
Let be an eigenvector of A with eigenvalue I. If we write - (), we have

BT y Y
We claim that (?y) is also an eigenvector of A and its corresponding eigenvalue is -A.
Indeed, we have

0 x -x x

Thus the spectrum of a bipartite graph is symmetric around zero. In fact, Sachs
(Cvetkovi6, Doob, and Sachs (1980, Thms. 3.4, 3.11)) proved a stronger result.

TI-IEOREM 3. The graph G is bipartite if and only if its eigenvalue spectrum is
symmetric about the origin, and this happens if and only if At =-An.

From the Perron-Frobenius theorem, we know U (;)> 0. Thus the signs of the
components of un (_Xy) correctly partition the vertices of G into the sets V and V2.
We have the following algorithm for coloring bipartite graphs.

ALGORITrtM 1 (two-coloring). Color the vertices according to the signs of the
components of the eigenvector un corresponding to the most negative eigenvalue An.

If the graph G is not bipartite, we can still partition its vertices by the signs of
the components of un. In the remainder of this section we give some intuition about
why this might help find good colorings for arbitrary graphs. In the following section
we will present an algorithm based on this idea and analyze its behavior on some
classes of graphs.

Recall that the adjacency matrix A can be written in the form

A AUU,

and that if the sum is in decreasing order of IAI then the m-th partial sum A(m) is the
best rank-m approximation to A in the Frobenius norm. Now suppose that An is the
second largest eigenvalue in magnitude (i.e., A1 >-An >-A2), and let us take a look at
the best rank-1 and rank-2 approximations to the adjacency matrix A. The matrix
UlU

T has all positive elements, so A)= AIBIB1
T has all positive elements.

Since un is orthogonal to the positive vector Ul, it must have both positive and
negative components. Let (+_) denote a vector whose first components are positive and
whose remaining ones are negative. (We will arbitrarily consider zero to be positive.)
Let V1 be the set of vertices corresponding to positive components and let V=
correspond to negative components. By a suitable numbering of the vertices, we can
write u (_+), so

AnllnllTn An + +
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TWhen adding the second update huu to A(1), obtaining the best rank-2 approxima-
tion A(2) we have

+(3.1) A(2) AIlIIlI1T+ hnllnllTn"-
3_ ..{_ "4r"

The elements in the off-diagonal blocks in the two rank-1 matrices have the same
signs and reinforce each other when added. In the diagonal blocks the elements added
are of opposite signs and cancel each other. Thus, roughly speaking, we expect more
edges between V and V2 than within V and V2, so we may view A(2) as the adjacency
matrix for a "bipartite-looking" graph.

How good is this approximate two-coloring? Recall that every graph has an
approximate two-coloring in which more than half the edges satisfy the coloring
condition. The coloring above may not be this good. The following fairly weak result
says that, for a class of graphs in which the most negative eigenvector partitions the
vertices strongly enough, the approximate two-coloring cannot be too bad.

THEOREM 4. Let G be connected and regular of degree n/ 2 and let its adjacency
matrix A have eigenvalues h,_-< _-< h and eigenvectors u,,..., u. Let Uk be the
jth component of eigenvector i1 k. If I/n[,2 and there is a constant 0<
such that [ui,/ujnl < 1 for all and j, then the number of edges that satisfy the coloring
condition is more than (3-r/2)/(2 + 2r/2) times the total number of edges.

.P_roof. By Theorem 1(8) the principal eigenvalue is h -n/2, and then Ul
(1/x/n,..., 1/x/):. The best rank-1 approximation to A is I IlIIlI IT 1/2J where J is
the matrix of all ones. Let

S sij 2(A augur).

Then si is 1 if vertices and j are adjacent,-1 if not. Since h, is the eigenvalue of
A of second largest magnitude, the best rank-1 approximation to S is 2,unu. Let
s=/-2h,u,. Then 2h,u,u=-ss, so ss is the best rank-1 approximation to -S.
That is, Y (ss + sy)2 is minimum over all choices of s.

Now
2 2 2(3.2) ss + s 2 s + Y. s s + 2 sssj.

ij q ij ij

The first sum on the right-hand side above is rt 2. The second is I[s[[ 4, which is 4h2,.
Thus the third sum,

Z sss,

is minimum over all choices of s with Ilsll x/’,. In fact, we can evaluate t" the sum
on the left in equation (3.2) is 41IA-A(II, which is 4Y.1__<i__<, h2-4h21-4h2i The
latter sum is the square of the Frobenius norm of A, which is n2/2. Since G is regular,
hi is n/2. Plugging this all into (3.2) gives t=-4h2. We will use only the fact that
is negative.

We divide the sum into four parts. Let

a [{(i, ]) sis < O, si 1 }[,
b l{ (i, j) sisi > O, s,i 1

c I{(i, j)" sis < O, Sij 1

d [{(i, j)" ssi > O, sj 1 }1.
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Then a is twice the number of edges that satisfy the coloring condition, b is twice the
number of edges that violate the coloring condition, c is twice the number of nonedges
that satisfy the coloring condition, and d is twice the number of nonedges that violate
the coloring condition. (Each edge and nonedge is counted once as (i, ]) and once as
(, i), except that d counts each nonedge (i, i) just once.) Our goal is a lower bound
on a. Since the graph is regular of degree n/2, we have

n2

(3.3) a+b=c+d=--.
2

Recall that the sum above is negative. This sum has b + c positive terms and
a + d negative terms. The ratio of the magnitudes of any two terms is less than r/2, so

(3.4) b+c<n2(a+d).
Now Yi si 0 because s is parallel to un and hence orthogonal to Ul. Therefore

Yij sisj 0. This sum has b + d positive terms and a + c negative terms. Thus

(3.5) b + d < r/2(a + c).

Adding inequalities (3.4) and (3.5) and substituting a + b for c+ d (by (3.3)) in
the result yields 3b+ a < r/2(3a + b). Rearranging terms gives

2

(3.6) a > 2 (a + b).
2+2n

Since a is twice the number of edges that satisfy the coloring condition and a + b is
twice the number of edges, this completes the proof.

4. A heuristic coloring algorithm. We can use the ideas of the last section in an
algorithm to find an approximately minimum correct coloring Of an arbitrary connected
graph. The sign pattern of one eigenvector partitions the vertices into two sets. This
gives an approximate two-coloring, which we refine to a valid coloring by partitioning
the vertices according to additional eigenvectors.

ALGORITHM 2 (correct coloring). Begin with all vertices the same color. Repeatedly
select an eigenvector and use the signs of its components (with zero considered positive)
to refine the coloring, until a correct coloring is obtained.

For example, if the eigenvectors u8, uT, and u6 of an 8-vertex graph have the sign
patterns shown in Fig. 3, the vertex partition they induce has 5 parts as shown.

The algorithm does not specify which eigenvectors to use. The discussion of low
rank approximations above suggests that we select eigenvectors in increasing order of

Iln IIn- lln-2

+ + ) green
+ +

( -_ )red
(" + ) yellow

+ + ) white

FIG. 3. Partitioning vertices by sign pattern.
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their eigenvalues, beginning with un. It turns out that, if we use enough eigenvectors,
we eventually do get a correct coloring; indeed, we eventually color every vertex a
different color.

THEOREM 5. If the algorithm above is continued until it has used all the eigenvectors
of A A(G), then every vertex is assigned a different color.

Proof. Consider the n by n matrix U=(Ul,’" ,u,,) whose columns are the
eigenvectors of A. The color of vertex is the sign pattern of row of U. Since the
columns of U are orthonormal, U is an orthogonal matrix and the rows r,..., r
of U are also orthogonal; that is, rrj 0 if . Eigenvector Ul has positive com-
ponents, so the first components of r and r are both positive. Hence their inner
product can be zero only if some other component is positive in one of them and
negative in the other. Thus no two rows have the same sign pattern, so no two vertices
have the same color.

The discussion in the last section suggests that eigenvectors with negative eigen’
values should partition the vertices so that many edges satisfy the coloring condition,
and eigenvectors with positive eigenvalues should partition the vertices so that few
edges satisfy the coloring condition. That is, a negative eigenvalue divides the vertices
into approximately independent sets, and a positive eigenvalue divides the vertices
into approximately complete subgraphs. We conjecture that Algorithm 2 always finds
a correct coloring after considering only the eigenvectors with negative eigenvalues.

Of course, a correct coloring that gives each vertex a different color is not very
surprising. We now show that this algorithm finds minimum correct colorings for a
class of graphs for which we know of no purely combinatorial polynomial-time coloring
algorithm. To simplify the presentation, we first consider tripartite graphs.

Let G be a tripartite graph with parts V, V2, and V3. Let the parts have r, s,
and vertices respectively. Partition the adjacency matrix of G as

0 A12 A13)A2 0 A23
0

We call G block regular if in each block the row sum is constant and the column sum
is constant. That is, Aijl bijl and AI bl, where 1 is the vector of all ones. In a
block regular matrix, the number of edges between a given vertex v in V and vertices
in V depends only on and j (and this number is b).

THEOREM 6. Let G be a block regular tripartite graph. Then the adjacency matrix
A has two eigenvectors with negative eigenvalues whose sign patterns correctly 3-color G.

Remark. This theorem holds under the weaker assumption that there exist n
vectors x > 0, where 1 <- <= n, such that Aix bijx for 1 i, j =< n.

Proof The theorem follows from the following two lemmas. D
Let

0 b12 bb3)b21 0 3

b31 b32

where bj is defined above. We call B the block degree matrix.
LEMMA 1. Let A be the adjacency matrix of a block regular tripartite graph and

let B be the corresponding block degree matrix. Then (al,/31, yl)T is an eigenvector
ofA with eigenvalue )t if and only if (a, , y)w is an eigenvector ofB with eigenvalue
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Proof. Assume (al,/1, yl)T is an eigenvector of A with eigenvalue ,. We have

AIT2 0 3 /1 (ceb21+ yb23)l A /31
A3 A3 yl (ab31+/3ba2)1 3’1

Looking at the right equality componentwise, we see that the first r equations are
identical; so are the next s equations and the last equations. Selecting one equation
from each group, we have

\b31 b32 T

LEMMA 2. Let B be the block degree matrix for a block regular tripartite graph G.
The sign patterns of two of the eigenvectors (with negative eigenvalues) of B partition
the rows of B into singleton sets.

Proof. Since B is not necessarily symmetric, we cannot apply the Perron-Frobenius
theorem directly to show that the eigenvectors partition the rows. However, we can
use a similarity transform to get the desired result.

Counting the total number of edges between vertices in V1 and V2 in two ways,
we see that rba2--sb21. Similarly, rb3 tb31 and sb23 tb32. Let

,/7 o
D= 0 x/

o o
Then

0 s/r-bl2 x/r-b13
B’ DBD-1= /-s b12 0 x/-b23

,/r/ tb13 x/--b23 0

is a symmetric nonnegative matrix with zero trace. Furthermore D(a, , y)r is an
eigenvector of B’ with eigenvalue A if and only if (a,/3, y)x is an eigenvector of B
with eigenvalue ,X. Since D is diagonal with positive elements, the sign patterns of the
eigenvectors of B are the same as the sign patterns of those of B’. Now the same
argument as in the proof of Theorem 5 shows that these sign patterns partition the
rows of B’ (and those of B) into singletons, l-1

Theorem 6 says that the adjacency matrix A has two eigenvectors (with negative
eigenvalues) whose sign patterns correctly partition the vertices, but it does not say
which ones they are. We can find the right eigenvectors in polynomial time, unless
one of B’s negative eigenvalues A has higher multiplicity as an eigenvalue of A than
as an eigenvalue of B. In this case we may not be able to tell which of A’s A-eigenvectors
correspond to B’s A-eigenvector(s).

Assuming no eigenvalue of B has higher multiplicity as an eigenvalue of A,
however, we do not have to try all pairs of eigenvectors. We know that the negative
sum of the corresponding eigenvalues is equal to the spectral radius p(A). (It is
immediate from Lemma 1 and the proof of Lemma 2 that p(A) p(B).) Thus we can
find a minimum coloring of a block regular tripartite graph by trying at most half as
many colorings as there are negative eigenvalues of its adjacency matrix.
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The result generalizes straightforwardly to block regular k-partite graphs, but we
may no longer be able to restrict our attention to eigenvectors with negative eigenvalues.

TI-IFOREM 7. Let G be a block regular k-partite graph. Then there is a set of at
most k- 1 eigenvectors whose sign patterns correctly partition the vertices of the graph.
Furthermore, the negative sum of the corresponding eigenvalues is equal to the spectral
radius p(A( G)).

We now have an algorithm that correctly colors block regular k-partite graphs
under the multiplicity assumption above. In the remainder of this section we shall turn
our attention to a restricted class of graphs for which, still under the multiplicity
assumption, we can show more precisely which eigenvectors partition the vertices
correctly.

Let G be a block regular k-partite graph for which b depends only on j; that
is, the off-diagonal elements in a column of the block degree matrix are all equal. We
call such a graph strongly block regular. One example is a grid graph on a torus; see
Fig. 4.

8(

2 3

2 3 4

5 6

7

8

5 6

FIG. 4. A strongly block regular graph (vertices with the same number are identical).

Let the k parts have nl, n2, nk vertices, where nl ->//2 -> ->//k. Let a blk.
Counting the number of edges between different partitions as we did in the proof of
Lemma 2, we see that the block degree matrix B can be written as

0 n2 nk
o nl 0 nk

nk

//1 n2 0

Except for the factor a/nk, B looks like the block degree matrix B’ for the
complete k-partite graph with the same vertex partition. The eigenvectors of B and
B’ are thus the same, and their eigenvalues are related by the factor a/nk. We therefore
restrict our attention to complete k-partite graphs. We have the following theorem
(Smith (1970)).

THEOREM 8. A graph has exactly one positive eigenvalue if and only if its noniso-
lated vertices form a complete k-partite graph for some k.

In fact, for complete k-partite graphs the characteristic equation is known (Cvet-
kovi6, Doob, and Sachs (1980, 2.6.8)):

p(h)=hn-k(1-- ni ) l-
<=i<=k A r- ni <--j<--k

(, + n).
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From this equation, it follows that p(-ni) p(-ni+l)<=0 with equality if and only if

n n+l. Thus the nonzero eigenvalues of a complete k-partite graph satisfy

(Note that for strongly block regular graphs that are not complete k-partite graphs,
the remaining n-k-1 eigenvalues of the adjacency matrix A might not be zero; in
fact, they may be interleaved with the eigenvalues that are common with B.)

What can we say about the corresponding eigenvectors? Assume that , -n, for
all 1 <=i <-- k. Let u be an eigenvector of the block degree matrix B’ of a complete
k-partite graph. Then (B’- M)u 0. By subtracting the first equation of (B’- M)u 0
from the jth equation, it follows that (nl + A)u (n+ h)u. Thus

l/(,t +nl)\
u= ul(h + nl)

I/(X + n.) /
/

l/(X + nk)l

So for complete k-partite graphs the eigenvectors corresponding to negative eigen-
values have no zero components, and their blocks have the following sign patterns:

iln_k+2 _[.., q.., q..,. __)T.

(If n n+l for some 1 -< < k, then hn-i+ n. In this case, there exists an eigenvector
with zero components corresponding to vertices in certain block(s) in the partition.)
From Theorem 7, we know that the sign patterns of k- 1 of the eigenvectors correctly
partition the vertices of any block regular graph. Therefore, for strongly block regular
graphs, we now know exactly how the eigenvectors partition the vertices.

5. Conclusions. We have presented a new heuristic for coloring graphs. The
approach is unusual in that it uses continuous mathematics for solving a combinatorial
problem, and in this section we will discuss some of the implications. How accurately
must the numerical computations be performed? Is our algorithm sensitive to perturba-
tions in the input? That is, if the graph changes slightly, how does this affect the
coloring? Finally, we conclude with some open problems.

How accurately must the numerical computations be performed in finite precision
arithmetic? That is, can we determine whether two eigenvalues h and Ix are equal, or
whether a component of an eigenvector is positive, in time polynomial in the size of
the graph? The eigenvalues are the zeroes of the characteristic polynomial det (A- hi),
which is a polynomial of degree n with coefficients bounded by n! in magnitude. The
eigenvalues are thus algebraic numbers of degree n. It follows from Theorem 1 of
Mignotte (1982) that h Ix implies [h-Ix[_-> exp (--O(n3 log n)). To test whether two
eigenvalues are equal, we therefore need only to examine a polynomial number of
bits. A similar argument holds for the components; that is, if u 0, then u has at
most a polynomial number of leading zeros. Therefore the number of bits of precision
required is polynomial in n. In theory, we can obtain this precision in polynomial time
by using any algorithm that is at least linearly convergent, that is, any algorithm for
which each iteration produces at least some constant number of bits. For example, the
QR algorithm is quadratically convergent. In practice, one might use the power method
to obtain a few eigenvectors. For more details on computing the eigenvectors see
Stewart (1973, Chapter 7), Parlett (1980).
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Our heuristic is based on global information about the graph in the sense that
each eigenvector contains information about the entire adjacency matrix A. Changing
the graph slightly will thus change all or almost all eigenvectors. The important point
is that we expect the changes to be small. We present some experimental and some
theoretical evidence for this.

First, we showed in 4 that we obtain correct colorings of strongly block regular
graphs. The strongly block regular graph in Fig. 4 differs from a planar grid graph by
only O(/) edges. Our preliminary experiments show that various sorts of planar grid
graphs are typically colored by Algorithm 2 in the minimum number of colors. Our
experiments also indicate that Algorithm 1 gives, for many graphs, much better
approximate two-colorings than Theorem 4 would lead us to believe.

Second, the eigenvalue decomposition of a symmetric matrix is stable. That is, if
a cluster of eigenvalues is well separated from the other eigenvalues, the subspace
spanned by the eigenvectors corresponding to the cluster of eigenvalues is stable with
respect to perturbation of A. (We refer the interested reader to Davis and Kahan
(1970), Stewart (1971), Stewart (1973, Chapter 6) for a detailed discussion.) Thus,
if the distinct eigenvalues of A are sufficiently well separated, then the subspace spanned
by all the eigenvectors corresponding to an eigenvalue , is insensitive to a perturbation.
(If is a multiple eigenvalue, the eigenvectors corresponding to are not unique, but
the subspace they span is unique.) Therefore, if a particular set of eigenvectors of
A(G) partitions the vertices of G correctly, we expect that the vertices of a slightly
perturbed G’ will be correctly or almost correctly partitioned by a corresponding set
of eigenvectors of A(G’).

As mentioned above, we conjecture that Algorithm 2 always colors a graph
correctly (though not necessarily minimally) after considering only the eigenvectors
with negative eigenvalues. If eigenvectors with negative eigenvalues partition the graph
into pieces having few edges within them, then eigenvectors with positive eigenvalues
can be viewed as partitioning the graph into pieces having few edges between them.
(Notice what happens to (3.1) when ,n is replaced by A2 > 0.) Can this idea be used
to find small separators in graphs, or perhaps to find large cliques?

In summary, we believe we have demonstrated that a numerical approach can
sometimes give algorithms for purely combinatorial problems. Our main hope is to
stimulate further research in the broad area of intersection between continuous and
discrete mathematics.

REFERENCES

EARL R. BARNES, An algorithm for partitioning the nodes of a graph, this Journal, 3 (1982), pp. 541-550.
EARL R. BARNES AND ALAN J. HOFFMAN, Partitioning, spectra, and linear programming, IBM Research

Report RC 9511 (#42058), 1982.
DANIEL BRILAZ, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251-256.
THOMAS F. COLEMAN AND JORGE J. MORI, Estimation of sparse Jacobian matrices and graph coloring

problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-209.
DRAGOg M. CVETKOVIQ, MICHAEL DOOB AND HORST SACHS, Spectra of Graphs: Theory and Applica-

tion, Academic Press, New York, 1980.
CHANDLER DAVIS AND W. M. KAHAN, The rotation of eigenvectors by a permutation, III, SIAM J. Numer.

Anal., 7 (1970), pp. 1-46.
PAUL ERDOS AND DANIEL J. KLEITMAN, On coloring graphs to maximize the proportion of multicolored

k-edges, J. Combin. Theory, 5 (1968), pp. 164-169.
M. R. GAREY AND D. S. JOHNSON, The complexity of near-optimal graph coloring, J. Assoc. Comput.

Mach., 23 (1976), pp. 43-49.



538 BENGT ASPVALL AND JOHN R. GILBERT

J. ALAN GEORGE, Solution of linear systems of equations: Direct methods for finite element problems, Sparse
Matrix Techniques: Copenhagen 1976, V. A. Barker, ed., Lecture Notes in Mathematics, 572,
Springer-Verlag, New York, 1977, pp. 52-101.

ALAN J. HOFFMAN, On eigenvalues and colorings of graphs, in Graph Theory and Its Applications, ed.,
Bernard Harris, Academic Press, New York, 1970, pp. 79-91.

DAVID S. JOHNSON, Worst case behavior ofgraph coloring algorithms, Proc. the 5th Southeastern Conference
on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica, 1974, pp. 513-527.

DAVID W. MATULA, GEORGE MARBLE AND JOEL D. ISAACSON, Graph coloring algorithms, in Read
(1972), pp. 109-122.

MAURICE MIGNOTTE, Identification of algebraic numbers, J. Algorithms, 3 (1982), pp. 197-204.
CLEVE MOLER AND DONALD MORRISON, Singular value analysis of cryptograms, Amer. Math. Monthly,

90 (1983), pp. 78-87.
BERESFORD N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
RONALD C. READ, ed., Graph Theory and Computing, Academic Press, New York, 1972.
DONALD J. ROSE, A graph-theoretic study of the numerical solution of sparse positive definite systems of

linear equations, in Read (1972), pp. 183-217.
JOHN H. SMITH, Some properties of the spectrum of a graph, in Combinatorial Structures and Their

Applications, Richard Guy et al., Gordon and Breach, 1970, pp. 403-406.
G. W. STEWART, Error bounds for approximate invariant subspaces of closed linear operators, SIAM J.

Numer. Anal., 8 (1971), pp. 796-808.
Introduction to Matrix Computations, Academic Press, New York, 1973.

PHILIP D. STRAFFIN, JR., Linear algebra in geography: Eigenvectors of networks, Math. Magazine, 53
(1980), pp. 269-276.

RICHARD S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
D. J. A. WELSH AND M. B. POWELL, An upper bound for the chromatic number of a graph and its application

to timetabling problems, Comput. J., 10 (1967), pp. 85-86.
AvI WIGDERSON, A new approximate graph coloring algorithm. Proc. Fourteenth Annual ACM Symposium

on Theory of Computing, 1982, pp. 325-329.
H. S. WILF, The eigenvalues of a graph and its chromatic number, J. London Math. Soc., 42 (1967), pp.

330-332.



SIAM J. ALG. DISC. METH.
Vol. 5, No. 4, December 1984

1984 Society for Industrial and Applied Mathematics

009
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Abstract. This paper establishes a simple existence proof for a solution to the optimality equations
arising in finite undiscounted Markov Renewal Programs, by applying Brouwer’s fixed point theorem to
the so-called reduced value-iteration operator. Because of its simplicity, our approach lends itself to new
existence results for more general models.
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1. Introduction and summary. This paper establishes a simple existence proof
for a solution to the pair of optimality equations:

(1) gi--" max { Pgj}, i=l,...,N,
kK(i) j=l

(2) v= max q-gr+F P vj i=l,.-.,N
keB(i) j=l

where

B(i)=-{keK(i) i=I,...,N.

Here K(i), 1,..., N, represents a finite set of alternatives; in addition

N

Tk>O, P/_->O and E P/=I, i,j=l,..-,N and keK(i).
j=l

This pair of optimality equations arises in undiscounted Markov Renewal Programs
(MRPs) (cf. Jewell [16]) where II={1,..- ,N} represents the state space and K(i),

ll, the finite set of alternatives in state i. The system is observed at instants when
a transition of state occurs. The times between two consecutive transitions of state are
random variables whose distributions depend both on the current state and the action
chosen. When the system is observed in state i, and alternative k K(i) is chosen, a
one-step expected reward q/k is obtained, state j f is the next state observed with
probability P, and T/k > 0 represents the expected holding time until the next observa-
tion of state. (When Tk 1 for all i, k, the model reduces to the special case of a
discrete-time MDP [15].)

In the discounted model, the existence of a (unique) solution to the optimality
equations follows by showing that the value iteration operator is a contraction mapping
(cf. Denardo [5]). In the undiscounted model, this no longer holds. Only in the unichain
case, where every stationary policy has a single subchain (closed, irreducible set of
states), can a solution to the optimality equations be exhibited as the fixed point of
an N-step contraction operator, albeit in a transformed though equivalent MRP (cf.
Federgriin, Schweitzer and Tijms [12] and method F below).

* Received by the editors June 18, 1981, and in final revised form September 6, 1983.
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The purpose of this paper is to establish for the general multichain case (where
some stationary policies may have multiple subchains) a similarly simple existence
proof, as an application of an elementary fixed point theorem. This is obtained in two
stages. We first consider models with a single communicating system (where every
pair of recurrent states has access to each other via some stationary policy; cf. Bather
[1]). Here a solution to the optimality equations is shown to follow by applying
Brouwer’s fixed point theorem to the reduced value-iteration operator (cf. (14) below).
Then the result is extended to general MRPs by decomposing the state space into a
hierarchical structure of communicating systems.

Other approaches have been suggested for this finite MRP-model but we believe
that the fixed point approach, as opposed to others, has an immediate simplicity and
lends itself easily to extensions to more general models (e.g., Federgr/in, Schweitzer
and Tijms [13] use this approach to derive an existence proof in the denumerable state
space model under conditions which considerably weaken all existing conditions).
Shapiro [24] was the first to illustrate the simplicity of using the Brouwer fixed point
mapping theorem in the discounted model (see 3). For the sake of completeness, we
briefly enumerate the existence proofs in the finite undiscounted MRP-model. (Some
of the methods below have been presented for discrete-time systems only; extensions
to general MRPs are straightforward, however, thanks to a data-transformation, cf.

2, transforming arbitrary MRPs into equivalent discrete-time MDPs.)
A. The policy iteration algorithm (cf. Howard [15], Jewell [16]). This algorithm

generates a sequence of distinct policies. The associated sequence of relative value and
gain rate vectors can be shown to converge to a solution of (1) and (2) in a finite
number of steps. This algorithm may be interpreted as solving the optimality equations
by the Newton-Raphson method. (For the discounted model this was shown by
Pollatschek and Avi-Itzhak [19] and Puterman and Brumelle [20]. The same proof
works in the undiscounted model with a single communicating set of states.)

B. An optimality principle for Markovian decision processes (cf. Schweitzer and
Gavish [23]). The following optimality principle is established: if a policy is optimal
in one state, it is also optimal for all states reachable from this state, using this policy.
The optimality principle is used constructively to demonstrate the existence of a policy
that is optimal in every state, and then to derive a solution to the coupled functional
equations (1) and (2).

C. The algebraic approach. Bewley and Kohlberg [3], in the more general area
of two-person zero-sum stochastic games, used Tarski’s principle to show that the
value vector in the discounted game has a Laurent series expansion in the Mth root
of the interest rate, for some M >-1. In the case of an MRP, M can be shown to be
equal to one. The Laurent series expansion can then be used to show that the terms
of this expansion satisfy a sequence of nested optimality equations, the first two of
which are given by (1) and (2). Similar ideas were employed in Kohlberg [17].

D. The limiting behavior of the total maximal discounted return vector as the interest
rate tends to zero (cf. Blackwell [4], Miller and Veinott [18], and Denardo [6]). For
ordinary MRPs, a term by term Laurent series expansion can be obtained with
mathematically simpler techniques. A solution to (1) and (2) then follows as under C.

E. Nonstationary discounted value-iteration (cf. Bather [1], Hordijk and Tijms
[14]). As in our approach, one first considers models with a single communicating
system. For such systems, a sequence of discount factors {/3n}_-1 is chosen converging
to 1 at an appropriate rate. The discounted value iteration scheme, where/3n is chosen
as the discount factor at the nth iteration, is shown to converge to a solution of the
optimality equations in the undiscounted model. The results are extended to general
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MRPs by decomposing the state space into a hierarchical structure of communicating
systems.

F. Contraction mapping arguments (cf. Federgrfin et al. [12]). As mentioned above,
this approach is restricted to the unichain case where the transition probability matrix
(tpm) of each policy has a single subchain. A data-transformation is applied to transform
the model into an "equivalent" one in which the value-iteration operator is an N-step
contraction operator with respect to the quasi-norm:

(3) sp[x] m.ax xi- min xi, x EN.

G. Lyapunovfunctions (cf. Federgriin and Schweitzer [11 ]). This approach consists
of exhibiting both a function whose zeros solve the optimality equations, and an
iterative scheme which drives this function to zero.

H. Successive elimination of variables (cf. [10]). This approach eliminates one
variable at a time from the functional equations, thereby leading to smaller and smaller
systems of remaining equations.

We conclude this section by pointing out the plan of the paper. In 2 we give
some notation and preliminaries. In 3 we establish an existence proof for models
with a single communicating system. Also we give a (partial) characterization of the
solution space of the optimality equations. The existence proof is extended to the
general multichain model in 4.

2. Preliminaries and notation. A randomized (stationary) policy f is characterized
by a tableau [fk],,k:) where fq ->_ 0 represents the probability with which alternative
k K(i) is chosen when the system is observed to be in state i l-l, (k)fk 1,
i fl). Let SR represents the set of all randomized policies. Pure (stationary) policies
prescribe a single alternative in every state of the system (i.e., for pure policies, each
f/k 0 or 1) and Sp

_
SR denotes the set of all such policies.

With each randomized policy f, we associate the N-component reward vector
q(f), and the N N transition probability matrix (tpm) P(f):

q(f)= Y fkqki,
(4)

P(f) q =--
kK(i)

P"(f) denotes the n-fold products of P(f) with itself, i.e., P"(f) P’-(f)P(f), n >-_ 1
and pO(f)= ! (identity matrix).

Without loss of generality we assume all T/k 1, fl, k K (i) i.e. we reduce the
general MRP model to a discrete-time MDP model. This reduction is enabled by a
data-transformation introduced in Schweitzer [21] and briefly reviewed below. An
arbitrary MRP is transformed into an MDP which is equivalent in the sense that it
has the same state and action spaces and the same set of maximal gain policies.

qk P=-7 -Jl-ij k=--l, i,j, kK(i)=

where 6q represents the Kronecker delta, i.e., 3q 1 if i=] and 0 otherwise, and
where r>0 is chosen such that z<mini,k {Tk/(.l-P)l(i,k) with P<a} so as to
ensure that all/3 => 0; i, ] f, k . K(i). The optimality equations in the transformed
model therefore read:

(6) i max Pqg, i12,
kK(i)
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(7) = max 4--iJI-Ziij[ iO,
/,e/(i) L ..,]"

where

{B(i)=- k K(i)

In addition, the equivalence between the original and the transformed model is reflected
by the following correspondence between the solution spaces of their optimality
equations:

(8a) if {g, v} is a solution to (1), (2), then {g, r-iv} is a solution to (6), (7) and each
(i)=B(i);

(8b) if {, 5} is a solution to (6), (7), then {, ’} is a solution to (1), (2), and each
B(i)=B(i).

In view of (8b), T 1, i f, k K(i), or a discrete-time MDP may be assumed
without loss of generality.

In addition, 4 shows that the general multichain model can be reduced to an
MDP satisfying condition A below. First, state l) is said to reach state j 12 (under
a class of policies S c Se) if there exists a policy f Se with Pn(f)iy > 0 for some n --> 0.
A pair of states i, j 12 is said to communicate if reaches j and j reaches i. A set
B c f is communicating (under a class of policies S Se) if each pair of states in B
communicates (under this class). Communication defines an equivalence relation on
12 and the equivalence classes will be referred to as the communicating classes.

Condition A. The set R =-{ief[i is recurrent for some P(f), f e SR} is com-
municating.

Condition A is equivalent to the existence of a randomized policy O* which has
R as its single subchain (cf. Bather [1]). It holds, for example, if every choice of pure
stationary policy has a tpm with a single subchain. Moreover, the data-transformation
(5) preserves condition A since it leaves the chain structure of any policy unaltered,
cf. (5) or [9]. In other words, condition A holds in the transformed model if and only
if it holds in the original model. In 3, we will show that under condition A, a solution
(g, v) to (6), (7) exists with g= 3,1, where 1 denotes the N-vector all of whose
components are unity. The optimality equations thus reduce to"

(9) vi max qk --3,+ Pv, iO.
kK(i)

Equation (9) resembles the standard functional equations for single-chained
MDPs; yet, even under condition A, it may be that several policies have multiple chains!

We conclude this section with some notation:
Let II(f) represent the Cesaro limit of the sequence {P"(f)}=. For each f Sn, we
define the gain rate vector g(f) by g(f)= H(f)q(f) so that g(f) represents the long
run average expected return per unit time when the initial state is i, and policy f is
used. Finally we define the maximal gain rate vector g* by

(10) g* sup g(f),, ,
feSR

and call a policy f maximal gain if g(f) g*, i.e., if it achieves all N suprema in (10)
simultaneously. It follows from Denardo and Fox [7] that any (pure) policy which
prescribes in each state i f an alternative k B(i) achieving the maximum to the
right of (2), is a maximal gain policy.
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Suppose that condition A holds, and fix a randomized policy q,* which has R as
its only subchain. (The existence of such a policy is easily verified, see also Bather
[1].) Let mij(i 1, ]R) denote the mean number of transitions (in the transformed
model) needed to go from to ] under P(0*):

(11) mij=l+ Z P(O*)itmo, il), jR

and define

(12) m* max { mq[i e 1), j e R }.

Similarly, under condition A, let Oi(i e\R) denote the maximum expected
number of transitions one can stay outside of R, under any stationary policy, when
starting in state i. Since the restriction of each P(f), f SR, to the set I-I\R is a transient
matrix, the vector [Oi, 12\R] may be considered as the total reward vector of a
transient MDP (cf. Veinott [25]) and hence satisfies the functional equation:

0i= max {1+ PO}, ifl\R.
kK i) jfI\R

3. The average return optimality equation for models with a single communicating
system. We first define the following two (value-iteration) operators from E into
itself"

(13) rxi=- max Iqki + Pxj,kK(i)

(14) Qxi =- Txi Txr, fl (reduced value-iteration operator),

where r is an arbitrary fixed state in R. Let

qmin min q/k, qmax max q/k, Aq qmax-- qmin >- 0.
i,k i,k

Our analysis is based on the construction of a compact convex subset of EN which
is closed for the Q-operator. Since this operator is continuous on E, Brouwer’s fixed
point theorem (cf. [8]) can be invoked to establish the existence of a fixed point. Our
choice of this compact convex subset of E was partly inspired by Bather [1].

Define the following five subsets of Es’.

(15)

(16)

(17)

(18)

D1 =- {X e ENIxi- X] >: -Aqmii; e 12, j e R, j},

D2= {x ENITx<= X -I-qmaxl},

D3 {x Elxi x <- m*AqOi; I’I\R, j R},

D4={xEUIxr=O},

D= D1 (’1D2f’) 931"1D4.

THEOREM 1. Let condition A hold. Then
(a) Q maps D into itself.
(b) D is a nonempty convex compact subset of EN; hence Q has a fixed point on

D by the Brouwer theorem.
Proof. (a) We first show that the T-operator maps Ol D2 f-)O3 into itself. Part

(a) then follows since y D f’l D2 C D3 implies y (y)l D.
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(i) If x DI f-) D2 i’-) D3, show Tx D1 as follows"
fix j R and j. Note that

Tx>--q(b*)i+Pq(d/*)x+ . P(*),x,.

Insert x >-_ x-Aqmt for ] (in view of x D)"

Txqmi+x-Aq P(*),mt.

Next, insert x Tx-qmax (in view of x D) and use (11) to conclude:

Txi Txj qmin- qmax- Aq P(*).m -(Aq)mq.

(ii) If x D De D3, Tx De follows immediately from (16) and the mono-
tonicity of the T-operator"

TZx T(Tx) T(x + qmaxl) TX + qmxl.

(iii) If X D De D3, show Tx D3 as follows"
fix OR and j R. Note that

kK(i) tR tR

Let s R satisfy x. maxlR Xl.
In (19), insert for tR, xtXs and insert for tOR, in view of x

m*AqOt + Xs, to conclude:

rxiqmax+Xs+Aqm* max [ POj](20) (

qmax + Xs + qm*(O- 1).

Since R is closed for P(*), we have

tR tR

Since x D, insert x x-Aqm for R{s)"

Txj qmin Xs Aq Z P(*)m
teR(s)

qmin Xs Aq(mi 1) qmin Xs Aq(m* 1).

Finally, subtract this inequality from (20) to conclude Tx Da.
(b) 0 D, hence D . D, D3, D are convex polyhedra; D2 is convex in view

of the convexity of the T-operator, and hence their intersection D is convex as well.
Next fix r. Choose i= and j r in (17), or j and i= r in (15) to conclude that

Xl m*AqOl, R, Xl Aqml for IR.

This, together with x -Aqm for all l (cf. (15) with i= and j r) proves the
boundedness of D. Since D is also closed, D is compact.

COROLLARY 1. Let condition A hold. Let x* be a fixed point of Q. Then x*,
Tx*), is a solution of (9).

Theorem 2 below shows that the y-part of the solution {y, v is uniquely deter-
mined by y y*, where y* is the common value of the components of the maximal
gain rate vector, cf. Condition A. The v-part of the solution, however, is never uniquely
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determined since if {3’, v} solves (9), then so does {3’, v+ cl} for any scalar c. Under
Condition A, even more "degrees of freedom" in the choice of the v-vector may exist
(cf. [22]). We conclude this section by showing that the solution space to (9) is included
in D1 f)D2 f)D3 and hence is bounded in the sp[ ]-norm, defined by (3).

THEOREM 2. Let Condition A hold. Then every solution {% v} of (9) has 3,1 g*
and v D1 f’) D2 ("1D3. Moreover, v* def

v- (Vr)1 D and is a fixed point of O.
Proof. Fix a solution {3’, v} to (9). Note that v>=q(f)-3,1+P(f)v for all f SR,

with equality for some f SR. Multiply these inequalities with H(f) >= 0 to obtain
3,1 maxts, g(f) g*. Here we have used II(f)P(f) II(f) and H(f)l 1. For future
use we also note

(21) qmin 3, <= qmax"

Next subtract Vr TVr-3, from v= Tv-3,l to obtain v*= v-vrl Tv-(Tvr)I, and
verify that Qv*=T(v-vrl)-[T(V-Vrl)r]I=Tv-(Tv)rl=v*. This leaves us to
prove that v D1 f-) D2 93, with v* D immediately following from (18).

(i) vGD1. Fix jR. Note for all that
qmin-qmax+tP(d/*)ittt, since 3,--<qmax" Subtract vj from this inequality to obtain

vi-vj>=-Aq+,P(O*),(v,-vi) for all i. Add to this inequality Aqmq=
Aq + Aq y,,i P(*),mq to conclude [v- v + Aqmq]>=
f\{j}. Do repeated iterations of this inequality, noting that the restriction of P(*)
to f\{j} is transient, so its powers will approach zero and v-vj + Aqmq >= O, i O\{j},
so vD1.

(ii) vD2. Tv=v+3,l<=v+qmax1, cf. (21).
(iii) v 93 follows from the four properties

(22) (Zv)i <- vs+Aq(O-l)+qmax, if\R,

(23) (Tv)i Vs+qmin-Aq(m*-l), jR, m*_->l, 0_->1, if\R

where s R satisfies vs =maxtg vt, because subtraction of (23) from (22) yields

vi v Tv Tv <- Aq Oi + m* 1 <= Aq Oi + m* 1) 0) Aqm* Oi,

for all f\R, j R, or v D3.
Property (22) is established via v Tvi- 3, q(fO) + p(fO).v_ 3, or vi- vs <-

qmax--qmin+tn\R P(f)[v-vs], where fo is any pure policy achieving all maxima
in (9). Subtracting

AqO Aq + Aq
t\R

we obtain

vi- vs- AqOi <= Z P(f),[v, Vs- AqO,],
t\R

Repeated iteration and use of [P(f)it]i,tn\R being transient implies vt-vs-AqOt <--_0,
e 12\R and

Tvi <- qmax q" max ] Y Pv, + Y
kK(i) LtR tg]\R

--< qmax +/)s’k- max pAqO,
keK(i) tef\R

which yields (22).
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To establish (23), we recall R is closed for P(q*)"

Vl+qmax vl+T--(Tv)Iq(I]I*)I + P(*)ltVt,
tR

or

Vl--Vs>=--Aq + Z P(d/*)lt[Vt-Vs], IR.
tR\{s}

Add hqmts Aq + hq Yta\s P(4,*)um to obtain

[vl- v +Aqmt] >-_ Y P(6*)u[vt- vs + Aqms], R.
tR\{s}

Repeated iteration of this inequality for R\{s} and use of the fact that [P(O*)tt]l,ta\
is transient, yields vl- v + Aqmts >= 0, R. Then, for j R"

Tvj >= q(q*)j +P(6*)Vs+ Y P(q*)tvt
IR\{s}

qmin + Us + P(q’*)l[--Aqml,]
lR\{s}

=qmin+Vs--Aq(mjs--1)>=qmin+Vs--Aq(m*--l), or (23).

We note that the right-hand sides in the inequalities (15) and (17) defining the polyhedra
D1 and 93 are specified as multiples of the numbers (oli f\R} and (mqli f, j R}.
The multiples are the tightest possible which work for an arbitrary choice of q*, as is
shown by the following example in which D1 f3 D2f3 D3 is the solution space of (9).

Example 1.

1
0
0
1
1

0
1
1
0
0

0
-1
0

-1
-1

1 {1, 2, 3}; K(i)={1,2}, i=1,2; K(3)={1}. R={1,2}. m*=2; Aq=l; 03=1.
Using policy ,* with q,*2 1, 1, 2:

D D2 ("1 D3 { v I[/)1 -/)21 1; Iv3 -/)2[ 1; /)1 1 -</)3 /)1 -[" 2}

and {(y =0, v)llv -v2l < 1; v3= v -l) is the solution set to (9).

4. The general multichain model. In this section we show how the above described
fixed point approach can be extended to exhibit the existence of a solution to the pair
of optimality equations (6), (7) that arise in the general multichain case.

Our analysis is based upon a decomposition of the state space 12. This decomposi-
tion procedure bears some resemblance with the one described in Bather [2]. The
decomposition is achieved via an iterative procedure. In the /th iteration the state
space is reduced to ’lC’l_l(l>--2,’l----- ’) and for i’l we define

(24) Kl(i)={kK(i) P.=I},jel

the subset of K(i) under which the system stays in 12 with probability 1. On the
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restricted state space lqt, one determines {C(t,p)lp 1,..., n(/)} the communicating
classes in 121 under XinKt(i).

Decomposition procedure.
Step0. (Initialization). Set ll=fI; /=1; Kt(i)=K(i), ilI.
Stepl. (Iterative step). Determine {Ct,p)lp 1,..., n(/)} the communicating

classes in ft under XinKl(i). Let At U,(t)p=l Cl,p)and let At be the possibility empty
set of states in l)l\Al for which there is a positive probability of leaving fit\At under
every possible alternative. Let fXt+l (lt\At)\At. If fl+l =, stop.

Step 2. For iIlt+l, define Kt+(i) by (24); increment by one and return to
step 1.

The decomposition procedure converges in l*_-< N iterations since At contains at
least one state as long as fit . We illustrate this decomposition procedure with the
following example:

Example 2.

k

1 1
2 1
2 2
3 1
4 1
4 2
5 1
5 2
6 1
6 2

1
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0
.5
0
0
0

0
1
0
0
1
0
.5
1
0
0

0
0
0
0
0

1
0
0
.8
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
.2

1

n(1)=2; A1= {1, 2, 3}; C(1,1)={1}; C1,z)={2,3}; A1={5}.

Iz={4,6}; K2(4)={2}; K2(6)={1,2}; n(2)=l; Az=Cz,,)={4}; A2=.

n3={6}; K3(6)={2}; n(3)=l; A3=C3,1)=(6}; A3=.

For each 1,...,/*, Xin,Kt(i) will be referred to as the set of/-level policies.
Note that for each level l, and each set C(t,p) (p 1,. , n(1)) a solution

{trt,p; ul’P)[i C(t,p)} exists to the optimality equation:

(25) lg I’p) max f + E k (l,p)}Pjuj C(t,p)

with trt,p representing the maximal gain rate among all/-level policies on C(l,p).

To verify this statement, use the fact that C(t,p) is a communicating set with respect
to the /-level policies and invoke corollary 1. We next construct a solution g to (6),
the components of which are determined by the following recursive scheme. First, for
any subset A

_
fl, let A fI\A.

ALGORITHM 1 (constructing a solution g to (6)).
Step 0. Initialize 1; for each p 1,..., n(1) set gl,p trl,p and g gl,p for all

C(1 ,p).
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Step 1. Determine the unique solution to the transient optimality equation (26)
(cf. Veinott [25]) in {xi, i Al}"

(26) Xi max [( Y Pgj) + Y Pxj]; A
kK(i) jil..JAl jAl

and let gi-- Xi for all A l. If -/*, exit; otherwise increment by one and set p 1.
Siel 2. Set

max 1- , pik 2 Pg(27) gl,p max O’l,p,
ieC(l,p);kK(i)\Kl (i) tC(l,p) Jti

and set g gl,p.
Step 3. If p < n(1), increment p by one and go to step 2; otherwise go to step 1.

With g being determined as a solution to (6), the sets B(i), i f, can now be
determined. This leaves us with the construction of a solution v to (7).

ALGORITHM 2 (constructing a solution to (7)).
Step 0. Initialize l= 1; for each p= 1,..., n(1), fix a solution u l’p) to (25) and

let vi bll I’p) for all C,p) and p 1,. , n(1).
Step 1. Determine the unique solution to the transient optimality equation (30)

in {x, Al}, cf. Veinott [25]"

(28) Xi---max Iq-gi+ Y Pv+ Y Px, iA
kB(i) I j-IUA jA

and let v=x for all iA. If l=/*, exit; otherwise increment by one and set
p=l.

Step 2. (i) Ifgl,p O’l,p" Fix a solution U
(I’p) to (25). Define (l,p) on C(l,p by setting

1l’p)-" UlI’P)’Jr C with c sufficiently large that

(29) al t’p) max {qk gi+YPv+Y k-(l,p)}Piju C(l,p
k B( i) JC:fl J C( l,p)

and set v al l’p) for all e C(l,p).
(ii) If gl,p > Crl,p: for all C(t,p) set

(30)
vi max Y [I-/3(f)]i q(f)- g + , P(f)j,vt

j C(Lp)

f XB(]), P(f) is transient on C(l,p)}
where/3(f) is the square submatrix of P(f) corresponding to the rows and columns
in C(l,p).

Step 3. If p < n(1), increment p by one and return to step 2. Otherwise, return
to step 1.

THEOREM 3. The pair of vectors {g, v} constructed by Algorithms 1 and 2 are a
solution to (6), (7). In particular, g g*.

Proof. We first verify that all of the steps in the two algorithms are well defined.
Note that for >= 2, K (i)\Kl(i) , for some e Ill. Otherwise D.l ffl A1 a contradic-
tion. The maxima in (27) are thus well defined. Also, in case (ii) of step 2, observe
that the maximum is taken over a nonempty set, for assuming the contrary would
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imply that some subset of C c_ C(l,p) is closed under XB(j), hence B(j)= Kt(j) for all
j e C, contradicting gt,p> rl,p. To verify that the vector gt (l’p in step 2, case (i) is well
defined, note that B(i)
defined by al,p= u}t,p+ c for any constant c. It thus suNces to show that

}l’P’> {q--gi+ Pv+ rijg (l,p,}
Jl J C(I,p)

for all k B(i)Kl(i) and all e C(l,p), provided c is chosen sufficiently large. This,
however, is immediate from ic,,,, P < 1 for k B(i)Kl(i), e C(l,p).

We next show that g satisfies (6). Use induction on L For l= 1 and all p=
1,..., n(1), we have for all e C(l,p)"

gi g(,p) max Pg max pqg.k
kK(i) j. kK(i) jC(,p)

(The last equality is due to C(l,p) being closed under every policy.) If (6) is
satisfied for all elUAl, then it is satisfied for iAl as well, cf. (26). Thus,
assume (6) is satisfied for all il, 12, and show it is satisfied for i At as well.
Fix lNpNn(1) and iC(p,l). For all kgl(t), gi=g(l,p)=jeC(lp)pijgj--g(l,p).

k k + k >Hence it suces to show that gt,p Po& ,Po& c,, Pq& or gl,p- P& for all k K(i)Kl(i) which follows from (27).
We now verify that {g, v} satisfy (7). Use induction on I. First consider the case

where l= 1. Fix p= 1,..., n(1). Note that ffl,p=gl,p and K(i)=K(i)=B(i) for all
e C(,p) with C(,p) being closed under every policy. Hence (7) is satisfied for all
e C(,p). If (7) is satisfied for all e OlU A, then it is satisfied for e l as well, cf.

(28). Next assume (7) is satisfied for all i O, l 2, and show it is satisfied for e At
as well. Fix p 1,. , n(l). In case (i), it is immediate that v, e C(l,p) satisfy (7), cf.
(29). Next assume that case (ii) prevails for C(l,p and observe that a policy f B(j)
exists such that for all e C(l,p)"

Vi q(f)i- gi + Z P(f*)ijvj.
j C(I,p)Ul

Now assume to the contrary that (7) is violated for some C(l,p). This implies the
existence of a policy f XB(j) for which for all e C(l,p):

(31) v q(f) gl,p + E P(f)qv + E P(f) qv
j

with strict inequality applying to some e C(,p. Note that (f) cannot be transient on
C(,p since otherwise for some e C(t,p:

vi < [I-’(f)][q(f)- g+ P(f),v]
je C(t,p) r

contradicting (30). Hence P(f) has a subchain C C(,p with {(f)]i e C} representing
the (unique) stationary probability distribution of P(f) on C. Since C is closed under
P(f), f prescribes an action in Kl(i) for all e C. For e C, (31) reduces to

(32) viNq(f)i--gl,p+ 2 P(f)qv, ie C.
jeC

Multiply (32) by (f) > 0 and sum over e C to conclude

g,p =< (f)q(f) =< ,p
ieC

contradicting (ii).
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ON METAPATHS IN METAGRAPHS*

KAREL CULIKJ-

Abstract. Data graphs without (DG) or with (DGP) predicates are directed graphs with labeled vertices
and edges. They reflect data flow algorithms if their inner vertices are interpreted by functions or predicates
and their roots are initialized by some values. A metapath is an execution sequence of directed shrubs
reflecting functions or predicates together with their argument positions. Acyclic data graphs generalizing
terms and conditional terms are investigated. A data graph is functional if for each initialization all metapaths
determine the same resultation. A finite acyclic DG is functional itt each inner vertex of its simplification
DG* has exactly one shrub, where DG* is a data homomorphic image such that each data homomorphic
image DG** of DG* is isomorphic with DG*. A finite acyclic DGP is functional iff any two shrubs of an
inner vertex of its simplification are incompatible, i.e., they cannot be obtained by the same execution

sequence. In the general case of nonacyclic data graphs the (serial) permit execution rule is formulated.

AMS(MOS) subject classifications. 05C20, 05C99, 68C05

1. Introduction. A fully parenthesized arithmetic expression E
(((X- Y)/(Y-X))+(Z,(X-Y))) is usually represented in Fig. 1.1a as a directed
acyclic graph (V, 6), where V {1, 2, 3,.’., 8, 9} is the set of its vertices, and 6

{(1,4), (1,5), (1, 6), (2,4),..., (7,9), (8,9)} is the set of its data edges, with two
vertex labelings: ar: V N where N {0, 1, 2, .}, is called the arity, and nam: V
FunctNam LI Var where FunctNam, Var is the set of function names, variables, respec-
tively, is called the naming. For example, ar (4) 2, nam (4) -, nam (1) X, etc.

1. 3.

i 2
4. 6. 2

o,*

a) b) c)

FIG. 1.1

Having Fig. 1.1a one cannot reconstruct the original expression E because one
does not know whether X- Y or Y-X should be associated with the vertices 4, 5
and 6. To save the reconstructability an edge labeling A:6 N, called the argument
position, can be added, as shown in Fig. 1.1b, where a new vertex 10 is added

* Received by the editors June 9, 1983. This work was presented at the SIAM Second Conference on

the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

Department of Computer Science, Wayne State University, Detroit, Michigan 48202.
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corresponding to the variable E (serving as a name of the whole expression, or of the
function represented by it, as we want to avoid usual functional notation). For example,
A(1, 4)= A(2, 5)= 1, A(2, 4)- A(1, 5)= 2, etc.

If idg(v), odg(v) denote the indegree, outdegree of v in (V, 6), let R
{ v e V; idg (v) 0}, L { v e V; odg (v) 0} denote the sets of all roots, leaves of V, 6),
respectively. Thus R ={1, 2, 3} and L ={10} in Fig. 1.1b while L={9} in Fig. 1.1a.

A graph structure DG V, 6, ar, nam, A) is called a data graph (without decisions)
if the following natural requirements are satisfied:

(1.1) (i) ReOeL, RC’IL=O;
(ii) (v, v) 6 for each v e V;
(iii) there are no isolated vertices.

(1.2) (i) v, weR, v wnam(v)nam(w);
(ii) 0 <- ar (v) =< idg (v) for each v e V;
(iii) nam (v) nam (w)=>ar (v) ar (w) for all v, w e V;
(iv) ar (v) 0 for each v e R and ar (v) > 0 for each v e V- R.

(1.3) (i) ar(v)>0 and (w,v)e6l<--_A(w,v)<=ar(v);
(ii) l=i=<ar(v)=#thereexist weVand(w,v)e6 such thatA(w,v)=i.

The names of all roots will be viewed as variables while the names of all other
vertices will be viewed as function names (or as predicate names later). From each
DG one can get an extended data graph by adding one new leaf w to each old one v,
the edge (v, w) with A(v, w)=0, and with nam (w) being viewed as a variable, as it
is shown in Fig. 1.1b which is an extension of Fig. 1.1a.

Each fully parenthesized arithmetic expression, and, in general, each term defined
with respect to FunctNam and Var is used as an algorithm when it is evaluated
(executed) assuming its function names are interpreted by an interpretation
int" FunctNam- Funct, where Funct is a set of usual functions (int preserves the arity),
and its variables are initialized by an initialization Init" Var Val where Val is a set
of values.

The well-known (serial) execution rule is as follows: take the function name, f,
inside an innermost pair of parentheses, apply the function int (f) to the argument
values provided either by the initialization Init of variables, or by results of previous
applications, and then replace the whole pair of parentheses by the result value of
application of int (f); one continues doing so until one single value is left (assuming
all functions concerned are always defined when needed).

If the execution rule above is applied to the graph representation in Fig. 1.1a of
the expression E, one can get the following execution sequence: (4, 5, 7, 6, 8, 9) which
is not a path according to graph theory, because neither (4, 5) nor (7, 6) are edges of
Fig. 1.1a. Nevertheless the following weaker condition concerning the execution
sequence (4, 5, 7, 6, 8, 9) is satisfied:

(1.4) for each > [R] there exist two vertices L k such that 1 _-< j < k < and (j, i) e 6
and (k, i) e 6, or, eventually, j e R or k e R.

In metamathematics (proof theory, logic) a very similar condition is used to define

formal proof from axioms [Grze 74], or from assumptions [Klee 67], F1, F_,...,
as a finite sequence of formulae (F/I, F/e,. , F/p) such that for each i, n + 1 =<
n + p, there exist two formulae F, Fk, 1 <= j < k < i, and F is obtained by the rule of
detachment (modus ponens) from them (e.g. Fk has the form (F=:>F) where ==> is the
implication).
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Therefore the needed generalized concept of a path can be called a metapath. In
both cases binary functions (either arithmetic or of detachment) are concerned. They
are ternary relations, and therefore usual graph theoretical concepts do not suffice.
The usual path is a very special case of a metapath when only unary functions are
concerned.

In general we want to represent an arbitrary m-ary function (operation) f(m),
where m _>- 1, and, later, also an arbitrary m-ary predicate (relation) p(,n), as a whole,
as one unit. It can be done using directed trees as in Fig. 1.2a, called (directed) shrubs
in [Koni 36].

a) b)

c) d)

FIG. 1.2

The shrub in Fig. 1.2a (or 1.2b) is called a v-shrub and is denoted and defined by
SH {(Vl, v), (v2, v),. , (vm, v)}, where exactly m edges are included (as ar (v) m,
and any two of them are labeled by different integers in A). Their common vertex, v,
is called the leaf of SH, while all remaining vertices of these edges are called roots of
SH. In particular vi is called the ith root of SH, 1-<iN m, if A(vi, v)= i.

Using the concept of shrub one can amplify and simplify the concept of metapath
as follows. The existential requirement in (1.4) will be replaced by the presentation
of the shrubs themselves. The original metapath (4, 5, 7, 6, 8, 9) will be replaced by
the following sequence of shrubs: me=(SH4, SHs, SHy, SH6, SH8, SH9), where
SH4 {(1, 4), (2, 4)}, SH5 {(1, 5), (2, 5)}, SHy {(4, 7), (5, 7)}, SH6 {(1, 6), (2, 6)},
SHs {(6, 8), (3, 8)}, SH9 {(7, 9), (8, 9)} satisfying

(1.5) if i R ={1, 2, 3} then each root of SHi is either a leaf of SHj for some
1 -< j < i, or it belongs to R itself.

Fig. 1.2c is an extension of Fig. 1.2a where v is a function vertex. If v is a predicate
vertex as in Fig. 1.2b, then the corresponding extension must have two different leaves
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as shown in Fig. 1.2d, and the two edges terminating in them are labeled by two
different truth values, T and F. In fact the extended shrubs in Fig. 1.2c and d are only
building blocks of all data graphs. Obviously the new leaves of extended shrubs will
be named by variables only.

The main construction which will be needed concerning extended shrubs and
extended data graphs is identification, usually identification of a root of one shrub with
a leaf of the second one (assuming the two graphs are vertex disjoint).

One can say that Fig. 1.1b is decomposed into mutually (vertex) disjoint shrubs
SH4*, SHs*, SH6*, SH7*, SH8*, SH9*, SH*0 represented in Fig. 1.3a, because each SH*
is isomorphic with SHi, and Fig. 1.1b is obtained from Fig. 1.3a by identification of
pairs of vertices inside the dotted lines. For example, by identification of the leaf of
SH4* with the 1st root of SH7* one obtains a data graph represented in Fig. 1.3b. Its
leaf can be identified with the 1st root of SH9*, etc.

b)

a)
FIG. 1.3

A graph viewed as a result of identification (of vertices or edges) of some simpler
graphs is called a metagraph relative to a given set of graphs. Thus Fig. 1.1b is a
metagraph relative to the set of shrubs SH* from Fig. 1.3a.

The identification of the first root of SH7* in Fig. 1.3a with the leaf of SH4*
corresponds to the substitution of (X- Y) for a in (a/b), but the graph representation
allows us to omit variables while preserving the underlying relationship and making
it more general. An example is Fig. 1.1c, which is a homomorphic image of Fig. 1.1b,
and allows us not to repeat the same subexpression X-Y twice. This cannot be
expressed using usual terms. Fig. 1.1c can also be executed and the corresponding
execution sequence is shorter than before as the subexpression X- Y will be evaluated
only once.

A composition of two vertex disjoint graphs or multigraphs (either directed or
undirected) by identification of their vertices or edges can be defined in several different
ways, but, in all generality, it cannot be viewed as a binary operation, because in
addition for two given graphs it must also be prescribed which vertices or edges should
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be identified. Therefore we are saying that the identification of vertices of two graphs
is a construction but not necessarily an operation (accepting the term "construction"
being superior to the term of "operation" (function)).

Section 2 presents basic definitions of rooted and closed metapaths in a data graph
DG (V, 6, ar, nam, A) defined by (1.1)-(1.3). The concepts of a metapath and usual
path are compared, and some basic properties of data graphs are studied.

Section 3 contains the definition of data homomorphism and studies some of its
properties which will be needed further.

Section 4 concerns acyclic finite data graphs viewed as permit algorithms with a
(serial) execution rule formulated independently of the concept of term. If they are
interpreted (and initialized in all admissible ways) they compute (evaluate, define)
m/n-ary functions when m IRI and m ILl, which are systems of n m-ary functions
with identical domains, or so called functions of general form [Mann 74].

A (serial) permit execution rule, which generalizes that one for terms, is introduced;
the functionality of data graph is defined by the requirement, all execution sequences
(admissible by the execution rule) determine the same result for the same initialization
(and given interpretation).

The sequence (6, 8, 5, 4, 7, 9) is also an execution sequence of Fig. 1.1a, and
computes the same result as the previous one, because each term, when evaluated in
all possible ways, determines a function. This is not the case in general, but the
functionality of finite and acyclic data graphs (without predicates) is fully characterized
using the concept of data homomorphism.

Section 5 concerns acyclic finite data graphs with predicates using the same (serial)
execution rule as in 4. If they are interpreted (and initialized in all admissible ways),
they may compute (evaluate, define) decisions which are systems of k->2 m/n-ary
functions, where 1 =< <= k, with mutually disjoint domains. Their union can (but need
not) be a m/n-ary function if ni n for i= 1, 2,..., k. The functionality of these
more general permit algorithms is fully characterized.

Section 6 concerns nonacyclic finite data graphs with or without predicates using
almost the same (serial) execution rule as before. The functionality is defined but not
fully characterized, although it is the most interesting and general case.

Section 7 presents some applications of the theory of data graphs to computer
science, in particular, to the design of data flow machines and languages, to func-
tional/applicative languages, and to the theory of computation in general.

2. Metapaths of data graphs. The defining requirements (1.1)-(1.3) of a data
graph are not very restrictive, as is shown in the following:

LEMMA 2.1. Each directed graph (V, 6) which satisfies (1.1) can be provided with
the following definitions of labelings ar, nam and A such that DG (V, 6, ar, nam, A)
is a data graph:

a) if v R let ar (v) 0 and if n V-R let ar (v) idg (v) for each v V;
b) nam (v)= v for each v V;
c) A( w, v) is chosen arbitrarily such that 1 -< A( w, v) =< ar (v), and A( w, v) A(u, v)

whenever w v for all v, w, u V.
Proof. By a) follows (1.2)(ii) and (iv), by b) follows (1.2)(i) and (iii), and (1.3)

is implied by c).
A sequence, finite or infinite, me (SHy1, SHy2,""", SH,) of the vi-shrubs of a

data graph DG, with roots in R and leaves in L, is called a rooted metapath in DG, if

(2.1) (i) for each i, 1 =< <= n, each root v of SH, satisfies either v e R, or there exists

SHoj, 1 <= ] < i, such that v vj.
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It is called a rooted and leafed metapath in DG if, in addition,

(2.1) (ii) for each i, 1 <= n, either there exists SHvj
a root of SHvj, or vi L.

where < j <-n such that vi is

With each rooted and leafed metapath me (SH1,
, SH.) in DG are associated

uniquely its set L(me), and its multiset ML (me) of leaves vi L. Obviously ]L(me)l _-> 1
and IML (me)l >-- 1.

A binary relation 6 and a data graph DG (V, 6, ar, nam, A) are called acyclic if

(2.2) (/)1, /)2) (, (/)2, /)3) t, (/)k_l, /)k) ( where k => 2=>(Vk, Vl) 3.

LEMMA 2.2. If DG is finite and acyclic, then each shrub SH of DG belongs to
a rooted and leafed metapath me in DG such that IML (me)l- 1. If DG is either infinite
or not acyclic, then SH,o need not belong to any rooted path in DG.

Proof. If each root w of SHy satisfies w e R, then me (SH,o) is a rooted metapath
in DG according to (2.1)(i), otherwise there exists a root v-1 of SH, such that v-1 R.
Then according to (1.2)(iv) ar (v-i)> 0, and according to (1.3) there exists a SH__1,

and we constructed (SH_,, SHvo). If we have constructed (SH_i+1, SH_i+2, , SHy_l,
SHo) where i=> 1, then either it is a rooted metapath in DG, or there exists a root
v-i of a SH_, i> ]>_-0, such that v-i -R, and as before we can prolong the assumed
sequence to a longer one (SHy_,, SH_,+I, , SHoo). In virtue of acyclicity v_i v_j for
each ] 0, -1,. ,-i+ 1 for each i= 1, 2,. , so it would be infinite, but in virtue
of finiteness this construction must terminate with a rooted metapath me=(SH_,,
SHv_+l, SHvo).

Now if v0 L, then me is also a leafed metapath, with IML (me)l 1, because all
other leaves w of a SH_ satisfy (2.1)(ii). If roe!L, then odg (Vo)>0, and therefore
there exists a vl V such that (Vo, v) 3. By (1.3) there exists SHv such that
(Vo, v) SH, and either (SH_,,..., SHy_l, SHvo, SHva) is a rooted metapath in DG,
or there is a root w of SHy1 such that w R. Then we can apply the previous construction
to SHy1 to get another rooted metapath (SHw_,’’’, SHwo, SH). After merging them
into (SH_i, , SHoo, SHw_, , SHwo, SHy1), we check either v L. If yes a rooted
and leafed metapath is found, and if not (v L) then odg (Vl) > 0, and we can repeat
the construction. Again from the acyclicity and finiteness it follows that this construction
of prolongation of a rooted metapath must terminate with finding a rooted and leafed
metapath me with IML (me)l 1 containing SHy, which is what we wanted to prove.

Figure 2.1a is an example of an infinite DG in which SHoo= {(V-l, v0)} and does
not belong to any rooted metapath, and Fig. 2.1b represents a finite but not acyclic
data graph in which SHwo {(Wl, w0), (w2, Wo)} and does not belong to any rooted
metapath.

a)

FIG. 2.1

A rooted and leafed metapath me (SHI,..., SHi,..., SHn) in DG is called
thin if

(2.3) either n 1, or the sequence (SHv, , SHi_,, SHi+,, , SH.) obtained
from me by deleting SH, is not a rooted and leafed metapath in DG for each
i=1,2,... ,n.
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LEMMA 2.3. If me (SHy1,""", SHy,) is a rooted and leafed metapath in a DG,
then

SHo,2,... SH,)a) there exist indices 1 <= i < i2 <" < i, <- n such that (SHe, l,
is a thin rooted and leafed metapath in DG, and

b) (SH,..., SHy,, SH,,..., SH,) is a rooted and leafed metapath in DG ]’or
each i= 1, 2,. , n.

The proof follows from the definitions (2.1) and (2.3) immediately.
A finite sequence me (SH,..., SH), n >= 2, of v-shrubs in DG is called a

closed p-metapath in DG, where 1 -<_ p <_- n- 1, if

(2.4) (i) for each i, 1-i<= n, each root w of SHy, satisfies either w R, or w =vj
where i-p =< j-<_ i- 1 (mod n);

(ii) for each i, 1 <=i=< n, there is a root w of SHy, such that w R.

Let L (me), ML (me) be the set, multiset of all leaves vi L when SHo, belongs
to me. It may be IL (me)[ IML (me)l 0.

If p < n- 1, then each closed p-metapath is also a (p + 1)-metapath, and a closed
metapath means a closed (n- 1)-path when n _>-2 is its length.

LEMMA 2.4. If a data graph DG is not acyclic, then there exists a closed usual
path pa (Vl, v2," , Vk), k _-> 2, in DG, but on the other hand there need not exist any
closed p-metapath, 1 <= p < k, me, which contains pa (in a DG).

Proof. The first part is an immediate consequence of the definitions (1.1) and
(2.2), while the second part follows by the example in Fig. 2.2a for k 2, and in b)
for a general k, where {vl, v2,’", vk} induces a complete directed and irreflexive
graph, and there are k paths (ti, u, vi), mutually disjoint, and one path (v, w). Further
A(vi, vj) <- k 1 and A(ui, vi) k for 1, 2,. , k.

a) b)

FIG. 2.2

If DG is a data graph and v e V-R, then let sDG be the subgraph of DG which
is induced by the subsets of vertices and edges belonging to any usual path pa
(Vl, v2,’" ", vn) in DG such that vl e R and vn v. Obviously v is the only leaf of
sDG sDG is connected, and sDG is a data graph itself if all labelings are considered.

Similarly, if me (SHI, , SH,) is a rooted metapath in a DG, then let sDGme
be that subgraph of DG which is induced by the following set of edges" LI ’= SHoc

LEMMA 2.5. If DG is a data graph which represents a fully parenthesized arithmetic
expression, or, in general, a term defined relatively to FunctNam and Var, then ILl 1,
DG is connected, finite and acyclic, the only vertices v which satisfy odg (v)> 1 satisfy
v R, and it satisfies
(2.5) v V-R there exists exactly one v-shrub in DG.
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The proof follows from the fact that such a DG can be obtained from a directed
tree with one single leaf by identifying some of its roots.

3. Data homomorphism. A (data) homomorphism of a DG { V, 6, ar, ham,

onto a DG*= (V*, 6", ar*, ham*, A*) is a mapping : V--> V* such that

(3.1) (i) (w, v) 6((w), (v)) 6*;
(ii) (w*, v*) 6*there exist w, v V such that (w, v) 6 and p(w)= w*,

(v)= v*;
(iii) odg (v)= 0=odg* ((v)) =0 for each v
(iv) v and are not connected in DO=(v) and () are not connected

in DO*.

(3.2) All three labelings are preserved, that is,

(i) ar (v)=at* ((v)) for each
(ii) ham (v)=ham* ((v)) for each v V;
(iii) A(, v)=+/-*((), (v)) for each (, v)

LMA 3.1. If is a homomorphism mapping DO onto DO*, then
a) IRI- IR*I, ]L]-> IL*] and the inequality may occur;

and further
b) if SH={(v, V),’’’,(Vk, V)}, k>=l is a v-shrub in DG then {((v),

0(v)),..., ((Vk), 0(V))} is a o(v)-shrub SH* in DG* isomorphic with SH.
Proof. a) According to (1.2) different roots have different names and the arity 0.

By (3.2)(i) roots must be mapped on roots again, and by (3.2)(ii) [RI =IR*] follows
directly. According to (3.1)(iii) leaves must be mapped onto leaves, and therefore
]L]->_ ]L*] follows, and the inequality may occur as it is shown in Fig. 3.1. The Fig. 3.1a
can be homomorphically mapped onto Fig. 3.1b and, obviously, the leaves
must be mapped on the same leaf

vl?c v9

a) b) c)

FIG. 3.1

b) Follows from (3.2) immediately.
A DG is called simple (similarly as in group theory) if each (data) homomorphic

image DG* of DG is data isomorphic with DG. A DG* which is a simple and data
homomorphic image of DG is called a simplification of DG. Figure 3. lc is a simplifica-
tion of both Fig. 3.1 a and Fig. 3. lb.

THEOREM 3.2. A finite and acyclic DG is simple if]’ there do not exist two different
vertices Vl and v2 such that sDGv, and sDGv are data isomorphic.
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Proof. Let DG (V, 6, ar, nam, A) and let there exist Vl, /)2 E V-R, Vl # /)2, such
that there exists a data isomorphism q’Vl- V2 when sDGvl =(V1, 31) and sDGv2
(V2,32). Let us define (V*,3*) as follows" V*= V-(V1-V2) and 3*=
(3-(31-32)U{(v2, v); there is a (Vl, v)E 3}, and let A*(v2, v) =A(Vl, v) for all new
edges (v2, v), while all labelings of original vertices and edges are preserved.

Let q* be a trivial extension of q to V; that is, q*(v)= v for each ve V-V1
(and q*(v) q(v) for v e V1). Then q* maps V onto V*, and is a data homomorphism
of DG onto DG* because (3.1) and (3.2) are satisfied. As q*(vl)= q*(v2) v2, DG
is not simple.

Now let us assume DG is not simple. Then there exist a DG* and a data
homomorphism q" V V* of DG onto DG* which is not a data isomorphism, such
that there exist /)1, V2 V, v #/)2, and q(Vl) lit(/)2) vg V*. Now sDG ** is a data
homomorphic image of sDG1, and also of sDG under the homomorphism ql qlv1
and I]/2 I]/I V2 respectively, assuming sDG (Vi, 3i), i= 1, 2.

Finally, in virtue of acyclicity of DG and DG*, the vertex v* can be chosen in
such a way that for each w* E V*, w* v*, which belongs to a path from an u* e R*
to v* there exists exactly one w e V such that q(w)= w*. It means that q’l and I]/2
are isomorphisms, from which it follows that sDG, and sDGv2 are isomorphic.

LEMMA 3.3. If q is a data homomorphism of a DG onto a DG* and me
(SHy1, SHy.) is a rooted metapath in DG where SHy, {(w1, D1) (Wk, Di) } and
wj is the jth root of SHi, then

a) (q(SHI), , q(SH.)) is a rooted metapath me* in DG*, which can be denoted
by q(me) me*; and

b) sDG*me, is a data homomorphic image of sDGme.
Proof. a) According to Lemma 3.1b q(SH,) is a q(v)-shrub in DG* for i=

1, 2,. , n, and it remains to show that (2.1)(i) is satisfied. Considering an i, 1 _<- _-< n,
and a root v* of q(SHi) such that v* R* we want to show that there exists q(SHoj),
1 _-<j < i, and v*= q(vj). From (3.2)(i) it follows that each v V such that q(v)= v*
must satisfy v R, and therefore by (2.1)(i) (being satisfied by me) the existence follows
of SHh, 1-< h < i, such that v Vh, and therefore one can choose j h.

b) If sDOme Wl, 31> and sDO*me* V2, 32>, then (0]V is the data homomorphism
required, because from the definition of these subgraphs it follows that 31 tA ’= SHy,
and 32 t_J %1 p(SH,) and that qlVl maps V1 onto V2, and satisfies (3.1)(i) and (ii).
Both sDGme and sDG*me, are connected, and all remaining requirements are satisfied
as 0 is a data homomorphism.

Observation 3.4. Fig. 3.2 shows that the labeling nam of a DG is an essential
component of its definition (1.1)-(1.3), and also the requirement (3.2)(ii) is essential
for the data homomorphism. Figure 3.2a is simple but Fig. 3.2e is not, although they

x y

f(2) g(2)

(I)

Xy x y

f(2)Q f(2) f(2)

a) b) c) d) e)

FIG. 3.2
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differ only in their labelings of vertices. After abstracting from naming one gets Fig.
3.2b from either a or e which is not simple with respect to a weaker homomorphism.
Figure 3.2c is the corresponding simplification of Fig. 3.2b, and Fig. 3.2d is a simplifica-
tion of Fig. 3.2e.

4. Acyclic data graphs without predicates. The (serial) permit execution rule for
a data graph (without predicates) DG, which is interpreted by int and initialized by
Init, determines (1) an execution sequence of the form of a rooted and leafed metapath
me (SH,,..., SHn), and (2) the corresponding computation of the form of a value
sequence valme=(val (vl),’", val (vn)) (assuming all functions are always defined
when needed) as follows: if Perm (Ui) is a set of permitting edges, and Ready (Vi) is
the set of vertices (and the corresponding functions) which are ready to be executed
(applied), then

(4.1) (i) at the beginning Perm (El) ={(v, w) 8; vR};
(ii) Ready (V1) { v V; there exists a v-shrub such that SHy Perm (El)};

(iii) one selects vl Ready (V1) and one its SHy, such that SH, Perm (El),
then one applies int (nam (vl)) to (Init (nam (Wl)),""", Init (nam (wk)))
when SH {(w, Vl),’’’, (wk, Vl)}, and one denotes the result value of
the application by val (vl).

If the (i-1)st step is reached i-1=>1, thus Perm(E_l), Ready(V_l),
(SH,,..., SH,_,) and (val (v),..., val (v_)) have been determined, then

(4.2) (i) Perm (E) (Perm (Ei_.)-SHv,_l)l,.J{(vi_, w) ; we W};
(ii) Ready(Vi)={v V; there exists a v-shrub SHy such that SH_

Perm (E)}, and either Ready V # and
(iii) one selects v Ready (V) and its v-shrub such that SH,

_
Perm (G);

then one applies int (nam (vl)) to (val (w),..., val (w)) when SHo,
{(w, vi)," , (w, vi)} and val (wi) Init (nam (w)) if w R; and one
denotes the result value of the application by val (vi); after that one repeats
(ii);

or Ready (V) and
(iv) one terminates the construction of me and Valme, and defines the resultation

Result (v) val (v) for each v L.

In (4.1)(iii) and (4.2)(iii) one is selecting one single vertex (the seriality of the
execution rule), but, in general, one can select any subset of Ready (V). Then a parallel
permit execution rule is concerned (see [Culi 78]). The selection of one or more vertices,
of the set, Ready (V), is arbitrary, and represents some sort of indeterminism, which
is the reason that for some interpretation and for the same initialization two different
resultations can be determined. Therefore DG need not define a function at all.

An execution sequence that is a me (SH, , SHyn, .), either finite or infinite,
in a DG (interpreted and initialized) which is obtained according to (4.1) and (4.2) is
called completed if

(4.3) each function application required in (4.1)(iii) or (4.2)(iii) can be actually
performed, and its result value is obtained.

If DG is a data graph and int is its interpretation, then let the algorithmic domain
Of DGint be the following set of initializations Init of DG;

(4.4) (i) ADomain (DGint) ={Init; each me obtained according to (4.1) and (4.2)
is completed},
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and let the domain of DGint be its subset as follows

(4.4) (ii) Domain (DGint) {Init; each finite me obtained according to (4.1) and (4.2)
is completed}.

A data graph DG is called functional if

(4.5) for each interpretation int of DG and for each initialization Inite
ADomain (DGint) any two completed execution sequences determine the same
result.

If DG is functional then the function FDG,int :Domain (DGint) Range (DGint)=
{Result; Result determined by IniteDomain(DGint)} is uniquely determined.
Obviously if p IR] and q ILl, then FDGin represents a p/q-function, or, in other
words, a system of q p-ary functions with the same Domain (DGint).

LEMMA 4.1. If DG satisfies (2.5), that is, each v V-R has exactly one v-shrub,
then DG is functional

Proof. Let us assume DG is not functional and derive from it that DG does not
satisfy (2.5). From the assumption follows the existence of an interpretation, int, an
initialization of DG, and of two completed metapaths me and me* in DG by which
two different resultations are determined. It means there exists a leaf v, L such that
Valme (V) val*me* (V). These two different values are results of applications of the
same function int (nam (v,)), and therefore int (nam (vi)) had to be applied to two
different argument sets. According to (1.2)(iv) ar (v,)> 0, and according to (1.2)(ii)
idg (v)> 0. If there are two different v,-shrubs in me and me*, it is a contradiction
with (2.5), and the proof is finished. If there exists only one v,-shrub SH,, then there
must exist a root v: of SH,, such Valme (V/Z) z val*me* (Die) and i2 < i, and, one can
repeat the dilemma above and construct v,, v:,. , v#, such that 1 _-< ij <. < i2 < i <- n
such that Valme (Vii) val*m* (V/j) but each root w of the single SHoj satisfies w R.
This is possible only when there are two different vii-shrubs which violates (2.5), and
the proof is completed.

LEMMA 4.2. If DG is finite, acyclic and simple, but does not satisfy (2.5), then
DG is not functional

Proof. As DG does not satisfy (2.5), there exists a v0 in DG such that there are
two different Vo-shrubs SH and SH*o. Therefore there exist their roots v v* such
that (v, Vo) SHo, (Vl*, Vo) SH* and A(v, Vo) A(Vl*, Vo). Then among all such
vertices Vo one can choose one such that sDG, and sDG, either satisfy (2.5) or Vl e R
and v* R. Therefore SH, and SH, are determined uniquely (if Vl, Vl* R).

According to Lemma 2.2 there exists a rooted metapath me (SHwl,""", SHw,),
me*= (SHw,,’’’, SHw,*,,) in DG which is admissible and contains SHo, SH*o, respec-
tively, and therefore it must contain also SH, SHo,, respectively, which means v w,
v*=wwhere l_-<i_-<n, l<-j_-<m.

As sDG, satisfies (2.5) and SH is a v-shrub in sDGvI each shrub in DGo
," , SHw,) where 1 < <" < k i, be abelongs to me also, and let sme (SHw

subsequence of me which is a rooted metapath in sDG,. Similarly for sDG let
sme* (SHw,, , SHw%) where 1 <_- jl <" "< j L be a subsequence of me* of all
shrubs whicl belong to sDG.

Let Init (nam (v)) nam (v) for each v R and if v V- R, let int be a modi-
fied Herbrand interpretation defined as follows: int (nam (v),SH)=SH if SH=
{(u,v),...,(up, v)} and uR for i=l,...,p, while for uV-R: if
int (nam (u), SH,,) has been defined with edges in and with one single leaf u, then
int (nam (v), SH) SH P_ 6. By the given set of edges a data subgraph sDG (6’)
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is determined uniquely (with all the labelings of vertices and edges), and one defines
that the value int (nam (v), SHy) 3’ and int (ham (w), SHw) 3" are equal if sDG(3’)
and sDG(3") are data isomorphic, writing DG (3’) sDG (3").

Now one can execute DG once with the execution sequence me and the values
will be denoted by val (wi), and for the second time with the execution sequence me*,
when the values will be denoted by val* (wj). First we want to show val (Vo) val* (Vo).

If Vl, Vl R, then int (nam (Vo), SHyo) ’ where (Vl, Vo) (’, and int (nam (Vo),
SH*o)=6" where (v*,Vo)6". As nam(va)nam(v*) (according to (1.2)(i)),
val (Vo) sDG (3’) and val* (Vo) sDG (3") are not data isomorphic, and therefore
val (Vo) val* (Vo).

If either v R and V*l V-R, or v V-R and v* R then again val (Vo)
val* (Vo), because in any data isomorphism between sDG (3’) and sDG (3"), the shrub
SH must correspond to SH*o. Therefore v also corresponds to v*, but Vl is a root
of sDG (3’) while v* is not a root of sDG (3").

It remains the case Vl V-R and v V-R when SH and SH exist. Now
we can execute DG with the execution sequence sme with val (w)- sDGul and with
the execution sequence sme* .with val* (w)=sDGv. As DG is simple, sDGvI and

sDG are not data isomorphic (in virtue of Theorem 3.2), and therefore val (Vl)
val* (v*), from which it follows immediately that val (Vo) val* (Vo) again.

Thus we have shown val (Vo) val* (Vo), and it remains to find a leaf w L of DG
such that val (w)val* (w). Obviously each path in DG of maximal length and
containing Vo has such a leaf as its end vertex. From the properties of Herbrand
interpretation val (w) val* (w) follows immediately. Thus DG is not functional, which
is what we wanted to prove.

5. Acyclic data graphs with predicates. A conditional term (which is a generali-
zation of the usual term [Mann 74]), if X < Y then ((Y-X)*Z) else ((X- Y)+Z),
can be represented by an acyclic data graph with predicates in Fig. 5. la where predicate
shrubs (shrubs with roots labeled by a predicate name from PredNam) are admitted,
and new sorts of edges, called signal (control) edges, which leave predicate vertices,
and are labeled by truth values T, F, are added.

2. 3. 3. i. 2. .i. 2. 3.

4.. 2

0 ,,’o
’, " 9

a) b)

FIG. 5.1
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The two usual terms ((Y-X)*Z) and ((X- Y)+Z) are represented in Fig. 5.1b
by the corresponding extended data graphs, which determine, according to permit
execution rule (4.1) and (4.2), two functions. The extended predicate shrub in Fig.
5.1b causes that only certain partial functions with mutually disjoint domains are
needed, and the identification of their extended leaves represents the union of the two
partial functions.

In Fig. 5.1a two types of vertices are differentiated: signal-free, as 4, 7, 8, when
no signal edge is terminating in it, and signal-sensitive, as 5, 6 when at least one signal
edge is terminating in it. If v is a signal-sensitive vertex, then a v-shrub will, in addi-
tion, contain exactly one signal edge terminating in v. For example, SH5
{(1, 5), (2, 5), (4, 5)} and SH6 {(1, 6), (2, 6), (4, 6)} are such shrubs.

The leaf 9 in Fig. 5.1a is named by a variable (and not by a function or a predicate).
Nevertheless the concept of its shrub is applicable anyway: SH9-" {(7, 9)} and SH9*
{(8, 9)} are two different 9-shrubs. Therefore the condition (2.5) is too strong to play
the crucial role for the functionality.

A data graph with predicates DGP- (V, W, 6, tr, ar, nam, A) is a natural generali-
zation of a data graph without predicates DG =(V, & ar’,nam’, A’) satisfying (1.1)-
(1.3). Assuming R, L is the set of all roots, leaves, respectively, the following
requirements are assumed:

(5.1)

(5.2)

(i) V f’l W =; L c__ V;
(ii) 6___ V(Vt_J W); o-c__ W(VkJ W);
(iii) R f3 V L; R f’l L ; V- (R t_J L) ;
(iv) (t, t)C_ Gt_l rfor each t Vk.J W;
(v) there are no isolated vertices.

(i) ar (t) 0 for each R (_J L and ar (t) > 0 for each
t(VU W)-(RUL);

(ii) 0 -< ar (t) <- idg (t) for each V t_J W;
(iii) nam (t) =nam (u)=>ar (t) =ar (u) for all t, u Vt_J W;
(iv) t, u R and u=>nam (t) nam (u);
(v) v V-(Rt_JL), we W-R==>nam(v)nam(w).

(i) t(Vt_l W)-(RUL) and (u,t)e6=>l<=A(u,t)<=ar(t);
(ii) e L and (u, t) e 6 :=> A(u, t) 0;
(iii) 1 <-- <--ar (t)=>there exist u e V and (u, t) e 6 such that A(u, t) i;
(iv) e W and (t, u)e =:>either A(t, u)= T or A(t, u)= F;
(v) te W=>there exist Ul, u2e VU W and (t, Ul), (t, u2) e cr

such that A(t, Ul) A(t, u2).

Data graphs with predicates defined by (5.1)-(5.3) are actual generalizations of
conditional terms, because they need not be acyclic, but even within the class of acyclic
DGPs a real generalization exists. Fig. 5.2a represents an acyclic DGP which cannot
be expressed by any conditional term. The generalized term, if X < Y then if
((Y-X)*Z)<O then FLOOR ((Y-X)*Z) else CEILING ((-X)*Z) else ((X-
Y) + Z), is represented by an acyclic DGP in Fig. 5.2b. It is the best we can expect
because, obviously, the same function is defined by all of them, but if executed, the
term ((Y-X)*Z) will be evaluated three times as some vertices are split in several
parts.

On the other hand Fig. 5.2c represents a useless data graph with predicates because
the single 20-shrub SH2o {(’7, 20), (8, 20)} will never be permitted and executed, as
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:20.

a) b) c)

FIG. 5.2

the two edges (7, 20) and (8, 20) will never be permitted simultaneously in the same
rooted metapath.

Two v-shrubs SH and SH* in an acyclic DGP, where v e V U W) R, are called
incompatible if

(5.4) there exists i, 1 -<_ <- ar (v) such that for two edges (wi, v) e SH and (w*, v) e

SH* (ZX(wi, v) A(wi, v) i) there exist two usual paths pa (tl, t2," tn-1, tn)
and pa* (t*, t2*," , t’m-l, t’m) such that tl t*, (q, t2) e r, (t*, t2*) e cr and
A(tl, t2) A(t*, t2*).

The two 9-shrubs in Fig. 5.1a are incompatible.
LEMMA 5.1. If a DGP represents a cohditional term then after splitting each e R

into odg (t) new roots a finite tree arises from DGP. Further, odg (v)= 1 for each
v e V- R, and odg (w) 2 for each w e W- R. DGP does not satisfy (2.5) but satisfies
(5.5) e V U W) R and SHt # SH* :=>SHt and SH,* are incompatible.

Proof. The first assertion follows from the corresponding definition immediately,
and the satisfaction of (5.5) follows from the previous part, if one realizes that according
to (5.3)(ii) only leaves may not satisfy (2.5).

The concept and definition of rooted and leafed metapath in a DGP is formally
the same as presented in (2.1), and also the concept and definition of data homomorph-
ism concerning DGPs is presented in (3.1) and (3.2). The same lemmata as in 2
and 3 can be proved for DGPs.

The (serial) permit execution rule (4.1) and (4.2) can be applied to DGPs after
the adding of the corresponding definitions concerning interpretation and execution
of predicates. It is assumed {nam (v); ve V-(R U L)} =FunctNam, {nam (w); we
W-R} PredNam, {nam (t); e R U L} Var, and int: PredNam- Pred is an inter-
pretation of predicate names by actual predicates.
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The execution rules (4.1) and (4.2) must be augmented by the following way of
finding the permitting edges

(i*) if/)i--1 e V-L then Perm (Ei) (Perm (Ei-1) SHy,_1) U {(v- 1, t) e 6;
VU W};

(i**) if v_ e W-L then Perm (E) =(Perm (E_)-SHv,_,)t3 {(v_,
A (v_, t) val (v_) and e V W};

(i***) if v-i EL then Perm (E) (Perm (E_)-SH,_I);
here val (vi), vi e W, is a truth value defined according to

(4.1") (iii*) one selects vie Ready V/and one SH, {(to, vi), (tl, vi),. ., (tk, Vi)}
such that SH,

_
Perm (E); then one applies int (nam (v)) to

(val (nam (tl),. , val (nam (tk))), and denotes the result value
(which is either T or F) by val (v).

The definition of functionality (4.5) remains formally the same for DGPs also. If
acyclic and finite DGPs are concerned, the role of requirement (2.5) is replaced by
the weaker requirement (5.5), and the following assertions are proved in very similar
ways as previous Lemmata 4.1 and 4.2:

LEMMA 5.2. If a DGP satisfies (5.5), then it is functional.
LEMMA 5.3. If a DGP is finite, acyclic, simple but does not satisfy (5.5), then it

is not functional
Fig. 5.3a presents a possible data graph with predicates derived from a control

graph of a program segment

Get List(A,B,C);X=A+B; Y=C;ifA<BthenX=X+lelseA=A-1;

Z X+ Y; Put List(A),

where the double arrows are original control edges, viewed now as signal edges, and
I is the unary identity function. According to the execution rule (4.1) and (4.2), the
vertex 10 is permitted before and independently of the execution of 7. Therefore 10
should be forbidden to become permitted before the execution of 7, because if the
signal edge (7, 8) belonged to permitting edges then Fig. 5.3a would be not functional

a) b)

FIG. 5.3



566 KAREL CULIK

and might define a wrong value. To forbid 10 means to make it signal-sensitive, as is
the case in Fig. 5.3b, but it does not help very much, because 10 is still permitted before
8 is executed and therefore a wrong result may be obtained.

The actual solution is in Fig. 5.3c, where the vertex 10 is split into two vertices
10’ and 10" each of which is control-sensitive, but incompatible signal edges lead to
them from 7. Similarly, the vertex 9 is also split into two vertices 9’ and 9*. In fact
the two shrubs of 11 and of 12 in Fig. 5.3c are incompatible according to (5.4), while
the shrubs of 10 and 12 in Fig. 5.3a or 5.3b are not, and Figs. 5.3a and 5.3b are not
functional and do not satisfy (5.5).

There seems to be no need to introduce auxiliary vertices (called selector and
distributor in [DaKe 82], [Denn 74]), which do not directly correspond to functions
and predicates.

Data graphs with predicates, when interpreted and initialized, allow one to deter-
mine decisions, which are unions of domain disjoint functions. By each execution
sequence (rooted and leafed metapaths) of a finite and acyclic DGP, a set of leaves is
determined, and one can partition the set of all execution sequences into classes
according to mutual disjoint sets of leaves L1, L2,’’’, Lh, which are determined by
them. Where 1 <-h =< 2 k, h is called the decision degree, and k >-0 is the number of
predicate vertices in DGP. The decisions are a crucial component of repetitions, but
they are not investigated further.

6. Nonacyelic data graphs. From the point of view of execution, and also of graph
theory, data graphs which are not acyclic are of the greatest importance and interest;
they are obviously also the most complex. Closed metapaths which occur in nonacyclic
data graphs correspond to repetitions from the execution point of view.

The repetition is a new and independent feature which requires some modifications
concerning the execution rule and the data graph with predicate itself.

Each DGP may be provided with a subset rep___ 6 U or, called a set of repeating
edges, such that

(6.1) (i) (u,t)rep=>ar(t)>l and there exists (v,t)6Ur such that A(u,t)
A(v, t) and (v, t) rep;

(ii) (u,t)erep==>there exists a closed metapath in DGP containing the
vertex t.

The (serial) permit execution rule for a DGP { V, W, 6, r, rep, ar, nam, A), which
is interpreted by int and initialized by Init, is defined as follows:

(6.2) (i) at the beginning Perm (El) {(u, t) 6 U r; u R};
(ii) then Ready (V1) { V t.J W; there exists a t-shrub SHt such that SH,

___
Perm (El)};

(iii) one selects a tl Ready (V1) and one of its SHt such that SHtl c__ Perm (El),
where either tl is a signal-free and SHI={(Ul, tl),’’", (Uk, tl)}, or t is
a signal-sensitive and SHtl {(u0, q), (Ul, tl)," , (Uk, tl)}, (U0, tl) r

while (ui, tl) 6 for = 1, 2,..., k; then one applies int (nam (tl)) to
Init (nam (ul)),""", Init (nam (Uk)), and denotes the result of application
by val (tl) which is either a value from val, or T or F (if int (nam (fi)) is
a predicate).

(6.3) assuming Perm(E_), Ready(V_l), (SH,1,...,SH,_) and (val(tl),’",
val (t_l)) has been already determined, and i- 1 _-> 1,

(i) one defines Perm (El)= (Perm (Ei_I)-(SHt,_-rep))(_J E where
(a) E={(ti_l,u)6; u Vt_J W} if ti- V-L;
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(b) E {(ti-1, U) G or; A(ti-1, U)=val (t-l) and u e VU W} if t-i W-L;
(c) E if ti-1 L;

(ii) then Ready (V) ={te VU W; there exists a t-shrub SH, such that SH, c_

Perm (E)}; and either Ready (V) , and
(iii) one selects teReady (V) and one its t-shrub SH,, such that

Perm (E); then one applies int (ham (t)) to (val (u),..., val (Uk)) where
SH,, {(uo, t), (u, t),..., (u, t)} and (u0, t)e r is omitted when t is
not signal-sensitive, and val (ui)= Init (u) if ue R; finally the result of
the application of im (nam (t)) is denoted by val (t); and after that one
repeats (6.3) again;
or Ready (V) , and

(iv) one terminates the construction of me and Valme, and defines the resultation
Result (t)= val (t) for each t e L with the greatest index i.

Fig. 6.1a represents a nonacyclic DGP provided with rep= {(2, 4), (3, 6)} which
satisfies (6.1)(i) and also (ii) because me=(SH4, SH6, SH8) is a closed metapath
satisfying (2.4) if SH4 {(2, 4), (6, 4)}, SH6 {(4, 6), (8, 6), (3, 6)} and SH8 {(6, 8)},
and IDENT is unary identity function.

a) b)

FIG. 6.1

Fig. 6.1a is a functional DGP but the vertex 4 does not satisfy either (2.5) or
(5.5), and therefore even a weaker condition than (5.5) should be found to characterize
the functionality of DGPs which are not acyclic.

Fig. 6.1b presents a nonacyclic DG without predicates, which never terminates
and therefore the functionality condition (4.5) is not applicable directly. Nevertheless
its suitable weakening such that the same sequence of values of leaves v9 and vlO
should be determined by all execution sequences, is satisfied. Unfortunately again (5.5)
is not satisfied.

The problem remains to characterize the functionality of nonacyclic DGPs.

7. Applications in computer science and recursive function theory. Data graphs
with or without predicates are motivated by data flow analysis or programs. They are
an alternative to program (flowchart) schemata, a special sort of algorithm by which
functions can be defined (computed). Data graphs are not expected to be algorithms
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suitable for problem solving and programming [Denn 74], but are suitable for parallel
machines, and for theoretical and optimizing purposes.

Theoretically it seems to be an interesting approach to study various compositions
of algorithms instead of compositions of functions. Different types of vertex and edge
identifications (concerning metagraphs) can be used [Culi 83]. It seems to be a way
to clarify recursive program schemes [Mann 74], and to differentiate a recursion which
does not depend on a well-founded universe.

[BoMu 76]

[Culi 78]

[Culi 83]

[DaKe 82]

[Denn 74]

[Grze 74]
[Klee 67]
[Koni 36]
[Mann 74]
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ON THE ENCODING OF RELATIONS BY GRAPHS*

YORAM MOSES? AND AMOS NOY:I:

Abstract. Encodings of relations by graphs are viewed as 1-1 mappings from relations to directed
graphs. A measure called the size of such encodings is defined. A subclass of encodings called translations
is introduced. These are essentially encodings decodable by a first order formula. Lower bounds on their
sizes are proven. We present a translation whose size is asymptotically equal to the lower bound, differing
from it only in low order terms.
A closely related notion of perfect encoding is defined as being a 1-1 and onto mapping, that also has

the interesting property that every edge in an encoding graph corresponds directly to a tuple in the original
relation, and vice-versa. A perfect encoding is constructed and using it, a classical result about random
graphs is converted into a result about random relations. It is believed that many other results can be
similarly converted using these notions.

Generalizations of this work to encodings of relations by relations of lower degree are described, and
analogous methods are shown to work.

AMS subject classifications. 04A05, 05C99

1. Introduction. It is well known that k-ary relations can be encoded by binary
relations. Most readers will have come across this fact, but will not have ever seen or
constructed such encodings. It is not very hard to come up with these encodings,
although in many cases initial attempts are flawed. It is much harder to come up with
efficient ones, i.e., encodings in which the graph that encodes a relation has a small
number of nodes. It is natural to ask whether actual encodings can give us interesting
information, e.g. show relationships between k-ary relations and graphs, and allow us
to translate results in the theory of graphs to the theory of k-ary relations, and
vice-versa.

In this paper, we investigate specific encodings of k-ary relations by graphs. We
present a sequence of encodings, each of which is interesting in its own right.

An encoding of the k-ary relations by graphs is defined to be an injection from
the k-ary relations to graphs. This is a very general notion, and we refine it by defining
the notion of a translation, that is, roughly, an encoding that can be decoded by a first
order formula. A notion of the size of an encoding is defined, and we prove lower
bounds on the sizes of general encodings and of translations.

In 3 we present specific translations of decreasing sizes possessing interesting
combinatorial properties. Our two last encodings have asymptotic sizes that match the
lower bound, but a small gap in lower order terms remains.

In 4 we introduce the notion of a perfect encoding, a small encoding in which
every tuple in the encoded relation corresponds to an edge in the graph that encodes
it and vice versa. Using the constructions of 3, we present perfect encodings. We
show an example due to E. Shamir that derives a result regarding selection sets in
random relations from a classical result on random graphs, using one of our translations.

Section 5 discusses generalizations of this work to the case of encoding k-ary
relations by/-ary relations (l- k).
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2. Definitions and preliminary results. We call G (V, E), where V is a finite
set and E c V2, a graph. Similarly, R (A, P), with A a finite set and Pc Ak is called
a k-ary relation (k-> 2). Denote by and k the sets of all graphs and all k-ary
relations respectively. By (n) (resp. (n)) we mean the set of all graphs (resp.
k-ary relations) over n elements. The sets of vertices V (resp. A) will in this case
have cardinality n. N denotes the natural numbers.

A 1-1 mapping r: is called an encoding of the k-ary relations by graphs
(abbrev. k-encoding). For a k-encoding o-, we define size: N N as follows:

size =min {polynomial p(n): VnElm m > n ^ o’(k(m)) (p(m))}.

By our definition { (m)},x and {Yk(n)},x are towers of sets, i.e. cg(i) qd(i + 1)
and (j)k(]+l), i,]=0, 1,"" ". We identify two graphs if they have the same
set of edges, and similarly for relations. Given a set B we write tr(B) as shorthand
for {or(b): b B}.

LEMMA 1. Let tr be a k-encoding, n > O. Then sized(n) >- n k/2.
nkProof. By counting, [(n)[ 2 and [Cg(m)[ 2 For m sized(n), tr" k(n)-

( > 2 > k k/2,m),andsnceris l-l, wehave2 =2 m =n,and m_->n i.e. size(n)->_
n /2. Q.E.D.

Given any pair of enumerations, one for and one for 3, there is a canonical
encoding corresponding to that pairthe one that maps the first relation to the first
graph etc. However, these encodings may very well be quite random and unnatural.
A more natural thing to ask for is that the relation be definable in terms of the graph,
or "decodable" from it in a prescribed way. This motivates the following definitions:

A pair of formulas 6 ((x), (xl,""", x)), where and are both first order
formulas in a language with equality and a single binary predicate E, is called a
k-decoder. We say that E(x, y) is true (or satisfied) in a graph G, denoted GE(x, y),
if the edge (x, y) occurs in G. More elaborate formulas are interpreted accordingly.

Given a k-decoder 8 as above, and a graph G (V, E), let

and

A. { v V: G(v)},

P, ={(v,’", vi)" G(v, vi) ^ l--jk

We say that R. =(A,, P.) is the k-ary relation decoded by 8 from G. 8 can
therefore be viewed as a mapping 8:3 5, where 8(G) R,.

A k-encoding - is called a k-translation if there is a fixed k-encoder 8, such that
for all R e , 8,(-(R))=R. 6 is therefore an inverse of ’. This requires that if
r(R) G, for R (A, P), G (V, E), then A c V and 6, can recognize A in V, and
decode P, both solely from the structure of G.

Gaifman observed a stricter lower bound for translations than the one shown for
general encodings in Lemma 1"

LEMMA 2. Let r be a k-)translation, n > O. Then

size,(n) -> n
k-2 k/2+l log en_k/2+ + o(n_k/2+l)k/2 +
4

n- log n +
2

Proof. Let 6 (, ) be -’s decoder. There are (z,)) ways to choose n points
from sized(n). 6’s chooses them in a single predetermined way. For each encoding
graph there are therefore (size(,)) graphs isomorphic to it, having the same set of
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vertices, that do not encode a relation. We now have

(size(n))2size,(n)2 2nk"
n

Substituting rig ol(n) for size.(n), and taking logs of both sides, we get"

nk/e + a( n))2 >= lg2 ( nk/e + t( n)) +
2nk/ea(n) + a(n)e >--loge ( nk/e+na(n)) loge

(nk/2 + a(n)) (rt + a(n)- n + 1)

-> loge
(nk/Z+a(n)--n)

n

SO

n log2 (nk/2+a(n)--n)--log2 n! >- n log2 (nk/2--n)--log2 n!

n log2 nk/2+n log2 e-n log2 n (--1)n log2 n+n log2 e,

2nk/2a(n)+a(n)2>=(-l)n log2 n+n log2 e,

a(n)2+2nk/2a(n)--( 1)n log2 n--n log2 e-->_O,

a(n)>--n

k/2

k/2n

k/2 + /nk + (-- l) n log2 n + n loge e

( / k-2nlgen nlog2e)-1+ 1+
2 n k +

( log2e k+a)k 2
rt- k+l log. n + n--1+1+

4 2

k-2 -k/2+l loge e k/2+l

4
n logen+

2
n-

Now, by our substitution, size(n) is as claimed. Q.E.D.
Notice that Lemma 2 is still based on a counting argument, and not on the

expressive power of our first order language. We believe that this lower bound can
be improved on. We conjecture that the true lower bound is of the form n k/2 +(nl/2),
although this is an open question. Gaifman [3] has a characterization of first order
properties definable in graphs, and it is an interesting question whether it can be used
to strengthen this lower bound.

3. Translations. We now set out to look for upper bounds on size(n), by con-
structing explicit translations. Our examples will be for k 3, but will generalize to
any k in a natural way. We fix a ternary relation R (A, P), with IAI n.

Zl: The totem pole translation. For every element ai A, we add two auxiliary
nodes fi ("first"i), and si ("second"i), and connect the three as in Fig. l(a). In the
general case, we would add k-1 auxiliary nodes. We call this construction a totem
pole. For each tuple (ai, aj, ak) P we add a ("relational") node rqk that points at fi,
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r333

si

ai
al a2 a3

(a) A totem-pole of height 3. (b) Translation of {(a 1, a2, a3}, (a3, a2, a3)}.

FIG. 1. ’1" The totem-pole translation.

sj and ak. Each node in the totem pole acts as a place holder, and an edge pointing
at it specifies what place the ai at its bottom has in the tuple.

More formally, define G rl (R) as G V, E), where

V={fi, si, ai" ai A)U{rijk" (ai, a, ak)P),

E {(rq, fi), (rq, s), (rq, a)" (ai, aj, ak) P}U {(fi, si), (si, ai)" ai A}.

Figure l(b) is an example of rl(R) for R =(A,P) with A={1,2,3}, and P=
{(1,2,3),(3,3,3)}.

In order to show that ’1 is a translation, we must supply an adequate decoder:
Define 61 (1, 1), where

l(x)=- Vy. -E(x, y),

IYl(X, y, Z) 1’ fl, Sl, S2. E(’ fl) ^ E(f, sl) ^ E(sl, x) ^ E(r,se) ^ E(se, y) ^ E(r, z).

It is easy to check that 61 is a decoder for ’1. We need O(n) nodes for an
encoding with rl, because every tuple in the original relation is represented by a node
in the encoding graph. Since for every a e A we add k- 1 nodes to the graph, we have
sizel(n n + kn.

re: The bitotem matrix translation. This translation involves a use of rl that is
based on the following idea: Assume n he for an appropriate h. Let us organize the
elements of A in an h x h matrix. Every (k-)tuple over elements of A induces a
corresponding tuple over their row coordinates, and similarly over their column
coordinates. This correspondence between tuples in the relation and pairs of (row,
column) tuples in the matrix is 1-1 and onto, so that every such pair of tuples uniquely
determines a tuple in the relation. For notational clarity we assume that the elements
of A are all alh a21 ahh. TO represent each row and each column coordinate,
we add k new nodes connected as in Fig. 1 (a) (a totem pole on each coordinate, rather
than on each element). For every tuple in P, construct the induced relational elements
over the row totems and over the column totems. Then add an edge from the row
relational node to the column one. Figure 2(a) shows how to encode (a11, a2, a2).
The bottom of each row (resp. column) totem points at all the elements of its row
(resp. column). An edge from a row relational node rri, to a column relational crhi
represents the tuple (ah, a, a). This is clearly well-defined and unambiguous, and
all we need to show is that it can be decoded by some decoder 62. Define 62 --((I)2, XI2)
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cr

rrl21

FIG. 2(a). The bitotem matrix translation.

FIG. 2(b). Gr--the "relational" subgraph.
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by:

(I)2(X) (I)I(X) Vy. --E(x, y),

third (x)= =ly. 2(Y) ^ E(x, y),

second (x) By. third (y) ^ E(x, y) ^ outdegree (x) 1,

first (x) -= :ly. second (y) ^ E(x, y) ^ outdegree (x) 1,

relational (x)-= x points at a "third", a "second" and a "first",

row-relational (x)= x points at a relational,

2(x, y, z) i two relational elements, and 12 others, such that the
construction described above holds.

Writing 2 explicitly is somewhat long, but straightforward from the above definitions.
The size of z2 is 2hk+ h2+ 2kh, or 2nk/2+ n + 2kx/-. That is because (again we

need only consider the encoding of the full relation over A) we have h row coordinates,
and by our original zl there are h k + kh vertices representing the k-ary relations over
the rows. The same holds for the columns, and we get the extra h2 vertices from the
elements of A that are in the matrix.

z3: The totem matrix translation. A slight modification of ’2; let R k(n),
G z2(R). Observe the subgraph Gr c G, the subgraph of G generated by the relational
nodes (see Fig. 2(b)). This is a bipartite graph, where every edge goes from a
row-relational node to a column-relational one. The basic idea is that we can "fold"
this bipartite graph into an unrestricted graph by interpreting each relational node as
a row-relational node whenever it is the source of an edge, and as a column-relational
node whenever it is a sink. We do this by having only one set of coordinates (see Fig.
3), having the "third" element in each coordinate point at a column in the matrix,
and the "second" point at a row. Now an edge E(ri, i2i3, rj, j23) corresponds to the

(a, a21 a22)

rl12 r122

FIG. 3. T2: The totem matrix translation.
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original triple (ailh, aiz]2, ai3]3). Figure 3 shows how (a11, a21, a22) is encoded. The reader
can modify 62 to get 63. There are no new notions involved, and it is a straightforward
modification.

Since we now have only one set of h coordinates and the relational elements over
them, we arrive at size3(n) nk/2-1 n + kn 1/2.

r4: The diagonal translation. In this last translation we try to reduce the size as
much as we can. The reader that is not interested in this matter will lose nothing
relevant to later parts by skipping it.

For our final translation, geared to reduce the number of nodes used for the
coordinates, we use the following observations"

(a) If the coordinates are ordered then totem poles are not needed anymore. A
relational element need only point at the coordinates it involves, and indicate in what
order it treats them. This indication must make unambiguous the cases when the
relational element points at less than k coordinates. This specification can be done by
singling out log2 k k! (k + 1) log2 k nodes, and having each relational element point
at a subset of them. Note that this trick reduces the number of nodes per coordinate,
at the cost of making the size of 64 very large (many disjuncts appear in it--doing
things the straightforward way, (k!)2). Only one coordinate is needed for every row and
one for every column (2/ vs. k4). The coordinates can be ordered by having each
one of them point at all the coordinates it precedes (this way, given two coordinates,
C > C2 iff E (ca, C2)).

(b) After applying (a) to the totem matrix translation, we have 2x/n nodes devoted
to the coordinates. If we organize our original nodes in the upper triangle of a matrix
then we can use the elements on the diagonal for coordinates. Specifying two coordin-
ates will unambiguously determine a single element of our upper triangle. Specifying
the same coordinate twice determines the diagonal element serving as the coordinate
itself. This requires only x/n coordinates, instead of 2x/.

(c) We can use the matrix elements that are not on the diagonal as relational
vertices. This reduces the size of our translations by n-x/2n.

We do need to add a few nodes to the graph that will serve to distinguish between
different kinds of nodes. We will need to distinguish diagonal nodes, nondiagonal
matrix nodes, nonmatrix relational nodes. We can partition the nodes of a graph
unambiguously in a first order definable manner by building what we call a D-tree in
which each vertex is definable, and then having those vertices each stand for a part in
the partition, and point at all the members of that part. The idea in constructing a

D-tree is to begin with a root and have it point to a single son. This son now will have
two sons, one that points back at him and one that does not. This can now be extended
to a vertex definable binary tree, or the arity of the nodes can be increased, if we wish,
by more careful schemes of backwards pointing. Every nontree node in the graph
should be pointed at by some vertex of the D-tree, to avoid ambiguity. In our case,
corresponding to part (a), one of the D-tree vertices will start a (k+ 1)log2 k ring
that will be used by the relational elements to indicate the tuple ordering among their
coordinates.

Figure 4 is an example of such an encoding. We will again refrain from constructing
t4 explicitly. The interested reader can follow our description and fill in the formal
details.

We now have: size4(n) n k/2 +x/n 1/2 _[.. k + 1) log2 k + o( n 1/2 + k). We have thus
arrived at an upper bound with the same asymptotic behavior as our lower bounds
from Lemmas I and 2. By padding the matrix whenever n is not a square or a triangular
number, this fact does not change, although the expression for the size then is not as
small and as clean as the above. In fact, size,4(n) above is quite close to the lower
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D-tree

FIG. 4. The diagonal translation.

bound of Lemma 2. As we have mentioned earlier, we conjecture that the true lower
bound is of the form n k/2+ f(nl/2), although this is still an open question.

4. Perfect encodings and applications. Lemma 1 states that for any encoding r,
size(n) >= n k/2. We call an encoding perfect if equality holds and furthermore every
edge in the graph corresponds to a tuple in the relation. Do concise perfect encodings
exist?

Lemma 2 implies that translations cannnot be perfect encodings. On the other
hand, since an encoding is just a 1-1 mapping: k-> , given effective enumerations
of and of of the right type, one can construct a perfect encoding. These
enumerations, as stated earlier, might be neither concise nor natural.

Our constructions in the bitotem and totem matrix translations give an interesting
way of relating relations to graphs. Let us call the subgraph of an encoding graph
generated by the relational nodes alone, its relational subgraph (denoted Gr). Notice
that its edges are in 1-1 correspondence with the tuples in the original relation. An
edge appears in G if and only if its corresponding tuple appears in the relation. In
the bitotem case Gr is a bipartite graph with <=n/ nodes in each part. In the totem
matrix case this subgraph has _-< n /2 nodes. In both cases, every node in Gr corresponds
to a k-tuple of "half elements", and each edge makes a k-tuple out of two such
creatures. The main difference is that in the bitotem case we have a bipartite graph,
whereas in the totem matrix case, an unrestricted one.

The encoding mapping each relation to the Gr subgraph of its totem matrix graph
is therefore a perfect encoding. Another perfect encoding that comes to mind is an
encoding where every node in the graph would correspond to a k/2-tuple, and an
edge would just specify how to glue them together. Of course, for an odd k a node
would stand for a ([k/2] and a half)-tuple where the half would be treated via a matrix.
It is easy to see how such an encoding leads to translations parallel to our bitotem
and totem matrix ones. In the bitotem parallel, we would need totem-poles of only
half the height.

In fact, at this point it should be clear that there are many alternative ways to
define encodings, translations and perfect encodings, and the machinery developed in
3 can form the conceptual basis for many of them.
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A very pleasing property of perfect encodings is that generating random graphs
and generating random relations now become equivalent matters, the perfect encoding
supplying the means to convert one into the other.

The Grs in the bitotem case are the bipartite equivalent of a perfect encoding.
The bitotem and totem matrix cases are so closely related that roughly anything you
wish to do with one you can do with the other, and in some cases it will be easier to
work with the bitotem encoding. In the bitotem case a random bipartite graph will
correspond to a random relation.

E. Shamir suggested the following application"
In the bitotem setting, as we have mentioned, Gr is a bipartite graph. It is known

[1] that if we choose at random m log m edges between two disjoint sets of vertices
V1 and V2 of cardinality m, we will have a matching with probability 1 as m .
If we take all (n k/2) row-relational nodes to be V1, the column-relational ones to be
V2, we would have m n k/2, and with n k/2 log nk/2( (k/2)n k/2 log n) random edges,
there would be a matching. The property induced by a matching in the G on the
encoded relation is that every row and every column would be represented at least
nk-1/2 times in every component in the relation (a "selection set" with threshold
nk-)/2). A somewhat more delicate analysis can be done to show that (1/2k)x/ log n
k-tuples chosen at random are enough to promise that at least one member of each
row and column appear in the relation (again, with probability - 1 as n ).

5. Generalizations. All the translations presented in 3 generalize in a natural
way from k 3 to any k >- 2, and from encoding k-ary relations in graphs to the general
case of encoding k-ary relations in/-ary relations, where k -> 2. In the case of > 2,
an /-cube would replace our matrix, and the primary diagonal of the /-cube would
replace the matrix’s diagonal. The sizes of the totem /-cube and the /-cube diagonal
translations would now be:

size(n)k,l=nk/t+n+kn /l, siZen(n)k,l=nk/l+(kn)l/l+o(nl/l+k).
Fagin [2] has independently shown equivalent ways of translating from k to k- 1

in O(nk/k-a).
6. Conclusions. We have defined the notion of an encoding of k-ary relations by

graphs and introduced the notions of translations, perfect encodings and the size of
an encoding. Lower bounds on the sizes of encodings and translations were given, and
encodings that match the lower bound were presented along with translations that are
larger than the lower bound only in lower order terms. A conjecture regarding the
possible strengthening of the lower bound for translations was given, hinting at the
connection this problem has to first order expressiveness. An example of how our
constructions may be used to relate properties of graphs to those of relations was
given. Perfect encodings provide a simple and straightforward way to convert a random
graph generator into a random relation generator.

We believe that the notions introduced here may help convert between properties
of graphs and those of relations. Relatively little has been done in pursuing this path.
Our encodings and others give insight into the fundamental links and differences
between graphs and k-ary relations.
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THRESHOLD DIMENSION OF GRAPHS*

MARGARET B. COZZENS? AND ROCHELLE LEIBOWITZ:I:

Abstract. This paper examines the problem of determining the threshold dimension of a graph. There
exists numerous characterizations of threshold graphs, those graphs of threshold dimension one, as well as
fast polynomial time algorithms to test if a graph is a threshold graph. Yannakakis [1982] proved that, in
general, determining the threshold dimension is a hard problem by proving that for fixed k -> 3, determining
if the threshold dimension of a graph is less than or equal to k is an NP-complete problem. In this paper
we compute the threshold dimension of several classes of graphs and obtain upper and lower bounds on
the threshold dimension of a graph. Counterexamples to a conjecture on threshold dimension are provided.

AMS subject classification. 05

1. Threshold graphs.
1.1. Introduction. Threshold graphs were introduced by Chvfital and Hammer

in 1973 as a class of graphs for which there is a particularly simple method of
distinguishing independent sets from nonindependent sets. Let G be a graph with
vertex set: {vl, v2, v3,’", vn}, and edge set E. For any subset S of V, define a
characteristic vector (xl, x2,"’, xn) such that

10 if vieS,
xi if vi S,

1, 2, n.

Each subset S of V corresponds to a corner of the unit hypercube in En. We want to
know if a hyperplane exists that cuts n-space in half so that the corners of the hypercube
corresponding to independent sets lie on one side of the hyperplane and the corners
of the hypercube corresponding to nonindependent sets lie on the other side of the
hyperplane. If such a hyperplane exists, the graph is said to be a threshold graph.
Equivalently, G (V, E) is a threshold graph if there exists a threshold assignment
(a, t) consisting of a labeling a of the vertices by nonnegative integers and an integer
threshold such that

(1) S is independent :> Y a(v)<-t (So__ V).
tS

Clearly, complete graphs are threshold graphs, by taking a (v)= 1 for each v e V and
t= 1. The stars K,n are also threshold graphs by taking a(v)=degree of v, and t= n.
We will see further examples of threshold graphs later in this paper.

There exist many characterizations of threshold graphs. We will present only a
few of them here, notably the ones most frequently used. Threshold graphs have a
nice forbidden subgraph characterization as seen in the first theorem.

THEOREM 1 (Chvfital and Hammer [1973]). A graph is a threshold graph if and
only if it has no generated subgraphs isomorphic to 2K2, P3, or Z4. These graphs are
shown in Fig. 1.

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

5" Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
Department of Mathematics, Wheaton College, Norton, Massachusetts 02766.
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2K2 Z

FIG. 1

Equivalently, Theorem 1 could be expressed as follows.
COROLLARY 1.1. A graph is a threshold graph if and only if it does not contain

the configuration shown in Fig. 2, where no line between vertices allows for the possibility
of the edge existing or not.

edge exists.
edge does not exist

FIG. 2

THEOREM 2 (Chwital and Hammer [1973]). A graph is a threshold graph if and
only if for each subset S of G there exists a vertex u S such that u is adjacent to all
vertices in S-{ u} or to none of them.

Both Theorems 1 and 2 are testable conditions. It is easy to see from either of
these theorems that the complement of a threshold graph is a threshold graph, and
that any generated subgraph of a threshold graph is a threshold graph.

There are two types of orderings related to threshold graphs. For a graph
G (V, E), define an equivalence relation R on the vertices of G by:

xRy : N(x)-{y} N(y)-{x}

where N(x) is the set of vertices adjacent to x. We can now define a partial order on
the set of equivalence classes Ea of R, and call it the vicinal preorder associated with
G:

E,pEbCr>Eo # Eb and N(b) N(a)t.J{a}.

For example, if G is the graph shown in Fig. 3, then the equivalence classes are:
Ea={a,c}=Ec, Eb={b}, Ed={d}, and Ee={e}. Thus, we can take the set of
equivalence classes to be {E Eb, Ed, Ee} and the partial order is {(E, Ee), (Ea, Ee)
{E, Eb)}.

e
d

FIG. 3
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THEOREM 3 (Peled and Simeone [1981]). A graph G is a threshold graph if and
only if the vicinal preorder associated with G is a linear order.

It is possible to associate with each threshold graph G a second type of ordering,
called an M-ordering and a corresponding 0-1 sequence. An ordering of the vertices
hi1, U2, U3, U is an M-ordering of V(G) with M-sequence M1, ME," Mn-1 if for
i<j, {ui, uj}E(G)zMi= 1 and {ui, uj}e!E(G)CzM=O. Figure 4 gives an example
of a threshold graph with an M-ordering and associated M-sequence.

a d

b e

M-ordering: c, b, a, e, d
M-sequence: 1, O, O,

FIG. 4

If G is a threshold graph, Theorem 2 provides us with a way to get an M-ordering
with corresponding M-sequence. By Theorem 2, there exists a vertex u V(G) such
that u is adjacent to every vertex of G, or none of the vertices of G. Choose this
vertex and call it Ul. If Ul is adjacent to all vertices of G then MI= 1, otherwise
M1 =0. Choose a vertex in V-{u1} that is adjacent to all vertices in V-{u1} or to
no vertex in V-{ul} and call it u2 with M2 1 in the former case, M2 0 in the latter
case. We continue in this manner to get an M-ordering of vertices, ul, u:z,’",
with a corresponding M-sequence. In general, the M-orderings of the vertices are not
unique. For example, the graph shown in Fig. 4 has three other M-orderings c, a, b,
d, e; c, a, b, e, d; and c, b, a, d, e. But all four M-orderings have the same M-sequence
1, 0, 0, 1. In fact the M-sequence is always unique. In the next section we give an
application of threshold graphs and M-orderings to attitude measurement theory.

Threshold graphs have been studied by numerous authors and various applications
exist in addition to the one described in the next section. Golumbic [1980] discusses
an application to synchronized parallel processing due to Henderson and Zalcstein
[1977]. For a more extensive summary of the properties and characterizations of
threshold graphs, the reader should see Golumbic [1980].

1.2. Guttman scales. In this section we present an application of M-orderings of
threshold graphs to finding Guttman scales. A Guttman scale is a linear ordering of
subjects and items such that a subject agrees with all items following it and disagrees
with all items preceding it. Guttman scales have been used widely in educational testing,
opinion scaling, etc. We will define a graph Gp and show that a Guttman scale exists
if and only if Gp is a threshold graph. Furthermore, if Gp is a threshold graph, a certain
kind of M-ordering of Gp is a Guttman scale.

THEOREM 4. A Guttman scale exists if and only if it is not the case that subject x
agrees with item a but not item b while subject y agrees with b but not a.

Form a bipartite graph P representing the situation as follows: V(P) T U I where
T is the set of subjects and I is the set of items. There exists an edge between x e T
and a I if and only if x agrees with a. Rephrasing Theorem 4, we have:

COROLLARY 4.1. A Guttman scale exists if and only if 2K2 is not a generated
subgraph of P.
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The above theorem and corollary give tests for determining the existence of a
Guttman scale but they do not give an ordering of the subjects and items. A certain
kind of M-ordering of a particular threshold graph, called Gp, will be a Guttman scale.
Gp is formed from P by connecting every pair of subjects. That is, T generates a clique
of 6..

LEMMA 1. 2K2 and Z4 are never generated subgraphs of Gp.
THEOREM 5. P has a Guttman scale if and only if Gp is a threshold graph.
Proof. Suppose P does not have a Guttman scale. Then 2K2 is a generated subgraph

of P. Now P3 is a generated subgraph of Gp and Gp is not a threshold graph.
Suppose Gp is not a threshold graph. By Lemma 1, Gp contains P3 as a generated

subgraph. Keeping in mind that T generates a clique of Gp and I is a set of isolated
vertices, we must have both u and v as subjects and both r and s as items. Hence 2K2
is a generated subgraph of P, implying that P does not have a Guttman scale by
Corollary 4.1. Q.E.D.

We can assume that no two subjects agree with exactly the same items and no
two items are agreed with by exactly the same subjects. For if a Guttman scale exists
on the remaining vertices, all subjects agreeing with exactly the same items can be
placed consecutively, and similarly for all items agreed with by exactly the same
subjects. Thus, we have a Guttman scale on all vertices. And conversely, if a Guttman
scale exists on all vertices, then a Guttman scale exists on a subset of vertices.

COROLLARY 5.1. Suppose that no two subjects agree with exactly the same items
and no two items are agreed with by exactly the same subjects. Suppose Gp is a threshold
graph. Then the following two statements are true:

a) There exists an M-ordering of Gp, Ul, u2," U,-l, u,, satisfying the following
condition"

{ u,_ 1, u, } E (Gp) if and only if u,_ is a subject.

b) Suppose M Ul, bl2, bln-1, U is an M-ordering of Gp satisfying (*). Then
M defines a Guttman scale.

Proof. (a) Suppose M Ul, u2," , u,-1, u, is an M-ordering of Gp which does
not satisfy (*). Thus, either {u,-1, u,} E(Gp) and u,_l is an item or {u,-1, u,} E(Gp)
and u,-1 is a subject. Suppose {u,_, u,} E(Gp) and u,-1 is an item. Since the set of
items forms an independent set, u, must be a subject. Note that for any M-ordering
Vl, v2,’’ ", v,_, v, of a threshold graph G, v, v2,’’ ", v,-2, v,, v,-1 is another M-
ordering of G. Thus, N Ul, u2," , un-2, u,, u,-1 is an M-ordering of Gp. It is easy
to see that N satisfies (*). A similar argument follows for {u,-1, Un}: E(Gp) and u,-1,
a subject.

(b) We assume that ITI >= 2 and III >= 2, otherwise we must have a Guttman scale
and it is trivial to find the ordering. It is sufficient to show that for any M-ordering
M Ul, u2," , u, satisfying (*), its associated M-sequence satisfies for n"

Mi 0 :> ui is an item,

Mi 1 , ui is a subject.

The proof is by induction on i. The result is obvious for i= 1 since ITI => 2 and
III >--2. Assume the result is true for all ] < i. Show it for i. Let <- n-1. Suppose u
is a subject. If a subject Uk follows u in M, then M 1 since {u, Uk} E(Gp). If no
subject follows ui in M, then Uk is an item for all k > i. If < n- 1, then, in particular,
u,-1 and un are items. Since M 1 for all subjects j with j < i, then either Mi 1 or
M 0 imply that un-i and un are agreed with by exactly the same subjects, which is
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a contradiction. Thus i= n- 1 and so, by (*), Mi 1. The argument is similar if ui is
an item. Q.E.D.

We illustrate an example in Fig. 5. Note that no two subjects agree with exactly
the same items and no two items are agreed with by exactly the same subjects. Also,
{Un-1, Un}-E(Gp) and Un_ is an item, where Un_ -a2 and Un--X4. Gp is a threshold
graph and the given M-ordering is a Guttman scale.

Xl T

p=

a a30 I
a4

Xl T

Gp

a a2 0 a3 I
a4

a3, x3 al, x1, a4, x2, a2, x4
0, 1,0, 1,0, 1,0

FIG. 5

2. Threshold dimension.
2.1. General results. The original motivation for studying threshold graphs was

determining if a single inequality would be satisfied by the characteristic vectors of
independent subsets of the vertices of a graph and not satisfied by nonindependent
subsets of the vertices of the graph. The obvious question to ask now is the following:
what is the least number k of linear inequalities

(2)
allXl q- a12x2 +" q- alnXn <= tl,

ak 1Xl -’l- ak2X2 +" d- aknXn tn,

such that S is independent if and only if its characteristic vector x (Xl, x:,..., xn)
satisfies (2). Analogous to the hyperplane dividing the hypercube into two halves, each
inequality corresponds to one side of a hyperplane. Thus S is independent if and only
if x lies on the "good" side of each of the k hyperplanes. The threshold dimension,
t(G), of a graph G is the least number k of linear inequalities (2) such that S is an
independent subset of V(G) if and only if its characteristic vector satisfies (2). Without
loss of generality we can assume that all the numbers aij and t in (2) are nonnegative
integers. If G is a threshold graph then t(G)<= 1. t(G)=0 if and only if V(G) is an
independent set (G consists of isolated vertices only). If H is a generated subgraph
of G then any independent subset of H is an independent subset of G so t(H) <= t(G).

Chvfital and Hammer [1973] show that the definition of threshold dimension can
be stated in an equivalent way. For a graph G (V, E), a set of threshold graphs
G V, E) 1, 2,. , t, with E E1 U E2 U" I,.J E, is called a threshold cover of G.
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THEOREM 6. Let G be a graph, t( G)= k if and only if k is the least integer such
that a threshold cover of size k exists.

Other types of dimension of a graph are defined in terms of intersections of
supergraphs. The following corollary relates the threshold dimension of a graph G to
intersections of threshold supergraphs of the complement of G, denoted (.

COROLLARY 6.1. Let G be a graph, t(G) is the least integer k such that ( is the
intersection of k threshold graphs.

Since, if isolated vertices are added to a threshold graph, the graph remains a
threshold graph, it suffices to look for graphs to form a threshold cover such that the
union of the vertices of Gi equals V. Figure 6 shows two graphs and their corresponding
threshold covers.

O’

t(G)=3

b c d

G
C={GI, G2,

6

2
H

t(H)=2 C={H,,H2}

e

b c (7

G

c d
G3

6

4

3

FIG. 6

5 4

2 3

Hz

Since H G, Fig. 6 shows that in general the threshold dimension of a graph is
not equal to the threshold dimension of its complement.

The next theorem about threshold dimension provides a method of computing
the threshold dimension of some classes of graphs. Let a(G) denote the size of the
largest independent set in G.

THEOREM 7 (Chvital and Hammer [1973]). If G is a graph with n vertices, then
t(G) <= n-a(G). Moreover, equality holds if G contains no triangle.

COROLLARY 7.1. For the following graphs we have:
(i) t(Z.)= In/2] (n > 3) 1,
(ii) t(P.)= In/2] P. is the path with n edges,
(iii) t(K.,,.)=min {m, n}.
We also have the following for K(m, m2," rap) the complete p-partite graph

with m -< m2--<" -< rap.
THEOREM 8. t(K(ml, m2, rap_l, rap))-- rap_ 1.

Proof. Since K(mp_l, rap) is a generated subgraph of K(ml, mE,’’’, mp_, rap)
and rap-l<--rap, from Corollary 7.1 we have that t(K(mp_l, mp))=mp_l=

the least integer greater than or equal to x.



THRESHOLD DIMENSION OF GRAPHS 585

t(K(ml, m2," ",mp_l, mp)). We will show the reverse inequality by covering
K(ml, m2,’", rap-l, rap) with rap-1 threshold graphs and using Theorem 6.

Let Mi be the set of mi independent vertices, and arbitrarily order these vertices
as ail, a2,"" ", ai,,,_l, a,,. Therefore {ak, aj} is an edge if and only if iS j. Define
subgraphs Gk of K(ml, m2," rap) as follows: V(Gk) V(K(ml, m2,’’’, rap)) and
E(Gk) {{aik, aj}[i < j}. Since < j< mp aik Mi, k <= mp_1. Thus we have defined

rap-1 subgraphs. Clearly each edge is in one of these subgraphs, so { G1, G2," Gmp_}
cover the edges of K(ml, me," ", rap). It remains to show that each Gk is a threshold
graph.

Let e and e be edges of Gk. Then el {aik, a} and ee {ark, a,/,} for < ] and
i’< j’ and some and l’. We consider 2 cases.

Case 1. ii’, say i<i’. Thus i<i’<j’. But now {ak, ark}E(Gk) and
{aik, aj,l} E(Gk) and the subgraph generated, shown in Fig. 7, is not P3, Z4 or 2K2.

Case 2. i’. But now el and e share a vertex in common and cannot generate
P3, Z4 or 2K.

Therefore each.Gk is a threshold graph and C {G, G,. , G,,,_} is a threshold
cover of G. Hence t(G)<= rap-1. Therefore t(G)= rap-1. Q.E.D.

aik ai,

ajt aj, r

FIG. 7

Using the concept o threshold cover, it is possible to bound the threshold
dimension of a graph from above. Let 0e be the minimum number o[ cliques needed
to cover the edges of a graph. Then t(G) -< 0e(G), since every clique is a threshold graph.

2.2. Complexity and related results. As illustrated in the last proof, determining
i a graph is a threshold graph or not reduces to determining if any 2 edges generate
a P3, Z4 or 2K2. It is therefore reasonable to construct a new graph G* from G as
follows:

V(G*) {{x, y}l{x, y} e E (G)} and

{{x, y}, {u, v}}e E(G*) : {x, y, u, v} generates P3 or Z4 or 2K.
If x(G*) denotes the chromatic number of G*, then it is easy to see that t(G) ->_ x(G*).
For a long time it was conjectured that indeed this might be an equality. If equality
existed, even for x(G*)- 2, then we would have a polynomial time algorithm for
computing whether or not t(G)=<2. Our first example shows that unfortunately
t(G) > x(G*) for some G, and our second example shows that t(G) x(G*) can be
arbitrarily large.

Example 1 is shown in Fig. 8 and consists of 2 sets of vertices, S {a, ae, a3,

bl, b2, b3, C1, C2, 173} and S2={A1, Ae, A3, B, B2, B3, C1, C2, C3}. S1 generates a
complete subgraph K9 and $2 is an independent set. Call class A edges those edges
connecting {A, A, A3} and {al, a, a3} and similarly define class B edges and class
C edges. Ab edges are those edges connecting {A1, A2, A3} and {bl, bE, b3}; Bc edges
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are those edges connecting {B1, B2, B3} and {Cl, C2, C3} and Ca edges are those edges
connecting {C1, C2, C3} and {al, a2, a3}.

Edge Closses:

IAI=3 Ial=3 ICl=a
IAbl=9 IBcl=e ICo1=9

FIG. 8

LEMMA 2. For the graph shown in Fig. 8, t( G) > x(G*).
Proof. We will show that t(G) _>- 5 and x(G*) 4, thus proving t(G) > x(G*).

First, consider the edges of G. No two class A edges can be in the same threshold
graph for {Ai, ai, aj, Aj}, j generates a P3 subgraph of G. Similarly, no two class B
edges, and no two class C edges can be in the same threshold graph. A class A edge
and a class Bc edge cannot be in the same threshold graph for they, too, would generate
a P3. Similarly, class B and Ca edges, and class C and Ab edges, may not be in the
same threshold graph. No three vertical edges can be in the same threshold graph, for
they would have to be in distinct classes, say edges {a, A}, {bj, B} and {Ck, Ck}. But
now an Ab edge, a Bc edge, and a Ca edge must be present, otherwise P3 is generated
as a subgraph, contradicting the condition on pairs of edges. Therefore at least
different threshold graphs are needed to cover the edges of G. Since t(G) is integer
valued, t(G) >= 5.

We now show that x(G*) 4. Figure 9 shows G* with a 4-coloring. In the previous
part we observed which pairs of edges could not be in the same threshold graph,
corresponding to those edges which as vertices of G* have an edge between them.
Any two K9 edges, any two Ab edges, any two Bc edges, and any two Ca edges can
be in the same threshold graph, thereby corresponding to independent sets of vertices
in G*. A Bc edge and a Ca edge of G may be in the same threshold graph only when
the C of the Ca edge has the same index as the c of the Bc edge. Similarly, the same
is true for Ca edges and Ab edges, and for Ab edges and Bc edges. Thus the Bc, Ca,
and Ab vertices generate a proper subgraph of K(9, 9, 9) in G*. As long as each set
of Bc, Ca, and Ab vertices gets a different color, and the Bc color is different from
the three A colors, and similarly for Ca and B and Ab and C, we have a proper
4-coloring of G*. Therefore x(G*)<_-4. Since K4 is a generated subgraph of G*,
x(G*) 4. Therefore t(G) > x(G*). Q.E.D.
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We can now generalize the example shown in Fig. 8.
THEOREM 9. There exist graphs G for which t(G)- x(G*) is arbitrarily large.
Proof. The graph shown in Fig. 10a is a generalization of the one shown in Fig. 8,

where instead of al, a2, a3 we have al, a2,’", a,, instead of A1, A2, A3 we have
A, A2,’’’, A,, and similarly for the b’s, B’s, c’s, and C’s. Hence we have the small
lettered vertices generating K3n and the large lettered vertices generating an indepen-
dent set of 3n elements. There are now 3n vertical edges and 3n2 diagonal edges. By
the same reasoning as in Lemma 2, no 3 vertical edges can be in the same threshold
graph, so t(G)>=3n/2. As shown in Fig. 10b, x(G*)=n+l. Therefore
t(G)-x(G*)>=n/2-1, which can be arbitrarily large. Also, t( G) x(G*) > O, all
n>=3. Q.E.D.

The difficulties encountered in computing the threshold dimension of a graph are
not surprising since Chvital and Hammer [1977] pointed out that the problem of
computing threshold dimension is NP-complete. Since computing a(G) is NP-complete
for triangle-free graphs, Theorem 7 says computing t(G) is NP-complete for triangle-
free graphs. Yannakakis [1982] showed the stronger result that determining if t(G) =< k
is NP-complete for all fixed k -> 3. The case k 2 had remained open until now. Ibaraki
and Peled [1982] gave sufficient conditions for the threshold dimension of a graph to
be less than or equal to two, by showing that for split graphs G (V(G) can be partitioned
into a clique and an independent set) if x(G*)= 2 then t(G)= 2; and for general G,
if x(G*)= 2 and G* has at most two nonsingleton components then t(G)= 2. They
conjectured that if x(G*) 2, then t(G) 2. For general graphs G, this would provide



588 MARGARET B. COZZENS AND ROCHELLE LEIBOWITZ

K 3n
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FIG. 10

a polynomial time algorithm for determining if t(G)= 2. Cozzens and Leibowitz, in a
forthcoming paper, show that this conjecture is false, by showing that determining if
t(G) =< 2 is an NP-complete problem. The problem of determining if t(G) =< 2 is shown
to be NP-complete by a transformation from the problem of partitioning the edge set
of a graph into two triangle-free subgraphs.

In certain cases, the threshold dimension of a graph is related to other types of
dimensions. A digraph D (_X, A) is called a Ferrers digraph when there exists a linear
order (_, L) such that for every x, y, z _, if (x, y) L and (y, z) A then (x, z) A.
The Ferrers dimension of a digraph D is the smallest number of Ferrers digraphs whose
intersection is G. Cogis [1982a] shows that the problem of determining the Ferrers
dimension of a digraph is polynomially equivalent to finding the threshold dimension
of a split graph. Cozzens and Leibowitz [to appear] discuss various relationships between
the threshold dimension of particular classes of graphs and the dimension of certain
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corresponding partial orders. Since computing if either the Ferrers dimension or the
partial order dimension is less than or equal to 2 is not NP-complete, yet determining
if the threshold dimension is less than or equal to 2 is NP-complete, neither of these
correspondences answer all of the questions regarding threshold dimension. Therefore
it is necessary to develop more techniques to compute the threshold dimension for at
least some classes of graphs, and to set bounds on the threshold dimension for all graphs.

2.3. Reduction of G. In this section we develop a test for threshold dimension 1
which will generalize to some results about threshold dimension k. In 1.1 we defined
a relation R on the vertices of a graph G as follows:

xRy N(x)-{y}= N(y)-{x}.

Recall that R is an equivalence relation on V(G). The reduction of G into its
equivalence classes is denoted GR; E, is the equivalence class containing x. Formally
define:

V(Gn) {Exlx e V(G)),

E(Gn)={{E, EyIIE Ey, {x, yIe E(G)).

Figure 11 shows a graph and its reduction.

G--

C

FIG. 11

LEMMA 3. if G is a threshold graph, then GR is a threshold graph.
Proof. Gg is isomorphic to a generated subgraph of G. The result follows since

a generated subgraph of a threshold graph is a threshold graph.
The converse of this lemma is not true. For example, Z4g is isomorphic to K2

which is a threshold graph. Hence, some conditions must be satisfied by GR in order
to use thresholdness of Gg

as a test of thresholdness of G. These conditions will be
discussed later.

Let ua, u2," , U,-l, u, be an M-ordering of V(G). The associated M*-sequence
is:

M, =Mi, l<--i<--n-I,

(M-I, i=n.

Hence we have defined a zero-one sequence of length n such that for i< j,
{ui, u} E (G) if and only if M* 1 and {u, u} E(G) if and only if M* 0.
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THEOREM 10. Suppose G is a threshold graph. For all x, y V(G), the following
are equivalent:

(i) deg (x)=deg (y).
(ii) xRy.
(iii) Given any M-ordering and the associated M*-sequence, M*(x)= M*(y)=

M*(z) for all z lying between x and y in the M-ordering.
Proof. We show (i)(ii)(iii)(i).
(i)(ii) Suppose deg (x) =deg (y) and suppose not xRy. Then there are a, b such

that aN(x)-N(y) and beN(y)-N(x). Then the configuration shown in Fig. 2, is
a subconfiguration of G.

(ii)(iii) Suppose xRy and suppose there exists an M-ordering and associated
M*-sequence such that M*(x) M*(y), or there exists a z( x, y) between x and y
such that M*(x)= M*(y) M*(z). Without loss of generality, let x appear before y
in the M-ordering. If M*(x) 1 and M*(y) =0, then y un and {x, y}e E(G). Now
x un-1 since M*,-I M* -0, while M*(x) 1. But u,-1 e N(y)-N(x), a contradic-
tion. If 1 M*(x) M*(y) M*(z) -0, then z N(x)-N(y),a contradiction. Finally
if 0 M*(x) M*(y) M*(z) 1, then z N(y)-N(x), a contradiction.

(iii) (i) We have two cases, M*(x) M*(y) M*(z) 1 for all z lying between
x and y or M*(x)= M*(y)= M*(z)=0 for all z lying between x and y. Note that if
M*(u) 0, deg (u) is the number of ones before u in the M*-sequence; if M*(u) 1,
deg (u) is the number of ones before u in the M* sequence plus the number of terms
after u in the M*-sequence. Using this observation, the result follows easily for both
cases. Q.E.D.

COROLLARY 10.1. If G is a threshold graph, then"
(a) Equivalence classes are either cliques or independent sets.
(b) Any M-ordering of G lists elements of equivalence classes consecutively.
(c) Any M-sequence of GR is a sequence of alternating O’s and l’s.
(d) There is only one possible M-sequence of GR, and that is either O, 1, O, 1,.

or 1,0, 1,0,. ..
THEOREM 11. If G is a threshold graph, then GR has exactly two M-orderings

El, E2, , E,-I, E, and El, E2, , E,, En-1.
Proof. Suppose there exist two M-orderings El, E2, En-1, En and

F1, F2,’’" ,Fn. By Corollary 10.1 (d), they have the same M-sequence, either
1,0, 1, 0,. or 0, 1, 0, 1,. .. Therefore they have the same M* sequence. Let be
the smallest integer such that Fi Ei. Let L1, L2," L, denote the M*-sequence of
the E’s, while M1, M2,’’’, M, denotes the M* sequence of the F’s. Since {Ej" j=
1, 2,..., i-1}={F: ]= 1, 2,..., i-1} and the sequence of M’s is the same as the
sequence of L’s, E is equivalent to Fi in Gg. Suppose F Ei+k, k > 0. Then L* L*+I

L*i+k by Theorem 10. By Corollary 10.1, i= n-1 and k 1, allowing only the
two sequences stated in the theorem as possibilities. In fact, both are possibilities, for
in any M-ordering of a threshold graph, the last two vertices are equivalent. Hence,
GR has exactly two M-orderings, those listed above. Q.E.D.

If GR is a threshold graph, unfolding an M-ordering El, E2," , E of GR gives
a listing of the vertices of G, xl, X12 XlPl, X21 X2P2, Xnl Xnpn, such
that xq e Ei, j- 1, 2,. , p- lEvi. That is, we list the vertices by equivalence classes,
with arbitrary ordering within each equivalence class. An M-ordering of GR admits
an M-ordering of G if by unfolding the M-ordering of GR we (always) 2 get an

If some unfolding of an M-ordering M of GR is an M-ordering of G, then any unfolding of M is an
M’ordering of G.
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M-ordering of G. An M-ordering of GR which admits an M-ordering of G is said to
be admissible.

THEOREM 12. If G is a threshold graph, every M-ordering of G is obtained from
an M-ordering of GR by unfolding.

Proof. Let M Vl, v2," be an M-ordering of G. By Corollary 10.1 (b) equivalent
vertices are listed consecutively. Then, we can order the equivalence classes as they
appear in M. Call this order of equivalence classes L. It is easy to see that L is an
M-ordering of GR. We can unfold L to get back M. Q.E.D.

COROLLARY 12.1. If G is a threshold graph, GR has at least one admissible
M-ordering.

COROLLARY 12.2. If G is a threshold graph, GR has exactly one admissible
M-ordering.

Proof. Let El, E2, E,_, E, and El, E2," E,, En-1 be the two M-orderings
of Gg. By Corollary 10.1(a), E,_a and E, are both either a clique or an independent
set. Since En-1 and E, are different, it follows that either En-1 or E, is a clique, while
the other is an independent set, and IE,-ll +IE, > 2. Without loss of generality, say
En-1 is the clique. To show that exactly one of the M-orderings of GR is admissible,
we consider two cases.

Case 1. Suppose En-1 and E, are not adjacent in GR.
(a) Suppose IE,_II>I. In the unfolding of Ea, E2," ",E_I,E,, we get

Xll, X12," Xlp, Xn-l,1, Xn_l,2, Xn,l, ". In the M-ordering of G,
M*(x,_,a) 1 since {x,-,l, x,-1,2} E(G). Hence, {x,-1,1, x,,1} E(G), a contradic-
tion. Hence, El, E2,’’’, En-1, E, is not admissible. However, by Corollary 12.1,
El, E2," En, En-1 is admissible.

(b) Suppose IE, I> 1. Then IE,_II>I, otherwise E,_IUE, would be an
equivalence class, a contradiction. Thus, we are back in part (a).

Case 2. E,_ and E, are adjacent in GR. The proof is similar to Case 1. Q.E.D.
COROLLARY 12.3. If G is a threshold graph, it has a unique M-ordering of the

vertices, up to equivalence, and hence a unique M*-sequence (a unique M-sequence).
Proof. This is obvious by Theorem 12 and Corollary 12.2. Q.E.D.
For an example to illustrate admissibility, see G in Fig. 4 and GR in Fig. 12.

The two M-orderings of GR are EL, El, E3 and E2, E3, E1 but by Case l(a) of the
proof of Corollary 12.2, only E2, El, E3 is admissible.

0 O- 0 U={a,b}, E2={c}, E3={e,d
E E E

FIG. 12

As we previously mentioned, it is possible for GR to be a threshold graph, while
G is not; for example G Z4. If we add a restriction on the M-sequence of GR, the
thresholdness of GR will test the thresholdness of G.

THEOREM 13. Suppose GR is a threshold graph and El, E2,’", En is an M-
ordering of GR. Suppose the associated M-sequence satisfies the following conditions for
i<__n-l:

(i) Ei is not a clique implies Mi--0;
(ii) E is not an independent set implies M- 1.

Then G is a threshold graph.
Proof. We shall show that unfolding the M-ordering M El, E2,""", En gives

an M-ordering N for G, and hence G is a threshold graph. Suppose x belongs to E.
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If [Ei[ 3> 1, then there is y x in Ei. If Ei is a clique, then by (ii), M 1. Thus, for all
j > i, Ei is adjacent to Ej. Hence, it is clear that x is adjacent to all vertices following
it in N. Similarly, if E is an independent set, then by (i), Mi 0. Then it is clear that
x is not adjacent to any vertex following it in N. Finally, suppose Ei {x}. If Mi 1,
then clearly x is adjacent to all vertices following it in N. If M 0, then clearly x is
not adjacent to any vertex following it in N. Q.E.D.

Suppose each vertex of a graph G gets a label C, L or B. Call this labelling L. G
is l*-threshold via L if there exists an M-ordering Vl, v2, /-)n of G and associated
M-sequence satisfying the following conditions for i-< n- 1"

(i) If v is labelled L then Mi O.
(ii) If vi is labelled C, then Mi 1.

Note that (3 is a threshold graph if and only if G is l*-threshold via L, for some L.
For if G is a threshold graph, simply define L from an M-ordering of G, satisfying
conditions (i) and (ii) above.

By Corollary 10.1 (a), equivalence classes under the relation R on V(G) are either
cliques or independent sets. Hence, we get a canonical labelling Lc of GR"

if E is a singleton set, Ei gets label B,
if Ei is a clique with IE, > 1, E, gets ’label C, and
if E is an independent set with IE[ > 1, Ei gets label/.
COROLLARY 13.1. G is a threshold graph if and only if GR is l*-threshold via Lc.
Proof. Sufficiency is shown by Theorem 13. Suppose G is a threshold graph. From

an M-sequence in G, we can get an M-sequence in GR by representing consecutive
l’s and consecutive O’s by a single 1 and single 0, respectively. Vertices belonging to
a clique E with IEil > 1 must appear consecutively in an M-ordering of G and have
l’s associated with them. That gives a 1 to those E in an M-ordering of GR. Similarly,
vertices belonging to an independent set Ei with levi > 1 have O’s associated with them,
so the corresponding Ei gets 0 in an M-ordering of GR. Q.E.D.

We now generalize threshold dimension 1 to threshold dimension k.
LEMMA 4. t(GR) <= t(G).
Proof. GR is isomorphic to a generated subgraph of G. Q.E.D.
The inequality may be a strict inequality. t(Z)= 1 while t(Z4)= 2. Analogous

to the need for l*-thresholdness of GR, we define k*-thresholdness.
Suppose each vertex of a graph G gets a label C, L or B. Call this labelling L. G

is k*-threshold via L if and only if there are subgraphs G1, G2,"’, Gk of G which
are l*-threshold via L and cover the edge set and vertex set of G.

Recall that Lc is the canonical labelling of a graph GR. The smallest k such that
GR is k*-threshold via Lc is called the star-threshold dimension of GR, denoted
t*(GR). If it is impossible to cover the edge set and vertex set of GR with subgraphs
which are l*-threshold via Lc, we say t*(GR) . Figure 13 gives some graphs G
with t(G) and their reductions GR with t(GR) and t*(GR). The canonical labelling
of each GR is given. Note that if G is isomorphic to GR, then each vertex of GR is
a singleton set and so gets the label B.

Even though t(GR) is not an upper bound of t(G), t*(GR) is an upper bound of
t(G), as shown in the next theorem.

THEOREM 14. t(G) <= t*(GR).
Proof. If t*(GR)=c, the inequality is true since t( G) <= V( G)I. Suppose

t*(GR) k. Therefore it is possible to cover the edge set of GR by k subgraphs which
are l*-threshold via Lc. Let 1, (2," , tk, all l*-threshold via Lc, cover the edge
set and vertex set of GR. Consider subgraph (. It has an M-ordering of its vertices
E1, E2,’", Eli and an associated M-sequence such that l’s in the M-sequence



THRESHOLD DIMENSION OF GRAPHS 593

t(G) G

K(2,2 2)

c 0 .C

Z.(n >=4)

2

2

with each
vertex
labelled I

C C- 0

C I C

Zn

FIG. 13

t(G) t*(G)

correspond to cliques in the M-ordering, and O’s correspond to independent sets. Let
W(Gi) be the subgraph of G formed from Gi as follows:

V(W((i)) Eij.
j=l

Suppose x Eij, y Eit:. If j k, then x is adjacent to y in W(Gi)Ej is adjacent to

Eit: in G. If j k and x y, then: x is adjacent to y in W(Gi) : Eij is a clique.
Now we observe that unfolding the M-ordering M eil, ei2," Eili Of. (i gives

an M-ordering N of W(Gi), which implies that W(Gi) is a threshold graph. The proof
is the same as the proof of Theorem 13.

It remains to show that U = W(i) covers the vertex set and edge set o G.
Suppose v is a "vertex of G which belongs to El V(Ge). Since the (’s cover the
vertex set of Ge, E V(,) for some m. By definition of the vertex set of W(Gm),
and since v E and Et V((,), we have that v is a vertex of W(G). Thus, the
W(Ci)’s cover the vertex set of G. Consider {v, vj} E(G). If both vi and vj belong
to El V(Ge), then {vi, vj} E(G) implies E is a clique. Now El V(G,,) for some



594 MARGARET B. COZZENS AND ROCHELLE LEIBOWITZ

m. By definition of W(G,), {vi, vj} is an edge of W(G,n). Next, suppose vi e Ei and
vj Ej, # ]. Then {v, v} e E(G) implies {Ei, Ej} E(GR), which implies
{Ei, E}eE(G,,) for some m. By definition of W(Gm), {v, vi}eE(W(G,)). Thus,
U )=1 W((i) covers the edge set of G, so t(G) -< k t*(GR). Q.E.D.

Lemma 4 and Theorem 14 give the important result that t(GR) <= t(G) <= t*(GR).
If G is isomorphic to GR, that is, if each E is a singleton set, then each threshold
subgraph of GR is l*-threshold via Lc. Thus, the numbers t(GR) and t*(GR) are
equal, and t(G) must also equal these numbers. We summarize these results in the
following corollary.

COROLLARY 14.1.
(a) t(GR) <= t(G) <= t*(GR).
(b) If G is isomorphic to G, then t(G) t(GR) t*(G).
(c) If t( G) t*( GR), then t( G) t(G) t*( G).
If t*(G) =oe, we do not get a good upper bound on t(G) but we do get the

following result.
THZORZM 15. If t*(GR) oO, then Z4 is a generated subgraph of G.
Proof. An edge of GR is l*-threshold via Lc if and only if it has the property

that at least one of the endpoints is a clique. If this property holds for all edges of
GR, then t*(GR)<=IV(GR)I+IE(GR)I<oo. If t*(GR)=oO, then GR has an edge with
both endpoints being independent sets of cardinality at least two. That is, Z4 is a
generated subgraph of G. Hence, t(G)> 1. Q.E.D.

FIG. 14

G-

a

B

E3(B)

2 t(Gu <= t(G) <- t*(Gu 2

FIG. 15

E ={at
E2 {g, b}
E3={f}
E4={e,c}
Es={d}

Es(B)
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The converse of Theorem 15 is not true. Z4 is a generated subgraph of G shown
in Fig. 14, while GR is isomorphic to G. Hence t(G)= t*(G1) 2.

In Fig. 15, we have t*(GR) t(G) 2 implying t(G)= 2.
In this section we introduced new bounds on t(G), the threshold dimension of a

graph G, namely the lower bound t(G1) and the upper bound t*(G). In 2.2, we
discussed a lower bound x(G*) for t(G). As shown by some examples, these bounds
may not be good. This does not reduce their importance since determining if t(G) <-_ k
is NP-complete for all fixed k >= 2.
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INSTABILITY IN DISCRETE ALGORITHMS AND EXACT REVERSIBILITY*

GIRARD Y. VICHNIAC"

Abstract. Some discrete algorithms (e.g., that derive from common discretization schemes for differential
equations) are numerically exactly reversible: after any number of steps, the initial conditions can be
recovered exactly, despite numerical roundoff. These algorithms constitute discrete dynamical systems on
the numerical mesh that are deterministic in both directions of time. Because of the conservation of the
information encoded in the initial conditions, and of the incompressibility of this information on the
numerical mesh, these algorithms lead to instability in the presence of an attractor. This phenomenon is

illustrated in examples involving several types of attractors and is compared with other mechanisms recently
proposed for the explanation of instabilities in nonlinear finite-difference equations.

1. Introduction. Numerical errors resulting from roundoff in finite-precision arith-
metic are often referred to as numerical "noise". Indeed, statistical analysis is a most
natural tool for the study of the propagation of these errors, which are then treated
as a stochastic process. Moreover, the apparently irreversible loss of the information
contained in the digits discarded leads one to view roundoff as an irreversible (albeit
often controllable) contamination of noise. But we know, of course, that there is no
such thing as a genuine numerical "noise". In a digital computer, in particular, nothing
happens at random. The roundoff process is a deterministic one, it obeys, a specified
rule. If genuinely random noise were present, repeated runs of the same program and
data would yield different results, rendering any attempt to "debug" computer codes
impossible.

It is then appropriate to view a computation on a digital computer as a dynamical
system on the discrete set formed by the numerical mesh for the dependent variables.
The spacing A for this mesh is usually much smaller than that for the independent
variables, e.g., the time step h.

2. Reversible algorithms. It has been pointed out by Edward Fredkin [2] that
roundoff in fixed point arithmetic does not necessarily entail a loss of information,
i.e., some numerical schemes for initial-value problems are exactly reversible. These
algorithms are then dynamical systems that are deterministic in both the forward and
the backward directions of time. It turns out that some of these algorithms are in
common use in the numerical treatment of initial-value ordinary differential equations.

Consider, for example, Newton’s second law for a point mass m in a one-
dimensional force field F(x)

d2x(t)
(2.1) m

dt2 F(x).

Replacing the second derivative by the simplest three-point formula, (2.1) is
approximated by the finite-difference equation

Xn + 2x,, + x,,_
(2.2) rn

h2 F(x,).

* Received by the editors August 10, 1983, and in final form March 5, 1984. This work was presented
at the SIAM Second Conference on the Applications of Discrete Mathematics, held at Massachusetts
Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983. This work was supported in major
part by an IBM postdoctoral fellowship, and also by grants from DARPA (nos. N00114-75-C-0661 and
N0014-83-K-025), from the National Science Foundation (no. 8214312-IST), and from the Department of
Energy (no. DE-AC02-83ER13082).

f Massachusetts Institute of Technology, Laboratory for Computer Science, Cambridge, Massachusetts
02139.
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Solving for x.+, we have the algorithm

(2.3) Xn+l { h F(Xn) }+2x
m

Xn--1,

where the braces indicate that the operations are performed in finite-precision arith-
metic. Notice, however, that the braces do not enclose the last term in the right-hand
side of (2.3). This is because in fixed-point arithmetic, subtraction is exact (as in integer
arithmetic), provided that no overflow occurs.

If we now specify the force field F(x,,) and the initial conditions Xo and x on
the numerical mesh, we can iterate (2.3) for a arbitrary number of steps and obtain a
sequence of numbers Xo, x,..., xN_, xN. We might ask, given the obtained values
xv_ and xn, can we recover the exact values of the initial conditions Xo and x, for
any F(x,,), for an arbitrarily severe roundott, and an arbitrarily large number of steps,
despite the apparently irreversible loss of information that occurred at every step of
the construction of the sequence? Surprisingly enough, the answer to this question is
affirmative. The entire sequence can be reconstructed backward from xn and xn_,
simply by solving (2.3) for x,_. Indeed, since the roundoff is a deterministic process,
the expression in the braces in (2.3) is evaluated in the same way going upward or
backward in the sequence.

3. Instability in the presence of a fixed point. Fredkin [2] also noticed that numerical
reversibility entails remarkable phenomena when a fixed point occurs in exact arith-
metic. Consider for example

(3.1) x,,+=kx,,, O<k<l.

Unlike (2.3), this scheme is numerically reversible only in the limit of infinite-precision
arithmetic, where it has the obvious solution

(3.2) x k"xo
and admits zero as an attractive fixed point.

Consider now the second-order finite-difference equation

(3.3) x,,+ k -- X Xn_ 1.

With initial conditions obeying

(3.4) X kXo,

(3.3) is equivalent to (3.1). This is readily derived by adding to (3.1) its own shifted
equation

Though equivalent in exact arithmetic, equations (3.1) and (3.3) have dramatically
different behaviors in finite-precision arithmetic. With a starting Xo large compared to
the mesh size A, the sequence obtained from (3.1) first decreases and eventually settles
at a constant value (that can be finite or null, depending on whether or not k > 1/2). In
any case, the "attractive" nature of zero is always qualitively reproduced by (3.1), even
when severe roundotts occur. This is not the case for sequences obtained in fixed point
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arithmetic from (3.3). We shall write this equation in the form

(3.5) Xn+l-- k+ x --Xn_

to emphasize that the right-.hand side is evaluated with roundott. Just like (2.3), the
algorithm (3.5) is exactly reversible despite roundott, again because it can be solved
exactly for X,_l.

We shall see how this reversibility, together with the discreteness of the numerical
mesh, are responsible for the following interesting behavior of (3.5). Starting with
initial conditions large compared with A and that satisfy (3.4), we first obtain values
in good agreement with the exact solution (3.2). But when the sequence approaches
zero it either curves back and increases to +oo, or, depending on Xo, it plunges to
(For small values of xo, the sequence may also oscillate around zero.) Now, the exact
numerical reversibility of (3.5) means that trajectories in the (x, t) plane cannot merge,
in fact any couple of points (x, X+l) completely defines a whole trajectory. Therefore,
the sequence generated by (3.5) cannot settle at a constant value because it would then
"forget" its initial conditions. Also, since a neighborhood of given width around zero
contains a finite number ofnumerical mesh points, it cannot accommodate an arbitrarily
large number of distinct trajectories in the (x, t) plane. This description [2] in terms
of the conservation of the information encoded in the initial conditions and of the
impressibility of this information on the numerical mesh characterizes simply the
instabilities of the algorithm (3.5). It will be helpful for the following discussion to
interpret this instability in more familiar terms of numerical analysis.

Let us notice first that the finite-difference equation (3.2), being linear, has a

general solution in closed form (see, e.g., [3]):

(3.6) x C_z + C/Z+

where C_ and C+ are constants depending on the initial conditions. The numbers z_

and z/ are the roots of the quadratic equation

(3.7) z2- 2Az + O,

where A 1/2(k + / k), i.e.,

(3.8 A-,/A A +,/A

Notice that for distinct roots, A > 1, therefore z_ < and z+ > 1, and hence (3.6) is the
sum of a decaying sequence and a growing sequence. The second-order equation (3.3)
has two linearly independent solutions, whereas our original first-order equation
(3.1) has the purely decaying solution. The spurious growing solution introduced
with (3.3) is suppressed when the proper initial conditions are used; specifically, relation
(3.4) cancels the coefficient C/. But if at some step the relation

Xi+l NX

ceases to be exactly verified because of roundoff, the coefficient C/ is then "switched
on" and the spurious growing solution eventually swamps the exact decaying solution.

Notice finally that since z_z/ 1, (3.6) can be written in the form

(3.9) x C_z"_ + C+z-.
This interpretation of the instabilities of (3.5) in terms of an admixture of the time-
reversed solution will be useful in the following.
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4. Instabilities around a limit cycle. We saw in the last section that numerically
reversible algorithms are unstable if a fixed point occurs in exact arithmetic. Fredkin’s
argument holds in fact to any type of attractor, and we shall study in this section the
effects of the conservation of information when a limit cycle is present. It turns out
that the reasoning based on the admixture of the time-reversed solution keeps its
predictive power in that case too.

Consider in polar coordinates the system

dr
(4.1a) d--- r(1 r2),

(4.1b) dO_ 1.
dt

These two equations are uncoupled. Equation (4.1a) has a stable fixed point at r= 1,
whereas r--0 and r=oo are unstable fixed points. Equation (4.1b), whose solution is
O(t) +0(0) endows a geometrical meaning to time, and turns the stable fixed
point of (4.1a) into a limit cycle given by the unit circle. Under (4.1), points inside
this circle will "spiral out" toward it at a constant angular velocity in the clockwise
directions. Similarly, points outside the limit cycle will spiral in at the same clockwise
angular velocity. Since the equations (4.1) carry points out of the origin and out of
infinity, these loci are said to constitute the outset whereas the limit cycle forms the inset.

Using Cartesian coordinates (x r cos x, y r sin x), equations (4.1) can be writ-
ten in the form of two coupled equations

(4.2a)
dx
d--- y x( x2 y2),

(4.2b)
dy xZdt- x +y(1- yZ).

We shall now compare the behaviors of irreversible and reversible numerical
schemes corresponding to these equations. First, we replace the derivatives by the
simple two-point forward difference, i.e., for (4.2a)

dx xn + Xn(4.3)
dt h

By confining the dependent variables x and y to the nodes of a mesh of spacing size
A, (taken, say, to be the inverse of some integer N), we obtain the numerically
irreversible algorithm

2(4.4a) x+ [hN(y+x(1-x.-y.))+1/2J/N+x.,
2(4.4b) y.+,= [hN(-x. +y.(1-x.-y))+1/2]/N+y.,

where [a] stands for the largest integer that is less than or equal to a.
If instead of using (4.3) we now approximate the derivatives by central differences,

e.g.,

dx
(4.5)

dt 2h

we obtain a conspicuously reversible scheme
2(4.6a) xn+ [2hN(y,, +x,,(1-x,,-y))+1/2]/N

2(4.6b) y,,+ [2hN(-x,, + y,,(1- x,, y)) +1/2J/ N + y,,_,.
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By keeping an explicit control of the roundoff in (4.4) and (4.6) we stress again
that roundoffs are not an expression of the free will of the computer. Actually, since
the finite precision is already included in the equations, actual simulations of these
algorithms will, for A not too small, yield identical results when performed in double
precision on a mainframe computer, or on a pocket calculator, or even on a cash
register if A l0-2 (and if (4.4) and (4.6) are modified in order to include explicit
roundoff of each intermediate operation). In other words, simulations of (4.4) and
(4.6) will be exact implementations of the mathematics contained in these equations.

Figures and 2 show the result of the first 400 iterations of (4.4) and 200 iterations
of (4.6), respectively, with A 10-3 and h 0.05 starting with Xo 0, Yo 0.1. We used
(4.4) to get values for the Xl and Yi, required to initialize (4.6). During the very first
steps both curves behave as expected from (4.1): the variable point moves smoothly
toward the unit circle in the clockwise direction. In the neighborhood of the limit
cycle, however, their behavior differ sharply. While (4.4) gently settles on the limit
cycle, and thus "forgets" the initial conditions in a irreversible way, the numerically
reversible scheme (4.6) shows instabilities. Here again, conservation and incompressi-
bility of the information forbid the system evolving by (4.6) to settle around the limit
cycle. Different initial points lead to different forms of instability, hence the oscillations
can be seen as the signature of the initial conditions. Also, since a second order
finite-difference equation simulate a first order differential equation, the instability can
be accounted for by an admixture of a spurious solution. Figure 2suggests that the
spurious solution is related to time-reversed solution of (4.1), just like in the linear
case (cf. (3.9)). Indeed, the system displays a counterclockwise oscillatory rotation

FIG. 1. The first 200 iterations of the irreversible scheme (4.4), with parameters defined in the text.
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@@

FIG. 2. The first 400 iterations of the reversible scheme (4.6).

-i,@ -@,5 @,@ @,
FIG. 3. The first 566 iterations of the reversible scheme (4.6).
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around the normal clockwise revolution. Moreover, for the time-reversed solution, the
nature of the inset and the outset is exactly reversed, and this has conspicuous
consequences when this solution dominates. This happens twice during the first 566
iterations of (4.6), shown in Fig. 3. The system penetrates the circle of radius 0.1 at
time steps 344, 346, and 348, displaying the attractive nature of the origin. The
time-reversed component also clearly dominates beyond iterations 560, as it carries
the whole system this time to the point at o. (The distance of the variable point from
the origin, while still less than 1.5 at iteration 562, exceeds 14000 at time 571.) The
time-forward solution dominates during the early stages of the evolution (see Fig. 2),
bringing the system to the unit circle and keeping it there (within a distance of 0.1)
between steps 61 and 153.

5. Discussion. Exact numerical reversibility yields instability in the presence of
an attractor. This instability can also be accounted for by an admixture of the time-
reversed solution. Other models for the onset of instability have recently been proposed
1], [4]. However, these models are based on the nonlinearity of the equations, whereas
our description applies to the linear case as well.

Acknowledgments. This work stems from an idea of Edward Fredkin. I am thankful
to him and also to Tommaso Toffoli and Norman Margolus for enlightening discussions,
to Stephen Altschul for assistance in the study of the limit cycle, and to George Carrette
for help in the preparation of the figures.
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HOW LARGE ARE TRANSITIVE SIMPLE MAJORITY DOMAINS?*

JAMES M. ABELLO" AND CHARLES R. JOHNSON

Abstract. It is well known that pairwise simple majority voting (smv) over n alternatives can lead to
a nontransitive social outcome if the domain of possible (transitive) individual0preference orderings is
unrestricted. A variety of domain restrictions which ensure transitivity have been offered (the best known
being single-peaked preferences) but all of course, amount to some limitation of individual preferences.
Call such restricted domains transitive smv domains (tsmv) and consider the following question: how many
preference orderings may transitive smv domains contain and how much range of choice is consistent with
ensured transitivity? This presents a combinatorial problem of an unusual sort; a lower bound of 2n-I is
easily proven but good upper bounds are generally harder to obtain. By using a graph representation of Sn
(the symmetric group on n symbols) we have been able to construct transitive smv domains of cardinality
3 x 2n-2 4 for n > 4 which to our knowledge is the best known general lower bound. The constructed sets
have a relatively simple structure and the methods used here may be a valuable tool in the search for a
maximum tsmv domain and in the general study of domains upon which simple majority vote is transitive.

Key words. Arrow’s theorem, consistent sets, maximal chain, poset, simple majority rule, symmetric
group, transitivity

Introduction. Transitive simple majority domains. Because of the classical
anomaly which shows that simple majority voting produces a social relation which is
not necessarily transitive and because of Arrow’s theorem, there has been a natural
thrust of research in the direction of determining domain restrictions under which
majority vote avoids the intransitivity flaw. Two particular modes of addressing this
issue are (1) sufficient conditions for domains over which unrestricted choice necessarily
leads to transitivity (e.g. "single peaked" preferences [2]), and more generally, (2)
characterization of those distributions of voters’ profiles which happen to produce a
transitive result (e.g. Inada [5]). Our goal is to determine how "big" transitive simple
majority voting domains may be.

We restrict our attention to strict preference orderings (consistent sets), but it is
clear that many of the ideas are extendable to nonstrict preferences either as they
stand or with modification.

1. Problem formulation. Let (E, -<_ be a totally ordered set of symbols of cardinal-
ity IE n Z+, and S. the set of permutations on E.

DEFINITION 1.1. A set B c S is called cyclic if there are three symbols xil, x6,
xi3 E and three permutations in B which, when restricted to the three symbols, are

DEFINITION 1.2.

xi xi xi3!xi xi xi

Xi Xi XilJ

i. Let u, v, w S.; if the set {u, v, w} is not cyclic it is called a consistent three-set.
if. A subset C of S. for which every three-subset is consistent is called a consistent

subset of S.

* Received by the editors June 30, 1983. Portions of this work were presented at the SIAM Second
Conference on the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology,
Cambridge, Massachusetts, June 27-29, 1983.

t Mathematics Department, University of California, San Diego, La Jolla, California 92093.
t Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742.
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Example 1.1. Let 1; {1, 2, 3, 4}.
The set B {1234, 3124, 4231, 4321} is cyclic because the permutations 1234,

3124 and 4231 when restricted to the symbols {1, 2, 3} are

123]
312.
231J

The set C {1234, 4123, 4321, 4312} is consistent because every three-subset
is consistent. Notice that this requires checking the consistency of the (11) three-subsets
of C. Moreover for each three-subset it is necessary to check each of the (ll) triples
of symbols of 1; for the noncyclicity condition. It should be clear at this point that this
task is computationally expensive even for moderately large values of n II;I.

Comments. It is important to note that it is very easy for a set to be cyclic because
cyclicity is a concept which depends only on a subset. On the other hand, it is a very
well-known fact that the consistent sets are those over which unrestricted choice
necessarily produces transitive relations under simple majority vote [4].

Problem formulation. The problem that we are interested in is how large a set
may be and still necessarily lead to transitive simple majority vote results. More
precisely the problem we propose to study here is:

Find the cardinality and study the structure of a maximum consistent subset of S..

Since the unfortunate aspect of domain restrictions is that a sufficiently rich realm of
choice may not remain, it is natural to ask how much freedom of choice is consistent
with transitivity, and we take the size (in terms of number of orderings) of the domain
as a rough measure of the degree of choice.

Observation (Johnson [6]). When the number of alternatives is n, consistent sets
containing 2n-1 distinct preference orderings can be constructed by the following
inductive technique. To the set constructed for (n-1) add alternative n at the left
and right of each preference ordering. The process may be begun for n 2 with the
singleton 1, and then it is clear that 2n- orderings result for general n. For n 2, 3,
4 these sets are shown below to see how they evolve:

n=2 {12,21}

n=3

n=4

123,213
312,321J
1234,2134
4123,4213
3124,3214
k4312,4321

To see that these sets are consistent, we note that for the triple < < k, neither of
the subpermutations (L k, i) or (i, k, ]) can occur in any ordering because of the
construction. Thus the definitional requirement for cyclicity cannot be satisfied by either

Xil i, Xi2--j Xi3-- k or Xil k, xi2--j xi3--

for any triple (i, j, k), so that the set is consistent.

() denotes the binomial coefficient.
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A very different general class of consistent sets (EXP (P)) of cardinality 2n-1 have
been constructed by Abello [1]. These sets are not only consistent, they are also
maximal with respect to the noncyclicity property and they play a central role in this
study.

The remainder of this paper is organized as follows. The next section presents
basic general properties of consistent sets. In 3 we present mainly without proofs
the main properties of EXP (P) which are fully discussed in [1]. Section 4 contains a
general theorem about maximal consistent sets which is the key to construct consistent
sets of cardinality greater than 2n-1 whose existence was questioned since 1978 [6].

2. General properties of consistent sets.
DENrrON 2.1. Let A

_
S and let E’ be any set of symbols such that Z’ f3 E .

For any w’ S,, w’A { w Sur.,: w w’ v for some v A}. Here, w’ v denotes the
concatenation of w’ and v. Aw’ can be defined in a similar way to w’A.

The following are some elementary properties of consistent sets:
FACT 2.1.

i) Any subset of a consistent set is consistent.
ii) Any superset of a cyclic set is cyclic.

iii) The intersection of consistent sets is a consistent set but their union is not always
consistent.

iv) If C c S, E’ f3 E and w S, we have: wC and Cw are consistent subsets
of Su, iff C is a consistent subset of S.

DEFINITION 2.2. i) If p S, by T(p) we will denote the set of ordered triples
of symbols of E determined by p and by (p) we will denote the set of ordered pairs
determined by p. (Notice that (p) e(p). See Definition 3.1).

Example 2.1. For p 2314

and

T(p) {(2, 3, 1), (2, 3, 4), (2, 1, 4), (3, 1, 4)}

(p) {(2, 3), (2, 1), (2, 4), (3, 1), (3, 4), (1, 4)}.

It is not difficult to see that IT(p)l (131) for ]El => 3.
ii) If C S, T(C) 13 ,c T(p) and (C)= ,c(P).
We will state without proof the following simple but useful result.
LEMMA 2.1.
i) T(S.)I=P(Ir,I), 3) (the number of different 3-permutations out of a set of

I;I-elements).
ii) If C is a consistent subset of S then IT(C)[ < 4(I1)

3. S, LC(p), EXP (p).
3.1. S as a poser vs. consistent sets.
Graph representation. Consider a graph G, V, E) where V S., n I1 and

two vertices u, v are joined by an edge iff there exists an adjacent transposition such
that u l(v). This graph can be represented by a convex polyhedron sometimes called
a "permutohedron" (Guilbaud and Rosentiehl [3]). When two vertices u, v are adjacent
the arc is directed from u to v if u= u...uu/...u, and v= u...u/ui’" u,
with ui < u+. It is clear that the degree of u n- 1, ’u G (see Fig. 1).

DEFINIWIOr 3.1. If U U U, let e(u) be the set of pairs (u, u) which do not
introduce an inversion, i.e.,

(u) {(u,, u) < j, ui < ui}.
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1234

2134 324 1243

FIG. 1. Representation of the graph of the permutations of E 1, 2, 3, 4}. The relevant transpositions
are indicated on each edge.

Notice that le(u)[ n(n- 1)/2-INV (u) where INV (u) denotes the number of inver-
sions of u.

DEFINITION 3.2. For u, v e S., u >--v itt e(u)_ e(v).
FACT 3.1. >" is an order relation on S,. and (S,., >" is a poset with maximum

element I (the identity in S.) and minimum element I (the reverse of I).
The following lemma gives the first relation between the poset (Sx, N and the

class of consistent subsets of S.
LEMMA 3.1. If L is a chain in (S., >-_ then L is a consistent subset of Sx.



TRANSITIVE SIMPLE MAJORITY DOMAINS 607

Proof (by contradiction). Assume that L is cyclic. Then there are three permuta-
tions u, v, w in L and three symbols xi, xj, Xk in E such that

L/--" X Xj" Xk

/)--" Xj" Xk X

W--" Xk" Xi" X]" ".

We can assume, w.l.o.g., that xi < x Xk (the only other essentially different case is
xi > xj > Xk which can be treated similarly).

(i) e(u) contains the ordered pairs (xi, x)(x, Xk)(X, Xk) and at least two of these
pairs do not belong to e(v), thus e(v)e(u) which means that vu. Similarly
e(w) e(u); then wu. On the other hand e(v) contains (Xj, Xk) which does not
belong to e (w) then e (w) e (v), thus w .

(ii) Also, e(w) contains (x, x) which does not belong to e(v); then e(v) e(w)
and v : w.

(i) and (ii) together give us that and w are not comparable. Thus they cannot
be in the same chain and therefore u, v, w are not in the same chain (a contra-
diction). Q.E.D.

Example 3.1. The set {1234, 1243, 1423, 4123, 4132, 4312, 4321}c S1.2.3,4 is
consistent because it is a chain in (S{1,2,3,4}, >" (see Fig. 1).

LEMMA 3.2. If L is a maximal chain in (S, >=) then ILl n(n-1)/2+ 1, where
n =IY_,I and IT(L)I =4().

3.2. LC(p)---The canonical set generated by a permutation p.
DEFINITION 3.3. i) Let p =pp2...p S. We will denote by Ik the adjacent

transposition such that

lk(pp2’’" p,)=PP2"’’Pk-Pk+PkP+2’’’P
adjacent transposition

(Of course lk is defined for 1 =< k < n).
ii) With pe S we will associate the n permutations b(p) defined as follows:

b(p)=p,

b)(p)=l,_(bJ-(p)) forj=l,-.. ,n-1 (note that n=l:l).
bi(p) is a permutation obtained from p by the successive application of ] adjacent
transpositions. The set B(p)={b(p), j=0, 1,... ,n-l} will be called the base set
generated by p.

LEMMA 3.3. If I. denotes the identity in S then B(Iv) is a chain in (S., >= ).
Proof. It follows from the fact that b(I) contains one inversion more than b-(IO

for]=l, 2,...,n-1. Q.E.D.
Note. For simplicity in notation we will refer to B(I) as B and to bJ(I) as b.

With this convention if b(i) denotes the ith symbol in b and if I. xx..., x, then
bJ(n-]) x, for ] 0, 1,.-., n-1. In other words x, is at the (n-])th position in
the permutation b.

DEFiNiTiON 3.4. Again let p ppe...p, S. The canonical set generated by
p is the set LC (ppe... p) defined by

LC (PlP" Pn) =-- U pn. pn_jB( plp2. p,__l) U B(plp2 p).
j--O

Let us illustrate with one example the preceding definitions.
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Example 3.2. Let E {1, 2, 3, 4} and Iv. 1234.

B B(Iv.)={b(1234), b(1234), b2(1234), b3(1234)}

{1234, 12_43, 1_423, _4123}.

Now by Lemma 3.3 B is a chain in (Sv., ->_ so we can represent B as in Fig. 2.Notice
that the symbol 4 is moved toward the left one position at a time until it reaches the
first place.

1234 1243 1423
4123

FIG. 2.

Finally let us compute LC (Iv.)= LC (1234). By definition we have

LC (1234) [4B(123) L143B( 12)] LJ B(1234)

=[4{12_3, 1_32, _312} LJ 43{1_2, _21}]

LJ {123_4, 12_43, 1_423, _4123}

{4123, 4132, 4312, 4321, 1234, 1243, 1423}.

Notice that LC (1234)=4LC (123)LI 1B(234). In fact this is always the case as is
stated in the following lemma whose proof follows readily from the definitions.

LEMMA 3.4.
1. B(p p,)= pB(p2 p,) LJ P,(P,P2" P,-).
2. LC (Pl P,)=P, LC (PP2" p,_)t.J pB(p2 p,).
3. LC (Iv.) is a maximal chain in (Sv., >-).
The contents of the preceding lemma are expressed graphically in Fig. 3.
COROLLARY 3.1. Ifp Sv. then LC (p) is a consistent subset of
Proof. Follows from the consistency of LC (Iv.). Q.E.D.
Remark. Notice that LC (p) is not always a chain in (Sv., >’-); however the

consistency of LC (Iv.) implies the consistency of LC (p)c Sv..
Notation. For x, y: and A c Z-{x, y} we will say that an ordered triple (x, y, z)

is of the form (x, y, A) if z A. Similarly with (x, A, y) and (A, x, y).
The importance of all the preceding machinery will become transparent in the

next result which gives vital information about those consistent sets containing LC (p).
THEOREM 3.1. Let C be a consistent set such that LC (p) C for some pc Sv.,

and let p {2,. , n 1 }.

If w Sv. is such that w PPl then w C.

Proof. Let w Sv." Wl Ppl and wn pj for some j {1, 2,.. , n}.
Case 1. Pl < j. In this case 2 =< Pl < j -< n and w is bounded to contain triples of

the form
(i) (ppl, {pl,’.’, p,_}, pj) for some j and p" 2_-< pl < j--< n.
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xlBO (x2 .xn)

FIG. 3. Structure of LC (Ix). The big black dots represent permutations; every arrow represents an adjacent
transposition; those permutations whtch are the begtnntng and/or the end of a subchatn are denoted by-,-; the
maximum element of LC (It.) is It. and the minimum is I every left bracket { groups a subchain and it is

worth noticing that they are interlaced. Notice that the cardinality of the subchains decreases from n down to
2. The right brackets } express the content of Lemma 3.4, namely that LC (x x,) is partitioned in the two
sets xlB(x2 x,) and x LC (xl x,_l).

On the other hand T(LC (p)) contains triples of the form
(ii) (pj, Ppl, {Pl,""", Po,-})

and
(iii) ({p,,..., Ppl-’}, PJ, Po,)"

Therefore w C because C is consistent and (i), (ii) and (iii) are not consistent triples.
Now, for a fixed value of p there are (n-pl) * (n-2)! of such w permutations.

Case 2. p > j. p PP2" P, and q p, (pl P,-I) are elements of LC (p) and
the set { p, q, w} is cyclic; therefore w ; C.

The two cases considered above give us that for a fixed value of p {2, , n 1},
if w S is such that wl p,! then w C because all the (n-1)! such permutations
are not consistent with LC (p). Q.E.D.

COROLLARY 3.2. If C is a consistent set, LC p) c C ]:or some p S. and if v C,
then vl p or v p.

Proof. Immediate from the theorem. Q.E.D.

3.3. EXP (p)---The expansion of a permutation p. In this section we will define
and study the properties of a special set denoted by EXP (p) which plays a vital role
in this paper.

DEFINITION 3.5. The expansion of a permutation--EXP (p).



610 JAMES M. ABELLO AND CHARLES R. JOHNSON

If xi E then EXP (xi) -= x (the expansion of a symbol is itself), and if p Pl P’,

S then

EXP (Pl""" Pn) =- P EXP (P2""" P’,)U p’, EXP (Pl""" P,-1).

Note. It is straightforward to prove by induction on n, that IEXP (Pl""" P’,)I
2 ",-1.

Example 3.3. Let E {1, 2, 3, 4} and p 1234.

EXP (1234)= 1 EXP (234)U 4 EXP (123)

1{2 EXP (34)U 4 EXP (23)} U 4{1 EXP (23)U 3 EXP (12)}

1{2(34), 2(43), 4(23), 4(32)} U 4{1(23), 1(32), 3(12), 3(21)}

{1234, 1243, 1423, 1432} I..J {4123, 4132, 4312, 4321}.

Later on we will see that EXP (p) has a lot of structure built in and that LC (p) is a
subset of it.

The following technical facts about EXP (p) will be used later on. (The proofs
follow readily from the definitions of EXP (p) and LC (p).)

LEMMA 3.5.

i) EXP (p’"" p’,)= U p’’’ p EXP (Pj+I P’,)
=1

ii)

U p’, EXP (p p,,_),

p, EXP (P2 P,,)= Pl"" PIP,, EXP (pj+,
j=l

I,.J { PiPe" P’,},

iii) LC (pj. p’,) c EXP (pi... p’,) for j e {1, 2,. , n},
iv) p...p LC (p+... p,)c EXP (p... p,) forje{1,2,..., n-l}.
At this point it is convenient to illustrate what we know about EXP (p) by drawing

its graphical representation. Let us take now Z-{l, 2, 3, 4, 5} and p-12345; then
EXP (12345) may be represented as in Fig. 4.

Maximality and consistency of EXP (p). Now, we will see that EXP (p) is more
than just a nice set, it is a maximal consistent set.

THEOREM 3.2. EXP (p) is a consistent subset of Sx, for any p e Sx.
Proof sketch. (i) LC (p)c EXP (p) and LC (p) is a consistent subset of Sx by

Lemma 3.5 and Corollary 3.1; thus T(LC (p)) is a consistent set of triples such that
T(LC (p))= T(EXP (p)).

(ii) One can prove that in fact T(LC (p))-T(EXP(p)) which implies that
EXP (p) is a consistent subset of Sx. The idea is the following: EXP (Pl PkPk/l)=
Pk+l EXP (Pl Pk) Pl EXP (P2" Pk+I) by the definition of EXP.

Thus if one proves that

and

(I) T(pk+l EXP (Pl""" Pk)) T(LC (Pl""" Pk+l))

(II) T(p1 EXP (P2"" Pk+,)) T(LC (p, Pk+,)),

then T(EXP (Pl PkPk+)) c T(LC (Pl Pk+l)) which implies that
T(EXP (Pl""" PkPk+l)) T(LC (p"’’ Pk+l)); SO the main job is in the proof of (I)
and (II). Q.E.D.
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FIG. 4. Graphical representation of EXP (12345). Each arrow represents an adjacent transposition.

IEXP (12345)1= 16 and LC (12345) c EXP (12345). The elements of LC (12345) have a check mark
at their right. We have encircled those elements which have a common prefix of length two, namely
12 EXP (345), 15 EXP (234), 51 EXP (234) and 54 EXP (123).

DEFINITION 3.6. If X {Xl," ", X,} and Q c Sx, let

Ox, =- { v Sx-x,: xv Q}.

It is clear that if T c Q c Sx then Tx, c Qxi c Sx-, and that T is consistent iff Tx,
is consistent.

THEOREM 3.3. EXP (p) is a maximal consistent subset of Sx.
Proof. We know by the preceding theorem that EXP (p) is a consistent subset of

Sx. To prove that it is a maximal consistent subset of Sx we will prove the following
equivalent statement:

If C is a consistent subset of Sx: EXP (p) C for some p Sx then C EXP (p).
(i) First, notice that for any n, if I1-n and EXP (p)c C then LC (p)c C,

(LC (p) c EXP (p) by Lemma 3.5) thus w C=:> wl Pl or wl Pn by Corollary 3.2.
Now the proof is by induction on n (the cardinality of X).
Basis. If n 2, w PiPe or w PeP1 by (i) above and in both cases w EXP (pp2),

so C EXP (piP2) :=> C EXP (p).
Induction hypothesis. Assume that for n k, EXP (p Pk) c C ==> C c EXP

(Pl Pk). Let us prove it for n k + 1.
Let w C; then Wl Pl or Wl Pk+l by (i). Thus

or

(ii) W PlY with

W Pk+ll) with/) Cpk+l c7. S,E_{Pk+l}

(see the definition of Cp in Definition 3.6).
Now, EXP (Pl Pk+l) t:2 CEXP (P2" Pk+l) Cp, and EXP (Pl" Pk)

Cp+, by the definition of EXP. But Cp and Cp+, are consistent subsets of Sx-p and
Sx-+,r respectively because C is a consistent subset of Sx, so Cp EXP (P2" Pk/l)
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and Cpk+1C EXP (Pl Pk) by the induction hypothesis. Therefore v
EXP (P2" Pk+l) or vEXP (Pl"’" Pk) by (ii) above, which implies that pave Pl
EXP (p2"" "Pk+l) cEXP(pl’’’Pk+l) or Pk+lVPk+lEXP(pl" "’Pk)
EXP (Pl Pk+l), SO in either case w EXP (Pl Pk+l). Q.E.D.

The following corollary assures us that no matter how hard we try to find consistent
sets containing LC (p) the most we can get is EXP (p).

COROLLARY 3.3. Let C be a consistent subset of Sv. such that LC p) Cfor some
pS.. Then C_EXP(p). In other words IEXP(p)l=maximumcLcp){ICI: C is
consistent}.

Proof (by contradiction). Let C a consistent subset of S such that LC (p)= C
for some p Sx and assume that C EXP (p). First, C EXP (p) because EXP (p)
is a maximal consistent subset of Sv. by the preceding theorem; therefore C-EXP
(p) and EXP(p) 7:C. If vC-EXP(p) then v is consistent with LC(p)
because LC (p) c C; however v EXP (p).

Now, if T(v)=T(LC(p)) then vEXP(p) is a consistent set because
T(LC (p))= T(EXP (p)), but this contradicts the maximality of EXP (p). Therefore
T(v) T(LC (p)), so there exists a triple in T(v) which is not in T(LC (p)) and still
does not introduce inconsistencies in T(C) T(LC (p)) because by assumption C is
consistent. Then IT(C)I > IT(LC (P))I 4(), which contradicts the fact that for every
consistent set C, IT(C)I4() by Lemma 2.1.

Conclusion. There is no v C-EXP (p), thus C
_
EXP (p). Q.E.D.

At this point we know that in order to find consistent sets of cardinality bigger
than [EXP (P)I 2n-1 (if any) we must avoid any set containing LC (p). This is precisely
the purpose of the next section.

4. Searching for consistent sets of cardinality bigger than 2n-1 (if any). The next
theorem opens the door to new consistent sets. It is the first general theorem about
maximal consistent sets.

THEOREM 4.1. Let I l- n and let A S be a maximal consistent set such that
IT(A)I=4(); assume there is a wA and a fixed ordered pair of symbols (Pi, Pj),
Pi, Pj , such that T(A-{ w}) does not contain any triple oftheform (Pi, Pk, Pj), (Pk, Pi, P/)
or (Pi, P, Pk ).

If the set T(w)-T(A-(w})=((pk, Pi, p)} has cardinality (n-2) and if there is
a maximal consistent set A" Ac S._p,.pj and ppiA A then the set A’-
(A-(w)) pipjA is a maximal consistent subset of S..

Comment. This result allows us to obtain consistent sets of bigger cardinality than
a given consistent set A, if A satisfies the hypothesis of the theorem, so it may be a
helpful tool in the search for a maximum consistent set.

Proof of Theorem 4.1.
Part I. A’ is consistent. The proof is by contradiction.
Assume that A’ is not consistent. Then there are in T(A’) triples of the form
1) (p, p, p), (p, pr, p) and (pr, p, p),

or
2) (p, p, p), (p, p, p) and (p,, p, p).
Without loss of generality we can assume that T(A’) contains triples of the form

1), and since T(A’)= T(A-{w}) T(pipi)A at most two out of the three triples
can be in either T(A { w}) or T( pipiA); pipA) is consistent because A is consistent.

(i) Now, if any two of the three triples of the form 1) are in T(pipA) they
must be in T(A) but T(A) = T(A) so they belong to T(A).

(ii) On the other hand, if the remaining triple is in T(A-{w}) it is also in T(A)
because T(A-{w})= T(A).
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Therefore by (i) and (ii) A is not consistent, a contradiction.
(iii) So at this point we know that two of the three triples must be in T(A-{ w})

and the third one must be in T(pipjA). There is no loss of generality by taking
(Pr, Ps, Pt) and (Ps, Pt, Pr) T(A-{w}) and (Pt, Pr, Ps) T(pipjA).

It is clear that (pt, p, p)_ T(A) because otherwise it will contradict the con-
sistency of A (remember that T(A) T(A) and T(A-{w})c T(A)). Therefore we
can assume that (p, p, p) T(ppA) T(A). Here there are two cases to be con-
sidered.

Case 1. Pt Pi or p, p and (p, p) (A). In this case (p,, p, p) T(ppiA)
because we are just choosing Pt to be p or p, so from the triples (p,, p, ps) point of
view the relative order of p and pj is irrelevant; but this being the case we have that
(p,, p, p) T(A) because T(ppA) T(A) by hypothesis. Again this together with
(ii) contradicts the consistency of A.

Case 2. p, p, pr p and p E- { p, p}. Here we have by (ii) that p, p, p)
T(A-{w}), contradicting the hypothesis that T(A-{ w}) does not contain any triple
of the form (-, p, pj). Therefore A’ must be consistent. Q.E.D.

Part II. A’ is maximal. The proof is by contradiction.
Assume there exists a set C’ which is consistent and such that C’ A’.
Let vC’, vC:A’. T(w) contains all the triples of the form (Pk, Pi, P); thus

w ppiA A, which implies that pjpAc A-{w}. This means that the only triples
which are in T(ppA) T(A-{w}) are those of the form (p, p,-); there are (n-2)
of them, so

(o) IT(ppjA) T(A-(w})I n-2.

On the other hand

IT(A)I=IT(A-{w})I+IT(w)I-IT(A-{w})fq Z(w)l
T(A-{w})I +IT(w)- T(A-{w})I

=lT(A-{w})l+(n-2)
by hypothesis, which implies that

(i) T(A { w})l T(A)I-(n 2).

Putting (o) and (i) together we have that

(ii) T(A’)I T(A)I 4().

Now, C’ A’ and IT(A’)I=4(’)T(C’) T(A’) because C’ is consistent, (see
Lemma 2.1, part ii). Thus T(v)c T(A’)=T((A-{w})UppjA). Let us consider
possibilities for T(v).

Case 1. T(v)c T(A-{w}). This contradicts the maximality of A; therefore

(iii) T(v) T(A-{w}).

Case 2. If T(v) T(pipA) then ppAU{v} is a consistent set (ppA is con-
sistent because A is consistent and vppA because v A’); thus v must be such
that vl p, v. =p because if not T(v) will contain a triple of the form

(iv) (Pt, Pi, P) e T( pip,A).

Now let v’ be the (n-2) permutation obtained from v by deleting from it the
symbols p and p. Then At3 {v’} is a consistent subset of S_p,,pj by (iv). On the
other hand v’ A because by assumption v A’ so At_J {v’} is a consistent subset
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which contains A, contradicting the maximality of A; therefore Case 2 is not possible,
namely

(v) T(v) - T(pipjA).

At this point we have by (iii) and (v) that T(v) T(A-{w}) and T(v)
T( pip.iA) however

Thus

(vi) T(v)c T(A-{w})U T(ppA) T(A’).

(vii) T(v)- T(A-{w}) and T(v)- T(pip.A) .
Now those triples in T( v) T( pp.iA) cannot be of the form:

(Pt, P, P) because (Pt, P, P.): T(A-{w}) (there are at most (n-2) triples of this
form and w got all of them; remember that (pi, pi) is fixed);

or
(P, Pt, P) because (p, p,, pj) : T(A’) by hypothesis.

By noticing that T(w) contains triples of the form (Pk, P,Pj) (by hypothesis) we
conclude that wC:ppiAcA. Then ppiAcA-{w}; thus T(ppiA)c T(A-{w}),
which implies that

(viii) T(pipiA)-T(a-{w})={(pi, pj, pt)for somep, eE-{p,p.}}.

Therefore those triples in T(v)-T(A-{w}) must be of the form (p, p, pt) for
some Pt e Y-.,-{P, P.i} by (vi) and (viii) above. So v must be such that vl =p, v2=P.i.
However v e! pp.A; thus

(ix) v ppjv’ with v’ e A
(v’ is an (n-2) permutation in

Now, we have that T(v)c T(A’) by (vi), and this implies that T(v’)c T(A’)
because v=pipv’. On the other hand T(A) T(A’); thus T(A)U T(v’)c T(A’).
But A’ is consistent, so AU v’ is a consistent subset of Sr.-p,.pj such that AU v’ A
(v’ A by (ix) which contradicts the maximality of A). Therefore (vi) is false, namely
T(v) T(A’); this means that C’ contains a triple which is not in T(A’), so ]T(C’)] >
IT(A’)I =4() implies C’ is not consistent, a contradiction.

Conclusion. There is no consistent set C’: C’ A’, so A’ is a maximal consistent
set. Q.E.D.

The preceding theorem gives us a way to identify some maximal consistent sets
which are not maximum and it can be applied to EXP (p). Let us see how this can be
done.

Remarks.
i. EXP (p) is a maximal consistent set:

[T(EXP (p)[ IT(LC (p))[ =4() where n-- I;I.
ii. p (the reverse of p) is the only permutation in EXP (p) which contains triples

of the form (Pt, P2, Pl), and T(EXP (p)-pe) does not contain any triple involving the
ordered pair (p2, P). (This can be seen by a straightforward inductive argument using
the definition of EXP (p).) Moreover pe contains all the (n- 2) possible triples of the
form (Pt, P2, P); thus T(pR) T(EXP (p)_pR) has cardinality (n-2).

iii. EXP(p3..-p,) is a maximal consistent subset of S._p,p such that
PP2 EXP (P3" P,) EXP (p) (see the definition of EXP (p)).
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iv. Now, by taking A EXP (p) and A= EXP (P3" Pn) we have that EXP (p)
and EXP (p3... Pn) satisfy the hypothesis of the preceding theorem by remarks i, ii
and iii above. Therefore the set EXP’ (p)= (EXP (p)_pR)t3 P2Pl EXP (P3""" Pn) is
a maximal consistent subset of S (see Fig. 5a below). It is worth noticing that
IEXP’ (P)I >- [EXP (P)I with equality iff [El--3; specifically

IEXP’ (p)] =IEXP (p)-pl+lP2P EXP (P3""" P)I
2n-l- 1 + [EXP (P3 P.)I
2n-1 1 + 2--3 =_542n-1 1.

v. Similarly by noticing that the only permutation in EXP (p) which contains
the ordered pair (P,-1, P,) is p and that T(p)- T(EXP (p)-p) has cardinality (n-2),
we can try to find another maximal consistent set different to EXP’(p), and indeed
that is the case because EXP (pl P,-2) is a maximal consistent subset of &_{p,_,,pj
such that P,Pn-1 EXP(pl P,-z)cEXP(P). Therefore the set EXP"(p)=
(EXP (p)- p) U P-lP, EXP (pl Pn-2) (see Fig. 5b) is a maximal consistent subset

32 -1.of S, whose cardinality is again 5 -1

p 12345

1"135 "-.. 12354

,21354, 125 34

,21534 "X12545 15234

$1243

15.32 51423

5413U

54312

p

EXP" (12345)

12554

12554

12S45IS23
\/\
1524 51234

154 1243

/ .----,
15432-- 51423 145123 .

--=
$4132z "45312 [

54312 45321

S4321

(a) EXP’ (p)=(EXP (p)_pR)
I,.J P2 Pl EXP P3 P4 Ps).

The encircled elements are those which have been
added to EXP (p), namely P2 PI EXP P3 P4 Ps)-
Notice that pR has been crossed out.
]EXP’ (12345)1=1/424-1= 19.

(b) EXP" (p) (EXP (p) p)
U P4P5 EXP Pl P2 P3).

The encircled elements are those which have .been
added to EXP (p), namely P4 P5 EXP (p P2 P3).
Notice thatp has been crossed out.

]EXP" (12345)1= 1/424-1 19.

FIG. 5
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Let us put the preceding remarks together in the following corollary:
COROLLARY 4.1. EXP’ (p) (EXP (p)_pR) t_J P2Pl EXP (P3" Pn) and

EXP" (p) (EXP (p)- p) kJ P’-lPn EXP (pl P’-2) are maximal consistent subsets
of Sv. of cardinality -]2"-1-1, which is bigger than [EXP (p)l for n > 3.

Until now our efforts to obtain consistent sets with more than 2n-1 elements have
been successful. By studying carefully the structure of EXP’ (p) and EXP" (p) we can
obtain an even bigger consistent set. Let us see how this can be done.

Remarks.
1. LC (p) p’.., p’_jB(pl P’-j-1) for j=0, 1,2,. , (n-2) and if j= n-3,

p,... p’_jBO(pl...p,__l)= pR (by the definition of LC (p)). Thus

Lf(p)-pR=p’...p,_Bo(pl...p"_i_l) forj=0,1,2,...,(n-4)

P"" P’-PB( P2" P’-j-),

and by the definition of p,.., p’_jplB(p2...p’__l) the permutation P"’"P-Pl
P’-i-(P2"’" p,,--2)p""" p’-jptr(p2"’" P’--I) which contains the triple (,
Pn-j-1, P2). Thus

(i) T(LC(p)-pR){(pl,p’__l, pe) for j=0, 1,2,..., n-4}.

On the other hand, PP’(P2"’" P’-l) is in LC (p) and
(ii) this permutatioh--contains the triple (p, p’, P2).

Thus
(iii) T(LC (p)_pR) {(p, p,, P2) for t= n, n-- 1," , 3}

by (i) and (ii).
Now, it is clear that p does not contain any triple of the form (Pl, P, P2). So we

have that T(LC (p)-{p, pR}) {(Pl, Pt, P2) for n, n- 1,. , 3} from (iii), therefore

(iv) T(EXP (p)-{p, p’}) = {(p, p,, p).), t= n, n- 1,. , 3}

because LC (p)c EXP (p).
2. The only permutations in EXP" (p) which contain triples of the form (p,, P2, Pl)

are

(v) Pn-P’(P’-2" P2Pl) and pR =P"-P"(Pl Pn-2) R"
(see Remark ii preceding Corollary 4.1).

On the other hand P2Pl EXP (P3"’" P’) contains all the triples of the form
(Pz, P,Pt), te {3,’.., n}.

3. The only permutations in EXP’ (p) which contain triples of the form
(p,, p’_, p,) are

(vi) p and P2Pl(P3 P’-lPn) ll(p).

(See Remark (v) preceding Corollary 4.1 and recall the definition of l(p) in 3,
Definition 3.3.)

Also we have that P,-lP, EXP (Pl""" P,-2) contains all the triples of the form
(P’-I, Pn, Pt) for e {1, 2,..., n-2}, and it is clear that

(vii) T(EXP(p)-{p, pR})={(p’,p,,p,_l) for t{1,..., n-2}}

because P,(Pl"’" Pn-2)P’-I is an element of LC (p)-{p, pR}c EXP (p)-{p, pR}.
4. (iv), (V), (vi) and (vii) together give us that

EXP’ (p) U EXP" (p)-{p’_ap’(pl... pn_2)R,/I(P)}
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_..---’
-’"

not in EXP’"(p)

zI (p) :"}1345- 12.354.. \ \
21554 ’" 12534

21543 15245 51254

51243

15432 51423 45125

5413 45312

54512 .- 45(123)R
p

EXP’" (p) with p= 12345

FIG. 6. A maximal consistent set of cardinality 2n-1--4. Here n=5; then [EXP’"(12345)[=
20. The elements enclosed by dotted lines do not belong to EXP’" (p).

(see Fig. 6) is a consistent subset of Sx; in fact we can prove that it is maximal if
[E n > 4 by following the same line of argument as the one given by Abello [1, Thm.

THEOREM 4.2. If p E S., the set

EXP’" (p)=

EXP’ (p) for IZl- 3, 4,

(EXP’ (p)-{p,/l(p)}) LJ p.-lp. EXP (pl""" Pn-2)

-P.-IP.(PI P.-2)g for[El>4
is a maximal consistent subset of S of cardinality

j’-2Ixl-- 1IEXP’" (p)[ [21x1_1_ 4

TABLE

Biggest known consistent set cardinality set

4 (this is the maximum)
9 (this is the maximum)

20
44
92
188
380

EXP (p)
EXP’ (p)
EXP’" (p)
EXP’" (p)
EXP’" (p)
EXP’" (p)
EXP’" (p)
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Conclusion. Any maximum consistent set Mc S. must have

---2I1-1-1 for 15;I 3, 4,
Cardinality >=-21"1-1 4 for I > 4.

Q.E.D.

Table 1 gives some of the cardinalities of the consistent sets we have found which
we believe are the best known values at present.

For ILl> 5 an easy recurrence relation is: IMn/ll 21Mnl+4, where IMI denote
the cardinality of the biggest known consistent set for I1 J.

Final notes.
1. Future work must be concentrated in finding upper bounds. At this point we

are trying to prove that the cardinality of a consistent set must be less than or equal
to 2 ". (This will have important implications for a complete characterization of the
consistent sets from the point of view of Ward’s and Inada’s conditions.) In a following
paper [9] some work in this direction will be presented.

2. A related question of interest is whether a consistent set of cardinality less
than 2" can be completed to a consistent set of cardinality 2.

3. Our results answer in general a question posed by Charles R. Johnson in 1978
about the cardinality of a maximum consistent set. He conjectured this to be 2"-1 [6].

4. Raynaud claims [8] that he has proved that the cardinality of a maximum
consistent set which satisfies the "non- aumilieu" condition is 2-1. Our characterization
of EXP (p) does not satisfy this condition even for a single triple of symbols, and yet
EXP (p) is a maximal consistent set of cardinality 2n-1. This suggests a path for a
classification of the class of consistent sets.

Our results give an immediate construction of a subclass of consistent sets of
bigger cardinality than those sets satisfying Inada’s and Raynaud’s conditions [4], [7].
Moreover, the constructed sets have a very nice structure which to our knowledge has
not been found before.

5. The natural decision problem associated with maximum consistent sets has
been untouched at present, and we suspect it does not belong to the class of NP-complete
problems.

Acknowledgments. Thanks to Dr. Eugene Johnsen for his helpful comments and
suggestions, to Ms. Ruth Cintron by her continuous encouragement and to Ms. Teddi
Potter for the wonderful job typing the manuscript.
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EXPLICIT SOLUTIONS TO OPTIMIZATION PROBLEMS ON THE
INTERSECTIONS OF THE UNIT BALL OF THE 11 AND Ioo NORMS

WITH A HYPERPLANE*

URIEL G. ROTHBLUM?

Abstract. In this paper we characterize the extreme points of intersections of the 11 and lo unit balls
in R with a hyperplane. Such a characterization enables one to solve maximization problems of convex
functions over these sets by enumeration. It turns out that the number of extreme points is O(n2) under
the 11 norm, and O(2r) under the loo norm. In particular, solving corresponding optimization problems by
enumeration is efficient only under the l norm but not under the l norm. Still, we get explicit solutions
for maximization problems of linear objectives on the intersection of the l unit ball with a hyperplane
with a computational effort of O(n). Applications of the results for computing bounds on the coefficients
of ergodicity of square, nonnegative, irreducible matrices are discussed.

1. Introduction. In this paper we characterize the (finite set of) extreme points
of the intersection of the 11 and l unit balls in R with a hyperplane. It is well-known
that every convex function over a compact, convex set attains a maximum at an extreme
of that set. Hence, one can use a characterization of the extreme points of a compact,
convex set having finitely many extreme points to solve, by enumeration, optimization
problems where a convex function is maximized over the set. In particular, such an
enumeration can be used for corresponding optimization problems with linear objec-
tives.

The enumeration of the extreme points need not yield an efficient solution method
when the number of extreme points is very large. Our characterization of the intersec-
tion of the 11 unit ball in R with a hyperplane demonstrates that there are n(n-1)
extreme points; assuring that the solution of the corresponding optimization problems
by enumeration can be done with reasonable computational effort. On the other hand,
our characterization of the intersection of the lo unit ball in R with a hyperplane
demonstrates the number of extreme points is of the order of 2n. (When the hyperplane
consists of all points in R whose coordinate sum is zero, the number of the extreme
points is (?,) where k is the largest integer smaller or equal n/2. In general, we have
no closed expression for the number of corresponding extreme points; but, our
characterization indicates that it is of the same order as the number of subsets of
{ 1,. , n}, a number which equals 2n.) It follows that the solution of the corresponding
optimization problems by enumeration of the extreme points is not a reasonable
computational method. Still, we were able to obtain explicit optimal solutions to
maximization problems of a linear objective over the intersection of the loo unit ball
in R" with a hyperplane by a method whose computational effort is O(n).

Our interest in optimization problems where a convex function is maximized over
the intersection of unit balls under various norms with a hyperplane was startled by
the study of bounds on coefficients of ergodicity of square, nonnegative, irreducible
matrices. Specifically, let P be such a (square, nonnegative, irreducible) matrix and

* Received by the editors July 6, 1983, and in revised form December 31, 1983. This research was

supported by the National Science Foundation under grant ENG-78-25182 and the Office of Naval Research
under contract N00014-77-C-0518.

? Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa

32000, Israel.
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let p be its spectral radius, i.e., p is the largest modulus of the eigenvalues of P. The
Perron-Frobenius theorem (e.g., Gantmacher (1957)) assures that p is a simple positive
eigenvalue of P, having a positive right eigenvector, which we denote w. The second
largest modulus of the eigenvalues of P is called the coefficient of ergodicity of P and
will be denoted so(P). It is known to determine convergence properties of the sequence
p-lpN as Nc (e.g., Rothblum and Tan (1983, 2)). Thus, upper bounds on the
coefficient of ergodicity yield information about the convergence of the corresponding
sequence of powers. Such bounds have.been the focus of many studies (e.g., Rothblum
and Tan (1983) and the list of references of that paper). Following the approach of
Seneta (1979), (1983a), (1983b), Tan (1982), (1983), (1984) and Seneta and Tan
(1983), it was shown in Rothblum and Tan (1983, Thm. 3.1) that for every norm
on R n,

(1.1) :(P)-< max IIx Vll.
11311--<1
xR

We remark that if I[" is a norm on C and the condition x e R in (1.1) is replaced
by x e C, then the corresponding (weaker) version of (1.1) is straightforward (e.g.,
Seneta (1979, p. 579) or Rothblum and Tan (1983, 1)). The fact that the right-hand
side of (1.1) is the maximum of a real optimization problem allows one to use
mathematcial programming to compute these bounds. In particular, we observe that
the function defined by x IIxTpII is convex on the set {x e R": Ilxll--< 1, xTw--0},
which is the intersection of the unit ball {x e R": Ilxll -< 1) with the hyperplane {x
R: xTW 0}. We conclude that

(1.2) max IIx PII =max IIx PII,
x x

where ff is the set of extreme points of . In particular, our characterization of the
extreme points of the intersection of the ll unit ball with a hyperplane enable us to
compute the right-hand side of (1.1) efficiently when the norm I[" is the 11 norm.
When the norm I1" is the l norm we have that, with Pi denoting the ith column of
P,

(1.3) max IIx ell max max Ix e,l max max xTpi,
x; x; i=l,...,n i=l,...,n x;

where we used the symmetry of the set . Thus, the right-hand side of (1.1) can be
computed by solving n optimization problems where a linear objective is maximized
over the intersection of the l unit ball with a hyperplane. Our results show how to
obtain these solutions explicitly. We remark that the explicit representation of the
solutions to the right-hand side of (1.1) under the 11 and l norms appear in Rothblum
and Tan (1983, 6).

The organization of this paper is as follows. We summarize some notational
conventions in 2. The characterization of the extreme points of the intersection of
the 11 unit ball with a hyperplane is given in 3, whereas, the characterization of the
extreme points of the intersections of the l unit ball with a hyperplane and the explicit
solution of corresponding optimization problems with linear objectives are given in
4. Finally, the Appendix contains explicit methods for solving the latter problems

where the corresponding computational effort is O(n lg n) and O(n), respectively.
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2. Notational conventions. Throughout this paper we consider elements in, and
subsets of, R for some fixed positive integer n. As usual, and as done in the
introduction, the ll norm and l norm of a vector x R will be denoted Ilxlll and
Ilxll, respectively, i.e., Ilxlll i=l Ix l and Ilxll=maxl__<i__<n Ixil. The convex hull of
a subset

_
R , denoted conv 3, is the set of all convex combinations of elements

of 3, i.e., {)-7=10giXi" Oi>O’--- xi ’ -,ni=l a- 1}. A set _c R" is called convex if
3 =conv 3. An extreme point of a convex set

_
R is a vector x 6 such that if

x ay + (1 a) z for y, z 3 and 0 < a < 1, then necessarily x y z. Evidently, if x
is an extreme point of a convex set 3 and x conv for some

_ , then x .
A vector x R" is called nonnegative, denoted x->_ 0, if all the coordinates of x

are nonnegative. A vector x R" is called positive, denoted x >> 0, if all the coordinates
of x are positive. Finally, a vector x R is called semipositive, denoted x > 0, if x ->_ 0
and x 0.

For a set S {1,. , n}, let es be the vector in R" defined by (eS) 1 for S
and (eS)i=O for i{1,..., n}\S. In particular, e=0. Of course if S consists of a
single element, say j, es is the jth unit vector in R which we denote ej, i.e., ej= ei.

3. The ll norm. The purpose of this section is to characterize the extreme points
of the intersection of the ll unit ball in R with a hyperplane. We then use the results
to give an explicit expression for the maximum of a convex function over such sets.
The characterization of the extreme points of the corresponding sets when the hyper-
plane is the set of vectors in R whose coordinate-sum is zero, is implicit in Rothblum
and Schneider (1980, Thm. 1).

THEOREM 3.1. Let 0 u R and let

(3.1) {x R Ilxlla 1, xTu =0}.

Then is a compact convex set. Also, if n 1, then c {0} and if n > 1 then the set

of extreme points of c is the set

(3.2) o%={(luil+lul)-l(uiei-ue): i,]=1,... ,n, luil+lujlO and ij}.

Proof. The compactness and convexity of % as well as the fact that c {0} when
n 1, are straightforward. Henceforth we will assume that n > 1. In this case 4
and 4. For notational convenience, for i, ] 1,. , n where lull + lu[ 0 and ,
we denote the vector (lul+lul)-l(uei-ue) by fi. Evidently, if= 2LI where

2 {fij: i, j 1,. , n, uui 0 and j},
and

1 {{e i, -ei}: i= 1,. n, ui 0}.

We note that

_
and for every f , -f ff and Ilfll--1. Let ; be the set of

extreme points of % We will establish that 0% by showing that

_
oand that

_ .
We will next establish that ft. As ff

_
c, the definition of extreme points of

convex sets assures that it suffices to show that
_
conv . We will prove, more

generally, that conv . Specifically, we will show that if x % then x conv o%.
Our proof follows by induction on the number of nonzero coordinates of x, which we
denote o(x). First observe that if o(x) =0, then x=0 and for every element f in the
nonempty set , x 2-1f + 2-1(-f) conv (recall that if f , then -f if). Next
assume that o(x)= 1. Then x has the form ce for some a 0 and i= 1,..., n. As
cu xTu =0, we conclude that u =0 and therefore both e and -e are in ffl -o%.
Hence, as lal IIceill [Ixl] <-- 1, we have that

x= aei [2-(c + 1)]e +[2-1(1-a)](-ei)conv o.
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Next, assume that o(x)= 2. Then x has the form flei+ ye where i, j-1,..., n, i# j
and fly#O. Evidently Itl/ll-IIxlll-<- 1 and flui+yuj= xTu=O. We conclude that
either ui u 0 or uiuy O. In the case where u,- u 0, let y [(lt l / I l)t /It l]e’
and z=-[([,Ol+lTl)y/ITI]e. Evidently, Ilylll [[Z]I1-- I[’+’l’)/[ 1. As yYu= zu =0, we
have that both y and z are in . As o(y) o(z) 1 we conclude from the established
induction assertion for the case where o(. equals one, that both y and z are in conv ft.
Hence, by the convexity of conv ,

x- e’ + ve-[lll(ll+l,l)]y+[lll(ll+l,l)]z conv .
In the remaining case, where uuj: 0, both f and -f =f are in

___ . Let
a =-u-/l(lul+lul). As/3u+ yuj =0, we have that

otfiy-- fluTl( uei- Uiej) flei--fluiu-/ley= flei + Te
y- x.

As 0_<-lal lalllfJl[1 ]]af[[1 ]lx[[--< 1, we conclude that

X afiy [2-’(a + 1)If’i/+[2-’(1- a)](-f’) conv ,.
Next assume that for some integer, => 3, every x with o(x) < is contained in

conv ,, and consider x with o(x) t. If there exists an integer q 1,. , n with

Xq 0 and uq 0, let

y=- X-- Xqeq.

Evidently, o(y) o(x)- 1 _-> 2 and yTu =0. Hence y # 0 and Y/]]Yl]I - . Next observe
that o(y/llylll)- o(y)< o(x)= t, and therefore the induction hypothesis assures that
y/[[yl[lconv. Also observe that o<=l[yll,=iixli,-lx, l<-l-lx,l<l. Hence, z=
[xo/(1-[lyll)]e satisfies [Izll--lx[/(1-11yll)<=l. As zu-O, we have that z
Hence, as o(z) 1, the induction hypothesis implies that z conv . Now, the convexity
of conv and the fact that 0 <-Ilyll<_-1 assure that

x= y+ xqe Ilyll(y/llyll,)+(1-11yll)z conv ft.

Next assume that ui # 0 for every 1,. , n with xi # 0. Let min {[xiu[" 1,. , n,
xO}=[xquq[(>O). Since xTu=O, there exists some r{1,...,n}\{q} with (XrUr)
(XqUq) < O. AS UqU 7 0 we have that fqr ’-2 C____. ,. Let

[ Xq/(fqr)q O

and

y= x-fqr.

Evidently, o(y)>= o(x)-2=> 1 and yTu=O. Hence, y0 and y/llyl[ . Next observe
that o( y/ yll ) o( y) < o(x)--t, and therefore the induction hypothesis assures that
y/llyll conv . Also observe that the selection of q and r implies that

fqr)r/ X Xq( fqr)r/ Xr( fqr)q --( XqUq)/ XrUr) > 0

and that

I(fqr)r/Xrl IXqUq/XrUrl Ixu,l/Ixrul 1.

It follows that
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In particular,

0-<-[lylll- Ilxl[1-(IXql+[Xr Yrl)- IlX[I,--Ifl[[[(fqr)ql+l(fqr)rl-I
-Ilxlll-l/lllUIl-IIx[ll- [l -<- 1- I/l < 1.

Hnc, z=-[fl/(1-llY[ll)]fqr satisfies I[Zlll-- I/[/(1- I[yl[1) < 1. As fqr ... ( W also
have that zru=O, assuring that z . As O(Z)=o(fqr)=2, we conclude from the
induction hypothesis that z conv . Hence, the convexity of conv and the fact that
0 =< Y Ill --< 1 assure that

X= yW flfqr= Ilyll,(y/[lylll)+(1-11yll)z conv ,
completing our proof that c__ conv .

We next show that o c_ g. Let f e have a representation f ax + (1 a) y, where
x, yeand0<a<l. Wewillshowthatx=y=f. As

1-llflll- Ifil- [ax+(1--a)Yi] <- (,lxil/(1-)[yil)-llXlll/(1-)lly[ll
i=l i=l i=1

<--a+l-a=l,

we conclude that for i= 1,..., n, laxi+(1-a)yil alxil+(1-a)[yi l, or equivalently,
xiYi O. First assume that f 1, i.e., f eq or f -eq for some q 1,. , n where
/q 0o Then, for { 1,. , n}\{q}, 0 (eq)i OlX -1- (1 c) Yi, and therefore, as xiYi >- O,
we conclude that xi Yi- 0. It follows that the only nonzero coordinate of both x and
y is the q coordinate. Thus, x yf and y 3f for some scalars y and iS. Evidently,
]’,’l- [IXlll--< 1 and Il Ilyl[1--< 1. As f=ax+(1-a)y=[aS+(1-a)8]f, we conclude
that ay+(1-a)8=l, implying that y=8=l, i.e., x=y=f. It remains to consider
the case where f e fie, i.e., f fqr for some q, r e {1,. , n} where UqUr 0 and q r.
For ie{1,..., n}\{q, r}, O=(fqr)i=ax+(1-a)yi, and therefore, as xiYi>-_O, we con-
clude that xi- y- 0. It follows that the only possible nonzero coordinates of x and
of y are the q and r coordinates. As x, y e and UqU 0 it follows that both x and
y are proportional to fqr =f, i.e., x yf and y f for some scalars y and 8. The
remainder of the proof follows the argument used in the case where f

We observe that if u-0, then the set defined by (3.1) is the unit ball under
the 11 norm, whose extreme points are known to be the unit vectors.

We next specialize Theorem 3.1 to the case where u is positive. It turns out that
the corresponding expressions are simpler for this special case.

COROLLARY 3.2. Let n > 1 and let be given by (3.1) where u R is a positive
vector. Then the set of extreme points of is the set

(3.3) if-= {(ui + uj)-l(ujei- uieJ) i, j= 1,. ., n, ]}.

Moreover, if u e -= (1, , 1) r R , then the set of extreme points of is the set

(3.4) ff-={2-1(ei-ei) i,j= 1,..., n, i]}.

The characterization of the extreme points of the set (defined by (3.1) with
respect to a vector u e R) enables us to solve optimization problems where a convex
function is maximized over the corresponding set.

COROLLARY 3.3. Let 0 u R and let q and * be given as in Theorem 3.1,
where n > 1. Let h be a real valued convex function defined on qg. Then

(3.5) max h(x)= max h(x).
x x:
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Proof. The conclusion of the corollary follows directly from Theorem 3.1 and the
(well-known) fact that a convex function on a compact convex set attains a maximum
at one of the extreme points of the set. [3

4. The loo norm. The purpose of this section is to characterize the extreme points
of the intersection of the l unit ball in R with a hyperplane, and to give an explicit
expression for the maximum of convex and linear functions over these sets. The
characterization of the extreme points of the corresponding sets when the hyperplane
is the set of vectors in R whose coordinate-sum is zero is implicit in Haviv and van
der Heyden (1983).

THEOREM 4.1. Let u R and let

(4.1) c={xR"
Then c is a compact convex set. Moreover, the set of extreme points of is the set

1 U o, where

"1 eS + ek eso" dp S
_

{ 1,. , n}, k S, -2 < fl <= O,

(4.2)

and

E Ui -[- Uk E bli 0 where fl 0 if Uk 0},iS iS

4 if uO,
i=1

(4.3) fro
{-e"""}} /f=E u=0.

Proof. The compactness and convexity of are straightforward. Let be the set
of extreme points of % We will show that by showing that g and G .

We will next establish that . As G % the definition of extreme points of
convex sets implies that it suffices to show that G conv . We will next prove that
g conv . Specifically, we will show that every x is necessarily in conv . Our

proof follows by induction on the number of coordinates of x whose absolute value
is less than one, a number which we denote (x). Now, if (x)=0, then x= es- esc

for S {i 1,..., n" x 1}. It follows that if S , then x =-e{’’"}, and if S ,
then x es + fie k es for fl 0 and any k S. In the former case, i= ui -xu O,
assuring that x og ; and in the latter case, is Ui+flUk--is Ui Xu=O,
assuring that x 1 . In either case, we conclude that x ff conv ft. Next assume
that (x)= 1. In this case x=eS+ek--es for S={i= 1,..., n" xi>-l}, k being
the (unique) index with IXk] < 1 and fl Xk- 1. Evidently, -2 < fl < 0 and, as x %
is ui + Uk--is Ui XU =0. Hence, if u 0, then x ff conv ft. In the remain-
ing case uk=0, in which case let y x-ek =eS-eS and z x+(-2-)ek=
esk- e(SXk (the case where S {k}, requiring a special argument). Hence, as
0 < 1 + 2-fl < 1, we have that

x (1 + 2-’)[x-e]+ (-2-)[x + (-2- )e]
(1 + 2-)y + (-2-)z conv .

Next assume that for some integer 2, every x with (x)< is contained
in conv , and consider x with (x) t. As (x) 2, there exist q, r {1,. , n}
with lXq] < 1, lXr] <1 and q # r. We first consider the case where uq =0. In this case,
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y=x+(1-Xq)eq and z=x+(-1-Xq)eq are in and tz(y)=l(z)=l(x)-l<t.
Hence, by the induction hypothesis, y conv o and z conv . Thus, the convexity
of conv o and the fact that -1 < Xq < 1, assure that

x [2-1(1 + Xq)][x + (1 Xq)eq d-[2-1(1 Xq)][x + (--1 Xq)eq

[2-1(1 + Xq)]y+[2-1(1--Xq)]Z econv .
A similar argument shows that x e cony in the case where ur--0. It remains o
consider the case where Uq : 0 and ur 0. In this case, let

Uq (1 Xq) if/./q > 0,
Olq uq (-1 xq if Uq < O.

Also, let

+x) if u>0,
Or= Ur(--1WXr) if U<0.

For p q or p r, ap > 0 and for 0-< a < ap[Xp + au;l[ -< 1 with equality holding if
eq Then aqr> O, [(yqr)q[a ap. Letaqr=min{aq, ar}andlety=-X+aq(Uq -ule)

[Xq -I" Olqrbl-l[ d and I(yq)rl Ix -I-. Olqru-ll 1. Moreover, either I(y),l-- 1 or I(yq)l-
1, depending whether aq aq or aq a, As (yqr)i Xi for e {1," , n}\{q, r}, we
conclude that ]]yqrl[oo<= 1 and p,(yqr) < t./t,(X) t. Also observe that (yqr)Tu xTu "-’0.
Thus, yqr

_ . As tz(yqr) < t, the induction hypothesis assures that yqr conY o. Next,
let c% and yq be defined correspondingly by reversing the roles of q and r. The above
arguments show that y’q conv .. We conclude from the convexity of conv

x (+)-(x+
q ul r) l eq(Cerq q- Oqr)-l{orq[X q- Oqr(Uqle e ]+ aqr[X + tq(U- e u )]}

(aq + aq)-1 {aqyqr + OZqrY
rq } c= conY ,

completing our proof that r c_G_ conv ft.
It remains to show that c_c_ . Let f e have a representation f ax + (1 a) y,

where x, y e and 0 < a < 1. We will show that x y f. As x --< 1, y --< 1 and

Ifil--IOlXi -I" (1 a) Yil ollxil-t-- (1 a)ly, , + 1 , 1,

we conclude that whenever [fil 1 we have that Ix, ly, l= 1 and [axi +(1-c)y,I--
lx,l/(1-)lyil. Since the latter condition is equivalent to x,yi >-0, we conclude that
if Idol 1 then xi yi =f. In the first of two cases assume that f e 0. Then for
e { 1,. , n}, ]fil 1, assuring that xi Yi f. Thus, f x y. In the remaining case

Swe have that f e 1. Thus f has the representation f es +ek- e where b S c_

{1,..., n}, ke S,-2</3<-0 andYis Ui+Uk--iS ui=O and where/3 =0 if Uk =0.
Now, if Uk =0, then for e {1,. , n}, Ifil 1, assuring that xi yi =fi. Thus, x y =f.
Next assume that Uk O. Then, for e { 1,. ., n}\{ k}, Ifi] 1, assuring that f xi Yi.
Next observe that, as {f, x, y} c_ q, we have that 0 Yi=I u& i=1 uixi Y.’=I uyi. We
conclude that Ukfk UkXk ukyk and there, as Uk O, fk Xk Yk" Thus, again, x y f.

COROLLARY 4.2. Let u R and let and be defined as in Theorem 4.1. Let
h be a real valued convex function defined on ’. Then

(4.4) max h(x)=max h(x).
xC x
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Proof. The conclusion of our corollary follows directly from Theorem 4.1 and the
(well-known) fact that a convex function on a compact convex set attains a maximum
at one of the extreme points of the set.

Let % be defined through (4.1) with respect to a given vector u. The characteriz-
ation of the extreme points of c, obtained in Theorem 4.1, suggests a simple method
for generating these extreme points. We first introduce some notation. Let b

_
S
_
T
_

{1,..., n}. We define the quantity u (s’T) by

u(s’r=- Y u- Y ui.
iS i T\S

Also, we will use the notation P, N and M, respectively, to denote the subsets of
{1,. , n} consisting of all indices with ui>0, ui <0 and u=0. Finally, let g be the
set of extreme points of c.

We next describe the method for generating the extreme points of . Consider
a set V N for which

(4.5) ui <-- u(v’n<-- ui.
iP iP

(Of course, V= b c_ N is such a set). Now, if u (v’N)- --EiP Ui, then Theorem 4.1
assures that if U_ M and S-= VU PU U, then eS-eSC g. In the remaining case
where -pu < u(v’n <-Yp ui, one can find a set 4 W c_c_ P and an index k W,
such that

(4.6) U(W\{k}’P)
U
(V’N)

U(W’P).

In fact, for any enumeration of the elements of P, say i(1),..., i(p), there exists an
integer re {1,. , p} for which W= {i(1), , i(r)} and k i(r) satisfy (4.6). It now

-1follows from Theorem 4.1 that if U_ M, S-= VU WU U and fl ---[u(V’n+ U(W’mlUk
then eS+ek- eSC K Of course, an alternative method for constructing extreme
points of is to first select W c_ p with

(4.7) Z ui <-- u w’e < ui,
iN iN

and then select the corresponding set 4 V c_ N and index k e V such that

(4.8) U
(V’N)

U (W’P) < U(V\{k}’N).

It follows, again, from Theorem 4.1, that if U_M, S=-WU V U and /---
-[u(W’m + u(V’N]u- 1, then es +

The above method for constructing the extreme points of simplifies when u _-> 0.
For a set S_ {1,..., n}, let u (s=- u(s’’’. We observe that when u _-> 0, the only
set V

_
N is the empty set, for which (4.5) is straightforward. In particular, (4.6)

becomes

(4.9) u(w\{k} <0=< u(w.

Moreover, there is clearly no need to select first W c_ p and then V c_ N. A correspond-
ing simplification of the method holds when u _-< 0.

We will next obtain explicit solutions to linear programming problems whose
feasible set is given by the set defined through (4.1) with respect to some vector
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U R n. Specifically, we consider linear programs having the form:

(4.10) max x ra,
Ilxll--<
xTIA =0
xR

where a e R and u e R are arbitrary given vectors. We next observe that by making
the change of variables Yi xi if u-> 0 and Yi =-x if u < 0, we convert (4.10) to the
problem"

(4.11) max y ra,
Ily]l_-
yrv 0
yR

where v ui if u-> 0 and vi =-u if u < 0. In particular v >-0. We conclude that,
without loss of generality, one can consider (4.10) under the assumption that u >=0.
We also observe that the solution of (4.10) when u=0 is trivial as the set of the
optimal solutions in this case is the set {x* e R "" x* 1 if a > 0, x* -1 if a < 0 and
-1 =< x*-< 1 if a =0}. Thus we will consider (4.10) under the assumption that u > 0.

THEOREM 4.3. Let u R be a semipositive vector and let a be an arbitrary vector
in R with

(4.12) al/ua >= a2/bl2 >= a,/un,

where a/O is defined to be + if a > 0 and - if a <= O. Then an optimal solution to
(4.1 O) is the vector

(4.13) X* e{1’’’’’k-1} + yek- e{k+l’’’’’n}

where k e {1,. , n} is the smallest integer with 2 /k= U > E=I Ui and where

(4.14) y=- 14- ui-2 u uk
i=1 i=1

Moreover, if {i 1,. , n: U ai --0} b and if the inequalities in (4.12) are strict
whenever the corresponding terms are finite, then the vector x* defined above is the unique
optimal solution of (4.10).

Proof. For each feasible solution x of (4.10) we define two quantities, k(x) and
.m(x). The quantity k(x) is defined to be the smallest index k {1,. , n} with a?k < 1.
Of course, as feasibility of x for (4.10) requires that xTu =0, we conclude from the
semipositivity of u that Xk < 1 for some k {1," , n}, i.e., k(x) is well defined. The
quantity re(x) is defined to be the smallest integer m{k(x)+ 1,..., n} for which
Xm>--l, if such an integer exists, and m(x)=n+l if x<--1 for all i
{k(x)+ 1,..., n}. We observe that, as feasibility of a vector x for (4.10) assures that
-l<=xi <-1 for i=l,...,n we have that xi=l for i{1,...,k(x)-l},and xi=-i
for i{k(x)+l,. , m(x)-l}.

Compactness and continuity arguments assure that (4.10) has an optimal solution.
Let x* be an optimal solution of (4.10) which maximizes lexicographically the pair
(k(.), m(.)) among all optimal solutions to (4.10). Thus, for every optimal solution
x of (4.10), k(x)<=k(x*) and if k(x)=k(x*) then m(x)<=m(x*). To abbreviate
notation let, henceforth, k k(x*) and m re(x*). We will next show that m n + 1.
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Assume that m-< n. We first observe that (4.12) implies that there exists integers
l <=p<q<- n with

(4.15)

(4.16)

and

(4.17)

{1,. , p):> ui 0 and ai > 0,

i{p+l,..., q):> u > 0,

It is immediate to see that k > p and, as m-< n, m-< q (see the discussion preceding
this Theorem 4.3 on solving (4.10) when u =0). In particular, Uk > 0 and u,, > 0. We
also have that Xk* < 1 and, as m<=n, x*>-l. Let = x*+6(u-1ek-un’em) where
6=min{(1--Xk*)Uk, (X*+I)u,n}. Evidently, 6>0. Also, ,=x* for ie
{1,...,n}\{k,m}, --I<=X*k<--,=X*k+6U-’<--X’:+(1--X*,)=I and 1->_x*->2,,
x*m-6uT: >=x-(X*m+ 1)=-1. Hence, I1 11 -< 1. Also, We con-
clude that Y is feasible for (4.10). Next observe that (4.12) implies that (()Ta
(x*)7"a+6(u-’ak--uflaj)<=(x*)a. Since x* is optimal for (4.10), it follows that
()7"a (x*)ra and therefore is also optimal for (4.10). Next observe that if 6
(1- X*k)U then x + (1- Xk*) 1, assuring that k(2)>= k + 1 > k(x*). Alternatively,
if 6 < (1- X)Igk then 6 (x*m + 1) u,, and therefore k < Xk* +(1 X) 1 and ,, x*,,-
(x* + 1) =-1, implying that k(2) k(x*) and re(Y) > re(x*). In either case we obtain
a contradiction to the lexicographic maximality of (k(x*), m(x*)) among all optimal
solutions of (4.10). This contradiction proves that m n + 1.

As m=n+l, we have that x*=-I for i=k+l,...,n and therefore x*=
e{l"’"k-1}+xek--e{k+l""nI’n Now as (x*)ru0k_, we haven that .i=lkk-1Ui .jf_XUk
Ei=k+, ui=O, i.e., x* (2i=k+l bli--i=l Ui)ul-"(i=l ui+uk-2Ei=, Ui)U-’--k
1 +(2’-, Ui--2 2-, U)U-’. Now, as x* < 1 we have that 27-, u<2 ._, u. Also, as

k -1Xk>----1, we have that (i=l u-2.=l U)Uk >------2, Le., =1 u--2=1U>----2Uk, or
k-1 k

equivalently, 2 Y’. i= u = u. Thus, k is the smallest integer wth 2 Y’. = u > i= u.
We conclude that (4.13) holds with y given by (4.14).

Next assume that for no i {1,..., n}, u a =0 and that the inequalities in
(4.12) are strict whenever the corresponding terms are finite. Let x* be any optimal
solution of (4.10) and let k =---- k(x*) and m =- re(x*). The above arguments show that
k _-> p, and if m -<_ n then m <-_q, where p and q are determined by (4.15)-(4.17). Now,
if m <= n, then =- x* + 6( U- ek- Un e’), where 6 min {(1- x)u- (Xm -I-" 1 )/gn } > 0,
is feasible for (4.10). Next observe that the corresponding strict inequalities in (4.12)
imply that ()ra (x*)ra + 6(U-’ak-- ula,) > (x*)ra, contradicting the optimality
of x*. This contradiction proves that m(x*)=n+l and therefore x*=
e{l""’k-l+ x*kek--e{k’/’’’’’’’. The fact that x* is necessarily the vector given by (4.13)
now follows from the arguments used in the previous paragraphs.

We remark that an alternative proof to Theorem 4.1 can be obtained from Theorem
4.3 and Corollary 4.4 (which were obtained independently of Theorem 4.1) by using
standard facts about the relation of extreme points of bounded, convex polyhedral
sets and maximizers of linear functions over such sets. (Specifically, if c is a bounded,
convex, polyhedral set, then every linear function on c obtains a maximum at some
extreme point of c. Also, for every extreme point of there exists a linear function
having a unique maximizer over c which is the given extreme point.)

Theorem 4.3 allows us to solve optimization problem (4.10) even when (4.12) is
not satisfied, by simply permuting the indices 1,..., n so that the permuted indices
satisfy (4.12). Specifically, we get the following immediate corollary of Theorem 4.3.

{q + 1," , n} :> U 0 and a <--_ 0.
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COROLLARY 4.4. Let u R" be a semipositive vector and let a be an arbitrary
vector in R . Let i(1),. i( n) be an enumeration of the indices 1,..., n such that

(4.18) ai(l)/ui(1) ai(2)/ui(2) ai(,)/

where division by zero is defined as in Theorem 4.3. Then, an optimal solution to (4.10)
is the vector

(4.19) X* = e{i(1)’’’’’i(k-1)} 4;- Te
i(k) e{i(k+l),’’’,i(n)},

where k { 1,. n} is the smallest integer with 2 Y;= uip) > Y i= ui and where

) -.(4.20) y=-l+ u-2 Y Ui(p) u
i=1 p=l

Moreover, if {1 1,..., n: ui=ai=O} 49 and if the inequalities in (4.18) are
strict whenever the corresponding terms are finite, then the vector x* defined above is the
unique optimal solution of (4.10).

Proof. The conclusion follows directly from Theorem 4.3. [3

Explicit methods that use Corollary 4.4 to solve the optimization problem given
by (4.10) are discussed in the Appendix.

We next specialize Corollary 4.4 to the case where u e (1,..., l)re R". It
turns out that the corresponding expressions are easier to compute in this special case.

COROLLARY 4.5. Let a be an arbitrary vector in R" and let i(1),..., i(n) be an
enumeration of the indices 1,..., n such that

(4.21) ai(l)>= ai(2)=> => ai(.).

Let e--(1,..., 1)7- R and consider the optimization problem

(4.22) Tmax x a.
Ilxll_-<
xTa =0
xR

Let In/2] be the smallest integer larger than.n Then an optimal solution to (4.22)
is the vector

(4.23) X* e{i(1)’’’’’i( rn/2]-l)} + ye [n/2] e [n/2]+l,.-.,n},

where 3’= 0 if n is odd and y=--1 if n is even. Also the optimal value of the objective
of (4.22) is given by

(4.24) (x*) Va la- 1,
i=1

where tx a In/2] (i.e.,/x is a median of al, a,).
Moreover, if (4.21) holds with strict inequalities, then the vector x* given by (4.23)

is the unique optimal solution of (4.22).
Proof. It is easily seen that when u e, then the smallest integer k with 2 Y i= u >

Z= u is the integer In/2] and Yi= u-2 rn/21i=l u equals -1 or 0 depending whether
n is odd or even. These observations together with Corollary 4.4 imply that x* defined
by (4.23) with the corresponding y is an optimal solution to (4.22) and it is a unique
optimal solution when (4.21) holds with strict inequalities.
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We finally establish (4.24). First consider the case where n is odd. Let m In/2]
and observe the definition of x* assures that

m--1 m--1

(x*)Ta Y ai- ai (ai-am)- , (ai-am)
i=1 i=m+l i=1 i=m+l

lai-aml+ lai-a,l= lai-aml,
i=1 i=m+l i=1

establishing (4.24). Similar arguments can be used to establish (4.24) wlen n is even.
We remark that Haviv (1983) and Haviv and van der Heyden (1983) have obtained

(4.24) for a class of optimization problems that determine bounds on approximations
of stationary vectors of stochastic matrices.

Appendix. The purpose of this appendix is to describe explicit procedures for
solving the optimization problem (4.10) and their computational complexity.
Throughout this appendix, let a be an arbitrary vector in R" and let u be a semipositive
vector in R". Also, we define the division of a real number by zero as in Theorem 4.3.

Corollary 4.4 suggests the following method for solving the optimization problem
given by (4.10). First sort the n numbers {a/u" i= 1,... n} and then compute the
quantities i(k), y, x* and (x*)7"a defined in Corollary 4.4 (by using (4.19) and (4.20)).
Since sorting can be accomplished by O(n lg n) comparisons (e.g., Knuth (1973, Vol.
3)) and the remaining calculations require O(n) additions and multiplications, the
computational effort of the resulting method is of the order of O(n lg n).

We next describe an O(n) method for solving the optimization problem given by
(4.10). Assume that one has identified an index m and a partition of {1,..., n} into
two sets /_ and L where mI_, I_{i=l,...,n’a/ui<=a,,/u,}, I+
{i= 1,’", n" ai/u>=a,.,,/u,,} and I_\m Ui <=2-1Y=I Ui<ii_ U. Now let

y= 1 +( i=1 ui-2_ bli)Un
and let x*e R be defined by

1 if /_\{m},
x*-= y if i= m,

-1 if/e/+.

It is easy to see that there exists an enumeration i(1),..., i(n) of the indices 1,..., n
so that (4.18) holds, I_={i(1),..., i(k)}, I/={i(k+l),..., i(n)} and i(k)=m. It
now follows directly from Corollary 4.4 that x* is optimal for the optimization problem
given by (4.10). Moreover, x* is computable by O(n) additions and multiplications
(once m,/_ and/+ are given).

We will next demonstrate that an index m and the corresponding sets I_ and/+
can be identified by O(n) comparisons, additions and multiplications. In fact, we will
show that the (more general) "weighted median problem" (defined in the next para-
graph) is solvable by O(n) comparisons, additions and multiplications. For a finite
real number x let Ix be the smallest integer larger than or equal to x. We recall that
an element a of a set {a,. , an} with -<_- a-_< for 1,. , n is called a median
if there exist In/2] elements in {ca,..., c,} which are smaller than or equal to a

and the remaining elements are all larger than or equal to a. It is shown in Knuth
(19"73, Vol. 3, p. 216) that a median of n numbers can be identified by O(n)
comparisons, i.e., for some positive integer K a median or any n numbers, n 1,
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2,’’’, can be determined by at most Kn comparisons. Moreover, Knuth (1973, Vol.
3, p. 219) assures that when a median is found, the relationship (namely, being smaller
than, being equal to or being larger than) of each of the n numbers to this median
must have been determined.

We will next describe the weighted median problem. Let a,..., a be given
numbers, where -oe =< ce =< + ee for 1, , n. Also, let w, , w,, w be additional
numbers (called weights), where 0 < w < oe for 1,. , n and 0 < w < Y w. The
corresponding weighted median problem is the problem of identifying an index m e
{1,..., n} and a partition of {1,... n} into two sets I_ and I+ such that mI_,
I__{i=l,...,n" Oliarn}, I+{i=l," ..,n" Ol.iOlrn } and (Eii_Wi)--Wrn=W<
iz_ w. We will next establish the (possibly known) result that the weighted median
problem is always solvable by 2(K + 2)n comparisons, additions and multiplications.
The following proof was communicated to us by Dan Gusfield. The proof follows by
induction on n. The case where n 1 is trivial. Next assume that for some positive
integer n*, our assertion holds whenever n n* and consider n n*+ 1. It follows
from the discussion in the previous paragraph that, by at most Kn comparisons, one
can determine a median of a,. , a, say ak, and a partition of {1,. , n} into two
sets, say J_ and J/, such that k J_, J_ {i 1,. , n" a Ok} J+ {i 1,. , n"

ai>=ak} where J_ consists of In/2] elements and J/ consists of (the remaining)
n-[n/2] elements. Next, n-1 additions and two comparisons can be executed to
compute w_ ii_ wi, w/ iI/ and determine whether w_- w, =< w < w_, or w <
w_- w,, or w->_ w_. In the former case, our weighted median problem has been solved
by Kn+n+l <=2(k+2)n comparisons, additions and multiplications. In the two
remaining cases, the problem is easily seen to be reduced to the weighted median
problem of { ai" J_\{ k}} with the corresponding weights and w unchanged, or to the
weighted median problem of {ai’iJ/} with corresponding weights and w being
replaced by w-w_ (the latter case requiring an additional subtraction). In either of
the two cases, the number of corresponding elements does not exceed n/2 and
therefore, by the induction hypothesis, is solvable by at most 2(K + 2)(n/2) (K + 2)n
comparisons, additions and multiplications. In particular, the original weighted median
problem is solvable by Kn + n + 2 + (K + 2)n _<- 2(K + 2)n comparisons, additions and
multiplications.
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